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Abstract

A key learning scenario in large-scale applications
is that of federated learning, where a centralized
model is trained based on data originating from a
large number of clients. We argue that, with the
existing training and inference, federated models
can be biased towards different clients. Instead,
we propose a new framework of agnostic feder-
ated learning, where the centralized model is opti-
mized for any target distribution formed by a mix-
ture of the client distributions. We further show
that this framework naturally yields a notion of
fairness. We present data-dependent Rademacher
complexity guarantees for learning with this ob-
jective, which guide the definition of an algorithm
for agnostic federated learning. We also give a fast
stochastic optimization algorithm for solving the
corresponding optimization problem, for which
we prove convergence bounds, assuming a convex
loss function and a convex hypothesis set. We fur-
ther empirically demonstrate the benefits of our
approach in several datasets. Beyond federated
learning, our framework and algorithm can be of
interest to other learning scenarios such as cloud
computing, domain adaptation, drifting, and other
contexts where the training and test distributions
do not coincide.

1. Motivation
A key learning scenario in large-scale applications is that
of federated learning. In that scenario, a centralized model
is trained based on data originating from a large number of
clients, which may be mobile phones, other mobile devices,
or sensors (Konečnỳ, McMahan, Yu, Richtárik, Suresh, and
Bacon, 2016b; Konečnỳ, McMahan, Ramage, and Richtárik,
2016a). The training data typically remains distributed over
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the clients, each with possibly unreliable or relatively slow
network connections.

Federated learning raises several types of issues and has
been the topic of multiple research efforts. These include
systems, networking and communication bottleneck prob-
lems due to frequent exchanges between the central server
and the clients (McMahan et al., 2017). Other research ef-
forts include the design of more efficient communication
strategies (Konečnỳ, McMahan, Yu, Richtárik, Suresh, and
Bacon, 2016b; Konečnỳ, McMahan, Ramage, and Richtárik,
2016a; Suresh, Yu, Kumar, and McMahan, 2017), devising
efficient distributed optimization methods benefiting from
differential privacy guarantees (Agarwal, Suresh, Yu, Ku-
mar, and McMahan, 2018), as well as recent lower bound
guarantees for parallel stochastic optimization with a de-
pendency graph (Woodworth, Wang, Smith, McMahan, and
Srebro, 2018).

Another important problem in federated learning, which
appears more generally in distributed machine learning and
other learning setups, is that of fairness. In many instances
in practice, the resulting learning models may be biased or
unfair: they may discriminate against some protected groups
(Bickel, Hammel, and O’Connell, 1975; Hardt, Price, Sre-
bro, et al., 2016). As a simple example, a regression al-
gorithm predicting a person’s salary could be using that
person’s gender. This is a central problem in modern ma-
chine learning that does not seem to have been specifically
studied in the context of federated learning.

While many problems related to federated learning have
been extensively studied, the key objective of learning in
that context seems not to have been carefully examined.
We are also not aware of statistical guarantees derived for
learning in this scenario. A crucial reason for such ques-
tions to emerge in this context is that the target distribution
for which the centralized model is learned is unspecified.
Which expected loss is federated learning seeking to mini-
mize? Most centralized models for standard federated learn-
ing are trained on the aggregate training sample obtained
from the subsamples drawn from the clients. Thus, if we
denote by Dk the distribution associated to client k, mk the
size of the sample available from that client and m the total
sample size, intrinsically, the centralized model is trained to
minimize the loss with respect to the uniform distribution
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U = ∑pk=1
mk
m

Dk. But why should U be the target distribu-
tion of the learning model? Is U the distribution that we
expect to observe at test time? What guarantees can be
derived for the deployed system?

We argue that, in many common instances, the uniform dis-
tribution is not the natural objective distribution and that
seeking to minimize the expected loss with respect to the
specific distribution U is risky. This is because the target dis-
tribution may be in general quite different from U. In many
cases, that can result in a suboptimal or even a detrimental
performance. For example, imagine a plausible scenario of
federated learning where the learner has access to a large
population of expensive mobile phones, which are most
commonly adopted by software engineers or other technical
users (say 70%) than other users (30%), and a small popula-
tion of other mobile phones less used by non-technical users
(5%) and significantly more often by other users (95%). The
centralized model would then be essentially based on the
uniform distribution based on the expensive clients. But,
clearly, such a model would not be adapted to the wide gen-
eral target domain formed by the majority of phones with
a 5%−95% population of general versus technical users.
Many other realistic examples of this type can help illustrate
the learning problem resulting from a mismatch between
the target distribution and U. In fact, it is not clear why
minimizing the expected loss with respect to U could be
beneficial for the clients, whose distributions are Dks.

Thus, we put forward a new framework of agnostic feder-
ated learning (AFL), where the centralized model is op-
timized for any possible target distribution formed by a
mixture of the client distributions. Instead of optimizing the
centralized model for a specific distribution, with the high
risk of a mismatch with the target, we define an agnostic
and more risk-averse objective. We show that, for some
target mixture distributions, the cross-entropy loss of the
hypothesis obtained by minimization with respect to the uni-
form distribution U can be worse than that of the hypothesis
obtained in AFL by a constant additive term, even if the
learner has access to infinite samples (Section 2.2).

We further show that our AFL framework naturally yields a
notion of fairness, which we refer to as good-intent fairness
(Section 2.3). Indeed, the predictor solution of the optimiza-
tion problem for our AFL framework treats all protected
categories similarly. Beyond federated learning, our frame-
work and solution also cover related problems in cloud-
based learning services, where customers may not have any
training data at their disposal or may not be willing to share
that data with the cloud due to privacy concerns. In that case
too, the server needs to train a model without access to the
training data. Our framework and algorithm can also be of
interest to other learning scenarios such as domain adapta-
tion, drifting, and other contexts where the training and test

distributions do not coincide. In Appendix A, we give an
extensive discussion of related work, including connections
with the broad literature of domain adaptation.

The rest of the paper is organized as follows. In Section 2,
we give a formal description of AFL. Next, we give a de-
tailed theoretical analysis of learning within the AFL frame-
work (Section 3), as well as a learning algorithm based on
that theory (Section 4). We also present an efficient convex
optimization algorithm for solving the optimization prob-
lem defining our algorithm (Section 4.2). In Section 5, we
present a series of experiments comparing our solution with
existing federated learning solutions. In Appendix B, we
discuss several extensions of the AFL framework.

2. Learning scenario
In this section, we introduce the learning scenario of agnos-
tic federated learning we consider. We then argue that the
uniform solution commonly adopted in standard federated
learning may not be an adequate solution, thereby further
justifying our agnostic model. Next, we show the benefit of
our model in fairness learning.

We start with some general notation and definitions used
throughout the paper. Let X denote the input space and Y

the output space. We will primarily discuss a multi-class
classification problem where Y is a finite set of classes, but
much of our results can be extended straightforwardly to
regression and other problems. The hypotheses we consider
are of the form h∶X→∆Y, where ∆Y stands for the simplex
over Y. Thus, h(x) is a probability distribution over the
classes or categories that can be assigned to x ∈ X. We
will denote by H a family of such hypotheses h. We also
denote by ` a loss function defined over ∆Y × Y and taking
non-negative values. The loss of h ∈H for a labeled sample
(x, y) ∈ X × Y is given by `(h(x), y). One key example
in applications is the cross-entropy loss, which is defined
as follows: `(h(x), y) = − log(Py′∼h(x)[y′ = y]). We will
denote by LD(h) the expected loss of a hypothesis h with
respect to a distribution D over X × Y:

LD(h) = E
(x,y)∼D

[`(h(x), y)],

and by hD its minimizer: hD = argminh∈HLD(h).

2.1. Agnostic federated learning

We consider a learning scenario where the learner
receives p samples S1, . . . , Sp, with each Sk =
((xk,1, yk,1), . . . , (xk,mk , yk,mk)) ∈ (X×Y)mk of size mk

drawn i.i.d. from a possibly different domain or distribution
Dk. We will denote by D̂k the empirical distribution associ-
ated to sample Sk of size m drawn from Dm. The learner’s
objective is to determine a hypothesis h ∈H that performs
well on some target distribution. Let m = ∑pk=1mk.
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Figure 1. Illustration of the agnostic federated learning scenario.

This scenario coincides with that of federated learning
where training is done with the uniform distribution over
the union of all samples Sk, where all samples are uni-
formly weighted, that is Û = ∑pk=1

mk
m

D̂k, and where
the underlying assumption is that the target distribution is
U = ∑pk=1

mk
m

Dk. We will not adopt that assumption since
it is rather restrictive and since, as discussed later, it can lead
to solutions that are detrimental to domain users. Instead,
we will consider an agnostic federated learning (AFL) sce-
nario where the target distribution can be modeled as an
unknown mixture of the distributions Dk, k = 1, . . . , p, that
is Dλ = ∑pk=1 λkDk for some λ ∈ ∆p. Since the mixture
weight λ is unknown, here, the learner must come up with
a solution that is favorable for any λ in the simplex, or any
λ in a subset Λ ⊆ ∆p. Thus, we define the agnostic loss (or
agnostic risk) LDΛ

(h) associated to a predictor h ∈H as

LDΛ
(h) = max

λ∈Λ
LDλ

(h). (1)

We will extend our previous definitions and denote by hDΛ

the minimizer of this loss: hDΛ
= argminh∈HLDΛ

(h).

In practice, the learner has access to the distributions Dk

only via the finite samples Sk. Thus, for any λ ∈ ∆p, in-
stead of the mixture Dλ, only the λ-mixture of empirical
distributions, Dλ = ∑pk=1 λkD̂k, is accessible.1 This leads
to the definition of L

DΛ
(h), the agnostic empirical loss of

a hypothesis h ∈H for a subset of the simplex, Λ:

L
DΛ

(h) = max
λ∈Λ

L
Dλ

(h).

We will denote by h
DΛ

the minimizer of this loss: h
DΛ

=
argminh∈HL

DΛ
(h). In the next section, we will present

generalization bounds relating the expected and empirical
agnostic losses LDΛ

(h) and L
DΛ

(h) for all h ∈H.

Notice that the domains Dk discussed thus far need not
coincide with the clients. In fact, when the number of clients
is very large and Λ is the full simplex, Λ = ∆p, it is typically
preferable to consider instead domains defined by clusters
of clients, as discussed in Appendix B. On the other hand,
if p is small or Λ more restrictive, then the model may not
perform well on certain domains of interest. We mitigate

1Note, Dλ is distinct from an empirical distribution D̂λ which
would be based on a sample drawn from Dλ. Dλ is based on
samples drawn from Dks.

the effect of large p values using a suitable regularization
term derived from our theory.

2.2. Comparison with federated learning

Here, we further argue that the uniform solution h
U

com-
monly adopted in federated learning may not provide a
satisfactory performance compared with a solution of the
agnostic problem. This further motivates our AFL model.

As already discussed, since the target distribution is un-
known, the natural method for the learner is to select a
hypothesis minimizing the agnostic loss LDΛ

. Is the predic-
tor minimizing the agnostic loss coinciding with the solution
hÛ of standard federated learning? How poor can the perfor-
mance of the standard federated learning be? We first show
that the loss of hÛ can be higher than that of the optimal
loss achieved by hDΛ

by a constant loss, even if the number
of samples tends to infinity, that is even if the learner has
access to the distributions Dk and uses the predictor h

U
.

Proposition 1. [Appendix C.1] Let ` be the cross-entropy
loss. Then, there exist Λ, H, and Dk, k ∈ [p], such that the
following inequality holds:

LDΛ
(h

U
) ≥ LDΛ

(hDΛ
) + log

2√
3
.

2.3. Good-intent fairness in learning

Fairness in machine learning has received much attention in
recent past (Bickel et al., 1975; Hardt et al., 2016). There
is now a broad literature on the topic with a variety of
definitions of the notion of fairness. In a typical scenario,
there is a protected class c among p classes c1, c2, . . . , cp.
While there are many definitions of fairness, the main
objective of a fairness algorithm is to reduce bias and ensure
that the model is fair to all the p protected categories, under
some definition of fairness. The most common reasons for
bias in machine learning algorithms are training data bias
and overfitting bias. We first provide a brief explanation
and illustration for both:

• biased training data: consider the regression task,
where the goal is to predict the salary of a person based
on features such as education, location, age, gender.
Let gender be the protected class. If in the training data,
there is a consistent discrimination against women irre-
spective of their education, e.g., their salary is lower,
then we can conclude that the training data is inherently
biased.

• biased training procedure: consider an image recogni-
tion task where the protected category is race. If the
model is heavily trained on images based on certain
races, then the resulting model will be biased because
of over-fitting.
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Our model of AFL can help define a notion of good-intent
fairness, where we reduce the bias in the training procedure.
Furthermore, if training procedure bias exists, it naturally
highlights it.

Suppose we are interested in a classification problem and
there is a protected feature class c, which can be one of p
values c1, c2, . . . , cp. Then, we define Dk as the conditional
distribution with the protected class being ck. If D is the
true underlying distribution, then

Dk(x, y) =D(x, y ∣ c(x, y) = ck).

Let Λ = {δk ∶k ∈ [p]} be the collection of Dirac measures
over the indices k in [p]. With these definitions, a natural
fairness principle consists of ensuring that the test loss is
the same for all underlying protected classes, that is for all
λ ∈ Λ. This is called the maxmin principle (Rawls, 2009), a
special case of the CVar fairness risk (Williamson & Menon,
2019).

With the above intent in mind, we define a good-intent fair-
ness algorithm as one seeking to minimize the agnostic loss
LDΛ

. Thus, the objective of the algorithm is to minimize the
maximum loss incurred on any of the underlying protected
classes and hence does not overfit the data to any particular
model at the cost of others. Furthermore, it does not degrade
the performance of the other classes so long as it does not
affect the loss of the most-sensitive protected category. We
further note that our approach does not reduce bias in the
training data and is useful only for mitigating the training
procedure bias.

3. Learning bounds
We now present learning guarantees for agnostic federated
learning. Let G denote the family of the losses associated
to a hypothesis set H: G = {(x, y) ↦ `(h(x), y)∶h ∈ H}.
Our learning bounds are based on the following notion of
weighted Rademacher complexity which is defined for any
hypothesis set H, vector of sample sizes m = (m1, . . . ,mp)
and mixture weight λ ∈ ∆p, by the following expression:

Rm(G, λ)= E
Sk∼D

mk
k

σ

[sup
h∈H

p

∑
k=1

λk
mk

mk

∑
i=1

σk,i `(h(xk,i), yk,i)] ,

(2)
where Sk = ((xk,1, yk,1), . . . , (xk,mk , yk,mk)) is a sam-
ple of size mk and σ = (σk,i)k∈[p],i∈[mk] a collection of
Rademacher variables, that is uniformly distributed random
variables taking values in {−1,+1}. We also define the min-
imax weighted Rademacher complexity for a subset Λ ⊆ ∆p

by
Rm(G,Λ) = max

λ∈Λ
Rm(G, λ). (3)

Let m = m
m

= (m1

m
, . . . ,

mp
m

) denote the empirical distri-
bution over ∆p defined by the sample sizes mk, where

m = ∑pk=1mk. We define the skewness of Λ with respect to
m by

s(Λ ∥m) = max
λ∈Λ

χ2(λ ∥m) + 1, (4)

where, for any two distributions p and q in ∆p, the
chi-squared divergence χ2(p ∥ q) is given by χ2(p ∥ q) =
∑pk=1

(pk−qk)2

qk
. We will also denote by Λε a minimum ε-

cover of Λ in `1 distance, that is, Λε = argminΛ′∈C(Λ,ε) ∣Λ∣,
where C(Λ, ε) is a set of distributions Λ′ such that for every
λ ∈ Λ, there exists λ′ ∈ Λ′ such that ∑pk=1 ∣λk − λ′k ∣ ≤ ε.

Our first learning guarantee is presented in terms of
Rm(G,Λ), the skewness parameter s(Λ ∥m) and the ε-
cover Λε.

Theorem 1. [Appendix C.2] Assume that the loss ` is
bounded by M > 0. Fix ε > 0 and m = (m1, . . . ,mp).
Then, for any δ > 0, with probability at least 1 − δ over
the draw of samples Sk ∼ Dmk

k , for all h ∈ H and λ ∈ Λ ,
LDλ

(h) is upper bounded by

L
Dλ

(h) + 2Rm(G, λ) +Mε +M
√

s(λ ∥m)
2m

log
∣Λε∣
δ
,

where m = ∑pk=1mk.

It can be shown that for a given λ, the variance of the loss
depends on the skewness parameter and hence it can be
shown that generalization bound can also be lower bounded
in terms of the skewness parameter (Theorem 9 in Cortes
et al. (2010)). Note that the bound in Theorem 1 is instance-
specific, i.e., it depends on the target distribution Dλ and
increases monotonically as λ moves away from m. Thus,
for target domains with λ ≈ m, the bound is more favor-
able. The theorem supplies upper bounds for agnostic losses:
they can be obtained simply by taking the maximum over
λ ∈ Λ. The following result shows that, for a family of func-
tions taking values in {−1,+1}, the Rademacher complexity
Rm(G,Λ) can be bounded in terms of the VC-dimension
and the skewness of Λ.

Lemma 1. [Appendix C.3] Let ` be a loss function taking
values in {−1,+1} and such that the family of losses G

admits VC-dimension d. Then, the following upper bound
holds for the weighted Rademacher complexity of G:

Rm(G,Λ) ≤

¿
ÁÁÀ2s(Λ ∥m) d

m
log [em

d
].

Both Lemma 1 and the generalization bound of Theorem 1
can thus be expressed in terms of the skewness parameter
s(Λ ∥m). Note that, when Λ contains only one distribution
and is the uniform distribution, that is λk =mk/m, then the
skewness is equal to one and the results coincide with the
standard guarantees in supervised learning.
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Theorem 1 and Lemma 1 also provide guidelines for choos-
ing the domains and Λ. When p is large and Λ = ∆p, then,
the number of samples per domain could be small, the skew-
ness parameter s(Λ ∥m) = max1≤k≤p

1
mk

would then be
large and the generalization guarantees for the model would
become weaker. We suggest some guidelines for choosing
domains in Appendix B. We further note that, for a given
p, if Λ contains distributions that are close to m, then the
model generalizes well.

The corollary above can be straightforwardly extended to
cover the case where the test samples are drawn from
some distribution D, instead of Dλ. Define `1(D,DΛ)
by `1(D,DΛ) = minλ∈Λ `1(D,Dλ). Then, the following
result holds.

Corollary 1. Assume that the loss function ` is bounded by
M . Then, for any ε > 0 and δ > 0, with probability at least
1 − δ, the following inequality holds for all h ∈H:

LD(h) ≤ L
DΛ

(h) + 2Rm(G,Λ) +M`1(D,DΛ) +Mε

+M
√

s(Λ ∥m)
2m

log
∣Λε∣
δ
.

One straightforward choice of the parameter ε is ε = 1√
m

,
but, depending on ∣Λε∣ and other parameters of the bound,
more favorable choices may be possible. We conclude this
section by adding that alternative learning bounds can be
derived for this problem, as discussed in Appendix D.

4. Algorithm
4.1. Regularization

The learning guarantees of the previous section suggest
minimizing the sum of the empirical AFL term L

DΛ
(h), a

term controlling the complexity of H and a term depending
on the skewness parameter. Observe that, since L

Dλ
(h) is

linear in λ, the following equality holds:

L
DΛ

(h) = L
Dconv(Λ)

(h), (5)

where conv(Λ) is the convex hull of Λ. Assume that H is a
vector space that can be equipped with a norm ∥ ⋅ ∥, as with
most hypothesis sets used in learning applications. Then,
given Λ and the regularization parameters µ ≥ 0 and γ ≥ 0,
our learning guarantees suggest the following minimization
problem:

min
h∈H

max
λ∈conv(Λ)

L
Dλ

(h) + γ∥h∥ + µχ2(λ ∥m). (6)

This defines our algorithm for AFL.

Assume that ` is a convex function of its first argument.
Then, L

Dλ
(h) is a convex function of h. Since ∥h∥ is

a convex function of h for any choice of the norm, for

a fixed λ, the objective L
Dλ

(h) + γ∥h∥ + µχ2(λ ∥m) is
a convex function of h. The maximum over λ (taken in
any set) of a family of convex functions is convex. Thus,
maxλ∈conv(Λ)LDλ

(h) + γ∥h∥ + µχ2(λ ∥m) is a convex
function of h and, when the hypothesis set H is a convex,
(6) is a convex optimization problem. In the next subsection,
we present an efficient optimization solution for this prob-
lem in Euclidean norm, for which we prove convergence
guarantees. In Appendix F.1, we generalize the results to
other norms.

4.2. Optimization algorithm

When the loss function ` is convex, the AFL minmax opti-
mization problem above can be solved using projected gradi-
ent descent or other instances of the generic mirror descent
algorithm (Nemirovski & Yudin, 1983). However, for large
datasets, that is p and m large, this can be computationally
costly and typically slow in practice. Juditsky, Nemirovski,
and Tauvel (2011) proposed a stochastic Mirror-Prox algo-
rithm for solving stochastic variational inequalities, which
would be applicable in our context. We present a simplified
version of their algorithm for the AFL problem that admits
a more straightforward analysis and that is also substantially
easier to implement.

Our optimization problem is over two sets of parameters,
the hypothesis h ∈ H and the mixture weight λ ∈ Λ. In
what follows, we will denote by W a non-empty subset of
RN and w ∈W a vector of parameters defining a predictor
h. Thus, we will rewrite losses and optimization solutions
only in terms of w, instead of h. We will use the following
notation:

L(w,λ) =
p

∑
k=1

λkLk(w), (7)

where Lk(w) stands for LD̂k
(h), the empirical loss of

hypothesis h ∈ H (corresponding to w) on domain k:
Lk(w) = 1

mk
∑mki=1 `(h(xk,i), yk,i). We will consider the

unregularized version of problem (6). We note that regular-
ization with respect to w does not make the optimization
harder. Thus, we will study the following problem given by
the set of variables w:

min
w∈W

max
λ∈Λ

L(w,λ). (8)

Observe that problem (8) admits a natural game-theoretic
interpretation as a two-player game, where nature selects
λ ∈ Λ to maximize the objective, while the learner seeks
w ∈ W minimizing the loss. We are interested in finding
the equilibrium of this game, which is attained for some w∗,
the minimizer of Equation 8 and λ∗ ∈ Λ, the hardest domain
mixture weights. At the equilibrium, moving w away from
w∗ or λ from λ∗, increases the objective function. Hence,
λ∗ can be viewed as the center of Λ in the manifold imposed
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Figure 2. Illustration of the positions in Λ of λ∗, λ
U

, the mixture
weight corresponding to the distribution U, and an arbitrary λ. λ∗

defines the least risky distribution Dλ∗ for which to optimize the
expected loss.

by the loss function L, whereas U, the empirical distribution
of samples, may lie elsewhere, as illustrated by Figure 2.

By Equation 5, using the set conv(Λ) instead of Λ does
not affect the solution of the optimization problem. In view
of that, in what follows, we will assume, without loss of
generality, that Λ is a convex set. Observe that, since Lk(w)
is not an average of functions, standard stochastic gradient
descent algorithms cannot be used to minimize this objec-
tive. We will present instead a new stochastic gradient-type
algorithm for this problem.

Let ∇wL(w,λ) denote the gradient of the loss function with
respect to w and ∇λL(w,λ) the gradient with respect to λ.
Let δwL(w,λ), and δλL(w,λ) be unbiased estimates of the
gradient, that is,

E
δ
[δλL(w,λ)] = ∇λL(w,λ), E

δ
[δwL(w,λ)] = ∇wL(w,λ).

We first give an optimization algorithm STOCHASTIC-AFL
for the AFL problem, assuming access to such unbiased
estimates. The pseudocode of the algorithm is given in
Figure 3. At each step, the algorithm computes a stochastic
gradient with respect to λ and w and updates the model
accordingly. It then projects λ to Λ by computing a value
in Λ via convex minimization. If Λ is the full simplex, then
there exist simple and efficient algorithms for this projection
(Duchi et al., 2008). It then repeats the process for T steps
and returns the average of the weights.

There are several natural candidates for the sampling method
defining stochastic gradients. We highlight two techniques:
PERDOMAIN GRADIENT and WEIGHTED GRADIENT. We
analyze the time complexity and give bounds on the variance
for both techniques in Lemmas 3 and 4 respectively.

4.3. Analysis

Throughout this section, for simplicity, we adopt the nota-
tion introduced for Equation 7. Our convergence guarantees
hold under the following assumptions, which are similar to
those adopted for the convergence proof of gradient descent-
type algorithms.

Properties 1. Assume that the following properties hold for
the loss function L and sets W and Λ ⊆ ∆p:

Algorithm STOCHASTIC-AFL

Initialization: w0 ∈W and λ0 ∈ Λ.
Parameters: step size γw > 0 and γλ > 0.
For t = 1 to T :

1. Obtain stochastic gradients: δwL(wt−1, λt−1) and
δλL(wt−1, λt−1).

2. wt = PROJECT(wt−1 − γwδwL(wt−1, λt−1),W)

3. λt = PROJECT(λt−1 + γλδλL(wt−1, λt−1),Λ).

Output: wA = 1
T ∑

T
t=1wt and λA = 1

T ∑
T
t=1 λt.

Subroutine PROJECT

Input: x′,X . Output: x = argminx∈X ∣∣x − x′∣∣2.

Figure 3. Pseudocode of the STOCHASTIC-AFL algorithm.

1. Convexity: w ↦ L(w,λ) is convex for any λ ∈ Λ.

2. Compactness: maxλ∈Λ ∥λ∥2 ≤ RΛ, maxw∈W ∥w∥2 ≤
RW.

3. Bounded gradients: ∥∇wL(w,λ)∥2 ≤ Gw and
∥∇λL(w,λ)∥2 ≤ Gλ for all w ∈W and λ ∈ Λ.

4. Stochastic variance: E[∥δwL(w,λ)−∇wL(w,λ)∥2
2] ≤

σ2
w and E[∥δλL(w,λ) − ∇λL(w,λ)∥2

2] ≤ σ2
λ for all

w ∈W and λ ∈ λ.

5. Time complexity: Uw denotes the time complex-
ity of computing δwL(w,λ), Uλ that of computing
δλL(w,λ), Up that of the projection, and d denotes
the dimensionality of W.

Theorem 2. [Appendix E.1] Assume that Properties 1 hold.
Then, the following guarantee holds for STOCHASTIC-
AFL:

E [max
λ∈Λ

L(wA, λ) − min
w∈W

max
λ∈Λ

L(w,λ)]

≤
3RW

√
(σ2
w +G2

w)√
T

+
3RΛ

√
(σ2
λ +G2

λ)√
T

,

for the step sizes γw = 2RW√
T (σ2

w+G2
w)

and γλ = 2RΛ√
T (σ2

λ
+G2

λ
)
,

and the time complexity of the algorithm is inO((Uλ+Uw+
Up + d + p)T ).

We note that similar algorithms have been proposed for
solving minimax objectives (Namkoong & Duchi, 2016;
Chen et al., 2017). Chen et al. (2017) assume the existence
of an α-approximate Bayesian oracle, whereas our guar-
antees hold regardless of such assumptions. Namkoong &
Duchi (2016) use importance sampling to obtain λ gradients,
thus, their convergence guarantee for the Euclidean norm
depends inversely on a lower bound on minλ∈Λ mink∈[p] λk.
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Stochastic gradient for λ.

1. Sample K ∼ [p], according to the uniform distribu-
tion.
Sample IK ∼ [mK], according to the uniform distri-
bution.

2. Output: δλL(w,λ) such that [δλL(w,λ)]K =
pLK,IK (w) and for all k ≠K, [δλL(w,λ)]k = 0.

PERDOMAIN-stochastic gradient for w.

1. For k ∈ [p], sample Jk ∼ [mk], according to the
uniform distribution.

2. Output: δwL(w,λ) = ∑pk=1 λk∇wLk,Jk(w,h).

WEIGHTED-stochastic gradient for w

1. Sample K ∼ [p] according to the distribution λ.
Sample JK ∼ [mk], according to the uniform distri-
bution.

2. Output: δwL(w,λ) = ∇wLK,JK (w).

Figure 4. Definition of the stochastic gradients with respect to λ
and w.

In contrast, our convergence guarantees are not affected by
that.

4.4. Stochastic gradients

The convergence results of Theorem 4 depend on the vari-
ance of the stochastic gradients. We first discuss the stochas-
tic gradients for λ. Notice that the gradient for λ is indepen-
dent of λ. Thus, a natural choice for the stochastic gradient
with respect to λ is based on uniformly sampling a domain
K ∈ [p] and then sampling xK,i from domainK. This leads
to the definition of the stochastic gradient δλL(w,λ) shown
in Figure 4. The following lemma bounds the variance for
that definition of δλL(w,λ).

Lemma 2. [Appendix E.2] The stochastic gradient
δλL(w,λ) is unbiased. Further, if the loss function is
bounded by M , then the following upper bound holds for
the variance of δλL(w,λ):

σ2
λ = max

w∈W,λ∈Λ
Var(δλL(w,λ)) ≤ p2M2.

If the above variance is too high, then we can sample one
Jk for every domain k. This is the same as computing the
gradient of a batch and reduces the variance by a factor of p.

The gradient with respect to w depends both on λ and w.
There are two natural stochastic gradients: the PERDO-
MAIN-stochastic gradient and the WEIGHTED-stochastic
gradient. For a PERDOMAIN-stochastic gradient, we sam-

ple an element uniformly from [mk] for each k ∈ [p]. For
the WEIGHTED-stochastic gradient, we sample a domain
according to λ and sample an element out of it. We can now
bound the variance of both PERDOMAIN and WEIGHTED
stochastic gradients. Let U denote the time complexity of
computing the loss and gradient with respect to w for a
single sample.

Lemma 3. [Appendix E.3] PERDOMAIN stochastic gradi-
ent is unbiased and runs in time pU +O(p logm) and the
variance satisfy, σ2

w ≤ RΛσ
2
I(w), where

σ2
I(w) = max

w∈W,k∈[p]

1

mk

mk

∑
j=1

[∇wLk,j(w) −∇wLk(w)]2 .

Lemma 4. [Appendix E.4] WEIGHTED stochastic gradient
is unbiased and runs in time U + O(p + logm) and the
variance satisfy the following inequality: σ2

w ≤ σ2
I(w) +

σ2
O(w), where

σ2
O(w) = max

w∈W,λ∈Λ

p

∑
k=1

λk [∇wLk(w) −∇wL(w,λ)]2

and σ2
I(w) is defined in Lemma 3.

Since RΛ ≤ 1, at first glance, the above two lemmas may
suggest that PERDOMAIN stochastic is always better than
WEIGHTED stochastic gradient. Note, however, that the
time complexity of the algorithms is dominated by U and
thus, the time complexity of PERDOMAIN-stochastic gra-
dient is roughly p times larger than that of WEIGHTED-
stochastic gradient. Hence, if p is small, it is preferable
to choose the PERDOMAIN-stochastic gradient. For large
values of p, we analyze the differences in Appendix E.5.

4.5. Related optimization algorithms

In Appendix F.1, we show that STOCHASTIC-AFL can
be extended to the case where arbitrary mirror maps are
used, as in the standard mirror descent algorithm. In Ap-
pendix F.2, we give an algorithm with convergence rate
O(logT /T ), when the loss function is strongly convex. Fi-
nally, in Appendix F.3, we present an optimistic version of
STOCHASTIC-AFL.

5. Experiments
To study the benefits of our AFL algorithm, we carried out
experiments with three datasets. Even though our optimiza-
tion convergence guarantees hold only for convex functions
and stochastic gradient, we show that our domain-agnostic
learning performs well for non-convex functions and vari-
ants of stochastic gradient descent such as Adagrad too.

In all the experiments, we compare the domain agnostic
model with the model trained with Û, the uniform distribu-
tion over the union of samples, and the models trained on
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Table 1. Adult dataset: test accuracy for various test domains of
models trained with different loss functions.

Training loss function U doctorate non-doctorate DΛ

Ldoctorate 53.35 ± 0.91 73.58 ± 0.48 53.12 ± 0.89 53.12 ± 0.89
Lnon-doctorate 82.15 ± 0.09 69.46 ± 0.29 82.29 ± 0.09 69.46 ± 0.29
LÛ 82.10 ± 0.09 69.61 ± 0.35 82.24 ± 0.09 69.61 ± 0.35
LDΛ

80.10 ± 0.39 71.53 ± 0.88 80.20 ± 0.40 71.53 ± 0.88

Table 2. Fashion MNIST dataset: test accuracy for various test
domains of models trained with different loss functions.

Training loss function U shirt pullover t-shirt/top DΛ

LÛ 81.8 ± 1.3 71.2 ± 7.8 87.8 ± 6.0 86.2 ± 4.9 71.2 ± 7.8
LDΛ

82.3 ± 0.9 74.5 ± 6.0 87.6 ± 4.5 84.9 ± 4.4 74.5 ± 6.0

individual domains. In all the experiments, we used PERDO-
MAIN stochastic gradients and set Λ = ∆p. All algorithms
were implemented in Tensorflow (Abadi et al., 2015).

5.1. Adult dataset

The Adult dataset is a census dataset from the UCI Machine
Learning Repository (Blake, 1998). The task consists of
predicting if the person’s income exceeds $50,000. We split
this dataset into two domains depending on whether the
person had a doctorate degree or not, resulting into domains:
the doctorate domain and the non-doctorate domain.
We trained a logistic regression model with just the cate-
gorical features and Adagrad optimizer. The performance
of the models averaged over 50 runs is reported in Table 1.
The performance on DΛ of the model trained with Û, that is
standard federated learning, is about 69.6%. In contrast, the
performance of our AFL model is at least about 71.5% on
any target distribution Dλ. The uniform average over the
domains of the test accuracy of the AFL model is slightly
less than that of the uniform model, but the agnostic model
is less biased and performs better on DΛ.

5.2. Fashion MNIST

The Fashion MNIST dataset (Xiao et al., 2017) is an MNIST-
like dataset where images are classified into 10 categories of
clothing, instead of handwritten digits. We extracted the sub-
set of the data labeled with three categories t-shirt/top,
pullover, and shirt and split this subset into three do-
mains, each consisting of one class of clothing. We then
trained a classifier for the three classes using logistic re-
gression and the Adam optimizer. The results are shown
in Table 2. Since here the domain uniquely identifies the
label, in this experiment, we did not compare against models
trained on specific domains. Of the three domains or classes,
the shirt class is the hardest one to distinguish from others.
The domain-agnostic model improves the performance for
shirt more than it degrades it on pullover and shirt,
leading to both shirt-specific and overall accuracy im-
provement when compared to the model trained with the
uniform distribution Û. Furthermore, in this experiment,
note that our agnostic learning solution not only improves

Table 3. Test perplexity for various test domains of models trained
with different loss functions.

Training loss func. U doc. con. DΛ

Ldoc. 414.96 83.97 615.75 615.75
Lcon. 108.97 1138.76 61.01 1138.76
LÛ 68.18 96.98 62.50 96.98
LDΛ

79.98 86.33 78.48 86.33

the loss of the worst domain, but also generalizes better and
hence improves the average test accuracy.

5.3. Language models

Motivated by the keyboard application (Hard et al., 2018),
where a single client uses a trained language model in mul-
tiple environments such as chat apps, email, and web in-
put, we created a dataset that combines two very different
types of language datasets: conversation and document.
For conversation, we used the Cornell movie dataset
that contain movie dialogues (Danescu-Niculescu-Mizil
& Lee, 2011). For documents, we used the Penn Tree-
Bank (PTB) dataset (Marcus et al., 1993). We created a
single dataset by combining both of the above corpuses,
with conversation and document as domains. We pre-
processed the data to remove punctuations, capitalized the
data uniformly, and computed a vocabulary of 10,000 most
frequent words. We trained a two-layer LSTM model with
momentum optimizer. The performance of the models are
measured by their perplexity, that is the exponent of cross-
entropy loss. The results are reported in Table 3. Of the
two domains, the document domain is the one admitting
the higher perplexity. For this domain, the test perplexity
of the domain agnostic model is close to that of the model
trained only on document data and is better than that of the
model trained with the uniform distribution Û.

6. Conclusion
We introduced a new framework for federated learning,
based on principled learning objectives, for which we pre-
sented a detailed theoretical analysis, a learning algorithm
motivated by our theory, a new stochastic optimization so-
lution for large-scale problems and several extensions. Our
experimental results suggest that our solution can lead to
significant benefits in practice. In addition, our framework
and algorithms benefit from favorable fairness properties.
This constitutes a global solution that we hope will be gener-
ally adopted in federated learning, and other related learning
tasks such as domain adaptation.
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enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Agarwal, N., Suresh, A. T., Yu, F. X., Kumar, S., and
McMahan, B. cpSGD: Communication-efficient and
differentially-private distributed SGD. In Proceedings of
NeurIPS, pp. 7575–7586, 2018.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. Clus-
tering with Bregman divergences. Journal of machine
learning research, 6(Oct):1705–1749, 2005.

Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F.
Analysis of representations for domain adaptation. In
NIPS, pp. 137–144, 2006.

Bickel, P. J., Hammel, E. A., and O’Connell, J. W. Sex bias
in graduate admissions: Data from Berkeley. Science,
187(4175):398–404, 1975. ISSN 0036-8075.

Blake, C. L. UCI repository of machine learning databases,
Irvine, University of California. http://www.ics.
uci.edu/˜mlearn/MLRepository , 1998.

Blitzer, J., Dredze, M., and Pereira, F. Biographies, Bolly-
wood, Boom-boxes and Blenders: Domain Adaptation
for Sentiment Classification. In Proceedings of ACL 2007,
Prague, Czech Republic, 2007.

Chen, R. S., Lucier, B., Singer, Y., and Syrgkanis, V. Robust
optimization for non-convex objectives. In Advances in
Neural Information Processing Systems, pp. 4705–4714,
2017.

Cortes, C. and Mohri, M. Domain adaptation and sample
bias correction theory and algorithm for regression. Theor.
Comput. Sci., 519:103–126, 2014.

Cortes, C., Mansour, Y., and Mohri, M. Learning bounds for
importance weighting. In Advances in neural information
processing systems, pp. 442–450, 2010.

Cortes, C., Mohri, M., and Muñoz Medina, A. Adaptation
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