Agnostic Federated Learning

Mehryar Mohri 1 2 Gary Sivek 1 Ananda Theertha Suresh 1

Abstract

A key learning scenario in large-scale applications is that of federated learning, where a centralized model is trained based on data originating from a large number of clients. We argue that, with the existing training and inference, federated models can be biased towards different clients. Instead, we propose a new framework of agnostic federated learning, where the centralized model is optimized for any target distribution formed by a mixture of the client distributions. We further show that this framework naturally yields a notion of fairness. We present data-dependent Rademacher complexity guarantees for learning with this objective, which guide the definition of an algorithm for agnostic federated learning. We also give a fast stochastic optimization algorithm for solving the corresponding optimization problem, for which we prove convergence bounds, assuming a convex loss function and a convex hypothesis set. We further empirically demonstrate the benefits of our approach in several datasets. Beyond federated learning, our framework and algorithm can be of interest to other learning scenarios such as cloud computing, domain adaptation, drifting, and other contexts where the training and test distributions do not coincide.

1. Motivation

A key learning scenario in large-scale applications is that of federated learning. In that scenario, a centralized model is trained based on data originating from a large number of clients, which may be mobile phones, other mobile devices, or sensors (Konečný, McMahan, Yu, Richtárik, Suresh, and Bacon, 2016b; Konečný, McMahan, Ramage, and Richtárik, 2016a; Suresh, Yu, Kumar, and McMahan, 2017), devising efficient distributed optimization methods benefiting from differential privacy guarantees (Agarwal, Suresh, Yu, Kumar, and McMahan, 2018), as well as recent lower bound guarantees for parallel stochastic optimization with a dependency graph (Woodworth, Wang, Smith, McMahan, and Srebro, 2018).

Another important problem in federated learning, which appears more generally in distributed machine learning and other learning setups, is that of fairness. In many instances in practice, the resulting learning models may be biased or unfair: they may discriminate against some protected groups (Bickel, Hammel, and O’Connell, 1975; Hardt, Price, Srebro, et al., 2016). As a simple example, a regression algorithm predicting a person’s salary could be using that person’s gender. This is a central problem in modern machine learning that does not seem to have been specifically studied in the context of federated learning.

While many problems related to federated learning have been extensively studied, the key objective of learning in that context seems not to have been carefully examined. We are also not aware of statistical guarantees derived for learning in this scenario. A crucial reason for such questions to emerge in this context is that the target distribution for which the centralized model is learned is unspecified. Which expected loss is federated learning seeking to minimize? Most centralized models for standard federated learning are trained on the aggregate training sample obtained from the subsamples drawn from the clients. Thus, if we denote by \(D_k \) the distribution associated to client \(k \), \(m_k \) the size of the sample available from that client and \(m \) the total sample size, intrinsically, the centralized model is trained to minimize the loss with respect to the uniform distribution.
We further show that our AFL framework naturally yields a
distribution do not coincide. In Appendix A, we give an
extensive discussion of related work, including connections
with the broad literature of domain adaptation.

The rest of the paper is organized as follows. In Section 2,
we give a formal description of AFL. Next, we give a de-
tailed theoretical analysis of learning within the AFL frame-
work (Section 3), as well as a learning algorithm based on
that theory (Section 4). We also present an efficient convex
optimization algorithm for solving the optimization prob-
lem defining our algorithm (Section 4.2). In Section 5, we
present a series of experiments comparing our solution with
existing federated learning solutions. In Appendix B, we
discuss several extensions of the AFL framework.

2. Learning scenario

In this section, we introduce the learning scenario of agno-
tic federated learning we consider. We then argue that the
uniform solution commonly adopted in standard federated
learning may not be an adequate solution, thereby further
justifying our agnostic model. Next, we show the benefit of
our model in fairness learning.

We start with some general notation and definitions used
throughout the paper. Let \(\mathcal{X} \) denote the input space and \(\mathcal{Y} \)
the output space. We will primarily discuss a multi-class
classification problem where \(\mathcal{Y} \) is a finite set of classes, but
much of our results can be extended straightforwardly to
regression and other problems. The hypotheses we consider
are of the form \(h: \mathcal{X} \to \Delta_{\mathcal{Y}} \), where \(\Delta_{\mathcal{Y}} \) stands for the simplex
over \(\mathcal{Y} \). Thus, \(h(x) \) is a probability distribution over the
classes or categories that can be assigned to \(x \in \mathcal{X} \). We
will denote by \(\mathcal{H} \) a family of such hypotheses \(h \). We also
denote by \(\ell \) a loss function defined over \(\Delta_{\mathcal{Y}} \times \mathcal{Y} \) and taking
non-negative values. The loss of \(h \in \mathcal{H} \) for a labeled sample
\((x, y) \in \mathcal{X} \times \mathcal{Y} \) is given by \(\ell(h(x), y) \). One key example
in applications is the cross-entropy loss, which is defined as
follows: \(\ell(h(x), y) = -\log(\mathbb{P}_{y' \sim h(x)}[y' = y]) \). We will denote by \(\mathcal{L}_{\mathcal{D}}(h) \) the expected loss of a hypothesis \(h \) with
respect to a distribution \(\mathcal{D} \) over \(\mathcal{X} \times \mathcal{Y} \):

\[
\mathcal{L}_{\mathcal{D}}(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}}[\ell(h(x), y)],
\]

and by \(h_{\mathcal{D}} \) its minimizer: \(h_{\mathcal{D}} = \arg\min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) \).

2.1. Agnostic federated learning

We consider a learning scenario where the learner
receives \(p \) samples \(S_1, \ldots, S_p \), with each \(S_k = ((x_{k,1}, y_{k,1}), \ldots, (x_{k,m_k}, y_{k,m_k})) \in (\mathcal{X} \times \mathcal{Y})^{m_k} \) of size \(m_k \)
drawn i.i.d. from a possibly different domain or distribution
\(\mathcal{D}_k \). We will denote by \(\mathcal{D}_k \) the empirical distribution associated
to sample \(S_k \) of size \(m \) drawn from \(\mathcal{D}_{\mathcal{Y}}^m \). The learner’s
objective is to determine a hypothesis \(h \in \mathcal{H} \) that performs
well on some target distribution. Let \(m = \sum_{k=1}^{p} m_k \).
This scenario coincides with that of federated learning where training is done with the uniform distribution over the union of all samples \(S_k \), where all samples are uniformly weighted, that is \(\bar{U} = \sum_{k=1}^{p} \frac{m_k}{m} D_k \), and where the underlying assumption is that the target distribution is \(\bar{U} = \sum_{k=1}^{p} \frac{m_k}{m} D_k \). We will not adopt that assumption since it is rather restrictive and since, as discussed later, it can lead to solutions that are detrimental to domain users. Instead, we will consider an agnostic federated learning (AFL) scenario where the target distribution can be modeled as an unknown mixture of the distributions \(D_k, k = 1, \ldots, p \), that is \(D_\lambda = \sum_{k=1}^{p} \lambda_k D_k \) for some \(\lambda \in \Delta_p \). Since the mixture weight \(\lambda \) is unknown, here, the learner must come up with a solution that is favorable for any \(\lambda \) in the simplex, or any \(\lambda \) in a subset \(\lambda \in \Delta_p \). Thus, we define the agnostic loss (or agnostic risk) \(\mathcal{L}_{D_\lambda}(h) \) associated to a predictor \(h \in \mathcal{H} \) as

\[
\mathcal{L}_{D_\lambda}(h) = \max_{\lambda \in \Delta_p} \mathcal{L}_{D_\lambda}(h).
\]

We will extend our previous definitions and denote by \(h_{D_\lambda} \) the minimizer of this loss: \(h_{D_\lambda} = \arg\min_{h \in \mathcal{H}} \mathcal{L}_{D_\lambda}(h) \).

In practice, the learner has access to the distributions \(D_k \) only via the finite samples \(S_k \). Thus, for any \(\lambda \in \Delta_p \), instead of the mixture \(D_\lambda \), only the \(\lambda \)-mixture of empirical distributions, \(D_\lambda = \sum_{k=1}^{p} \lambda_k D_k \), is accessible.\(^1\) This leads to the definition of \(\mathcal{L}_{\lambda}(h) \), the agnostic empirical loss of a hypothesis \(h \in \mathcal{H} \) for a subset of the simplex, \(\lambda \):

\[
\mathcal{L}_{\lambda}(h) = \max_{\lambda \in \Delta_p} \mathcal{L}_{\lambda}(h).
\]

We will denote by \(h_{\lambda} \) the minimizer of this loss: \(h_{\lambda} = \arg\min_{h \in \mathcal{H}} \mathcal{L}_{\lambda}(h) \). In the next section, we will present generalization bounds relating the expected and empirical agnostic losses \(\mathcal{L}_{D_\lambda}(h) \) and \(\mathcal{L}_{\lambda}(h) \) for all \(h \in \mathcal{H} \).

Notice that the domains \(D_k \) discussed thus far need not coincide with the clients. In fact, when the number of clients is very large and \(\lambda \) is the full simplex, \(\lambda = \Delta_p \), it is typically preferable to consider instead domains defined by clusters of clients, as discussed in Appendix B. On the other hand, if \(p \) is small or \(\lambda \) more restrictive, then the model may not perform well on certain domains of interest. We mitigate the effect of large \(p \) values using a suitable regularization term derived from our theory.

2.2. Comparison with federated learning

Here, we further argue that the uniform solution \(h_{\bar{U}} \) commonly adopted in federated learning may not provide a satisfactory performance compared with a solution of the agnostic problem. This further motivates our AFL model.

As already discussed, since the target distribution is unknown, the natural method for the learner is to select a hypothesis minimizing the agnostic loss \(\mathcal{L}_{D_\lambda} \). Is the predictor minimizing the agnostic loss coinciding with the solution \(h_{\bar{U}} \) of standard federated learning? How poor can the performance of the standard federated learning be? We first show that the loss of \(h_{\bar{U}} \) can be higher than that of the optimal loss achieved by \(h_{D_\lambda} \) by a constant loss, even if the number of samples tends to infinity, that is even if the learner has access to the distributions \(D_k \) and uses the predictor \(h_{\bar{U}} \).

Proposition 1. [Appendix C.1] Let \(\ell \) be the cross-entropy loss. Then, there exist \(\lambda, \mathcal{H}, \) and \(D_k, k \in [p] \), such that the following inequality holds:

\[
\mathcal{L}_{D_\lambda}(h_{\bar{U}}) \geq \mathcal{L}_{D_\lambda}(h_{D_\lambda}) + \log \frac{2}{\sqrt{3}}.
\]

2.3. Good-intent fairness in learning

Fairness in machine learning has received much attention in recent past (Bickel et al., 1975; Hardt et al., 2016). There is now a broad literature on the topic with a variety of definitions of the notion of fairness. In a typical scenario, there is a protected class \(c \) among \(p \) classes \(c_1, c_2, \ldots, c_p \). While there are many definitions of fairness, the main objective of a fairness algorithm is to reduce bias and ensure that the model is fair to all the \(p \) protected categories, under some definition of fairness. The most common reasons for bias in machine learning algorithms are training data bias and overfitting bias. We first provide a brief explanation and illustration for both:

- **biased training data:** consider the regression task, where the goal is to predict the salary of a person based on features such as education, location, age, gender. Let gender be the protected class. If in the training data, there is a consistent discrimination against women irrespective of their education, e.g., their salary is lower, then we can conclude that the training data is inherently biased.

- **biased training procedure:** consider an image recognition task where the protected category is race. If the model is heavily trained on images based on certain races, then the resulting model will be biased because of over-fitting.

\(^1\) Note, \(D_\lambda \) is distinct from an empirical distribution \(\overline{D}_\lambda \), which would be based on a sample drawn from \(D_\lambda \). \(\overline{D}_\lambda \) is based on samples drawn from \(D_k \)s.
Our model of AFL can help define a notion of good-intent fairness, where we reduce the bias in the training procedure. Furthermore, if training procedure bias exists, it naturally highlights it.

Suppose we are interested in a classification problem and there is a protected feature class \(c \), which can be one of \(p \) values \(c_1, c_2, \ldots, c_p \). Then, we define \(D_k \) as the conditional distribution with the protected class being \(c_k \). If \(D \) is the true underlying distribution, then
\[
D_k(x, y) = D(x, y \mid c(x, y) = c_k).
\]

Let \(\Lambda = \{ \delta_k : k \in [p] \} \) be the collection of Dirac measures over the indices \(k \) in \([p]\). With these definitions, a natural fairness principle consists of ensuring that the test loss is the same for all underlying protected classes, that is for all \(\lambda \in \Lambda \). This is called the maximin principle (Rawls, 2009), a special case of the CVar fairness risk (Williamson & Menon, 2019).

With the above intent in mind, we define a *good-intent fairness* algorithm as one seeking to minimize the agnostic loss \(\mathcal{L}_D \). Thus, the objective of the algorithm is to minimize the maximum loss incurred on any of the underlying protected classes and hence does not overfit the data to any particular model at the cost of others. Furthermore, it does not degrade the performance of the other classes so long as it does not affect the loss of the most-sensitive protected category. We further note that our approach does not reduce bias in the training data and is useful only for mitigating the training procedure bias.

3. Learning bounds

We now present learning guarantees for agnostic federated learning. Let \(\mathcal{G} \) denote the family of the losses associated to a hypothesis set \(\mathcal{H} : \mathcal{G} = \{ (x, y) \mapsto \ell(h(x), y) : h \in \mathcal{H} \} \).

Our learning bounds are based on the following notion of weighted Rademacher complexity which is defined for any hypothesis set \(\mathcal{H} \), vector of sample sizes \(\mathbf{m} = (m_1, \ldots, m_p) \) and mixture weight \(\lambda \in \Delta_p \), by the following expression:
\[
\mathcal{R}_m(\mathcal{G}, \lambda) = \mathbb{E}_{S_k \sim \mathcal{D}_k^m}[\sup_{h \in \mathcal{H}} \frac{1}{m} \sum_{k=1}^p \sum_{i=1}^{m_k} \lambda_k \ell(h(x_{k,i}), y_{k,i})],
\]
where \(S_k = \{(x_{k,1}, y_{k,1}), \ldots, (x_{k,m_k}, y_{k,m_k})\} \) is a sample of size \(m_k \) and \(\sigma = (\sigma_{k,i})_{k \in [p], i \in [m_k]} \) a collection of Rademacher variables, that is uniformly distributed random variables taking values in \([-1, +1]\). We also define the minimax weighted Rademacher complexity for a subset \(\Lambda \subseteq \Delta_p \) by
\[
\mathcal{R}_m(\mathcal{G}, \Lambda) = \max_{\lambda \in \Lambda} \mathcal{R}_m(\mathcal{G}, \lambda),
\]
Let \(\overline{\mathbf{m}} = \frac{\mathbf{m}}{m} = (\frac{m_1}{m}, \ldots, \frac{m_p}{m}) \) denote the empirical distribution over \(\Delta_p \), defined by the sample sizes \(m_k \), where \(m = \sum_{k=1}^p m_k \). We define the skewness of \(\Lambda \) with respect to \(\overline{\mathbf{m}} \) by
\[
s(\Lambda \mid \overline{\mathbf{m}}) = \max_{\lambda \in \Lambda} \chi^2(\lambda \mid \overline{\mathbf{m}}) + 1,
\]
where, for any two distributions \(p \) and \(q \) in \(\Delta_p \), the chi-squared divergence \(\chi^2(p \mid q) \) is given by \(\chi^2(p \mid q) = \sum_{k=1}^p \frac{(p_k - q_k)^2}{q_k} \). We will also denote by \(\Lambda_\epsilon \) a minimum \(\epsilon \)-cover of \(\Lambda \) in \(\ell_1 \) distance, that is, \(\Lambda_\epsilon = \arg\min_{\Lambda' \subseteq \mathcal{H}(\mathcal{C}(\Lambda, \epsilon)|\Lambda)} \), where \(\mathcal{C}(\Lambda, \epsilon) \) is a set of distributions \(\Lambda' \) such that for every \(\lambda \in \Lambda \), there exists \(\lambda' \in \Lambda' \) such that for every \(\lambda \in \Lambda \), there exists \(\lambda' \in \Lambda' \) such that \(\sum_{k=1}^p |\lambda_k - \lambda'_{k}| \leq \epsilon \).

Our first learning guarantee is presented in terms of \(\mathcal{R}_m(\mathcal{G}, \Lambda) \), the skewness parameter \(s(\Lambda \mid \overline{\mathbf{m}}) \) and the \(\epsilon \)-cover \(\Lambda_\epsilon \).

Theorem 1. [Appendix C.2] Assume that the loss \(\ell \) is bounded by \(M > 0 \). Fix \(\epsilon > 0 \) and \(\mathbf{m} = (m_1, \ldots, m_p) \). Then, for any \(\delta > 0 \), with probability at least \(1 - \delta \), the loss of samples \(S_k \sim \mathcal{D}_k^m \), for all \(h \in \mathcal{H} \) and \(\lambda \in \Lambda \), \(\mathcal{L}(h) \) is upper bounded by
\[
\mathcal{L}_D(h) + 2\mathcal{R}_m(\mathcal{G}, \lambda) + M\epsilon + M\sqrt{\frac{s(\Lambda \mid \overline{\mathbf{m}})}{2m} \log \frac{1}{\delta}},
\]
where \(m = \sum_{k=1}^p m_k \).

It can be shown that for a given \(\lambda \), the variance of the loss depends on the skewness parameter and hence it can be shown that generalization bound can also be lower bounded in terms of the skewness parameter (Theorem 9 in Cortes et al. (2010)). Note that the bound in Theorem 1 is instance-specific, i.e., it depends on the target distribution \(\mathcal{D}_\lambda \) and increases monotonically as \(\lambda \) moves away from \(\overline{\mathbf{m}} \). Thus, for target domains with \(\lambda \approx \overline{\mathbf{m}} \), the bound is more favorable. The theorem supposes upper bounds for agnostic losses: they can be obtained simply by taking the maximum over \(\lambda \in \Lambda \). The following result shows that, for a family of functions taking values in \([-1, +1]\), the Rademacher complexity \(\mathcal{R}_m(\mathcal{G}, \Lambda) \) can be bounded in terms of the VC-dimension and the skewness of \(\Lambda \).

Lemma 1. [Appendix C.3] Let \(\ell \) be a loss function taking values in \([-1, +1]\) and such that the family of losses \(\mathcal{G} \) admits VC-dimension \(d \). Then, the following upper bound holds for the weighted Rademacher complexity of \(\mathcal{G} \):
\[
\mathcal{R}_m(\mathcal{G}, \Lambda) \leq \sqrt{2s(\Lambda \mid \overline{\mathbf{m}}) \frac{d}{m} \log \frac{em}{d}},
\]
Both Lemma 1 and the generalization bound of Theorem 1 can thus be expressed in terms of the skewness parameter \(s(\Lambda \mid \overline{\mathbf{m}}) \). Note that, when \(\Lambda \) contains only one distribution and is the uniform distribution, that is \(\lambda_{k} = m_k/m \), then the skewness is equal to one and the results coincide with the standard guarantees in supervised learning.
Theorem 1 and Lemma 1 also provide guidelines for choosing the domains and Λ. When p is large and $\Lambda = \Delta_p$, then, the number of samples per domain could be small, the skewness parameter $\ell(\Lambda \mid \text{m}) = \max_{1 \leq k \leq p} \frac{1}{m_k}$ would then be large and the generalization guarantees for the model would become weaker. We suggest some guidelines for choosing domains in Appendix B. We further note that, for a given p, if Λ contains distributions that are close to m, then the model generalizes well.

The corollary above can be straightforwardly extended to cover the case where the test samples are drawn from some distribution \mathcal{D}, instead of \mathcal{D}_Λ. Define $\ell_1(\mathcal{D}, \mathcal{D}_\Lambda)$ by $\ell_1(\mathcal{D}, \mathcal{D}_\Lambda) = \min_{\Lambda \in \mathcal{H}} \ell_1(\mathcal{D}, \mathcal{D}_\Lambda)$. Then, the following result holds.

Corollary 1. Assume that the loss function ℓ is bounded by M. Then, for any $\epsilon > 0$ and $\delta > 0$, with probability at least $1 - \delta$, the following inequality holds for all $h \in \mathcal{H}$:

$$
\mathcal{L}_\mathcal{D}(h) \leq \mathcal{L}_\mathcal{P}_\Lambda(h) + 29\mathcal{m}(\mathcal{H}, \Lambda) + M \ell_1(\mathcal{D}, \mathcal{D}_\Lambda) + M \epsilon + M \sqrt{\frac{g(\Lambda \mid \text{m})}{2m}} \log \frac{|\Lambda|}{\delta}.
$$

One straightforward choice of the parameter ϵ is $\epsilon = \frac{1}{\sqrt{m}}$, but, depending on $|\Lambda|$ and other parameters of the bound, more favorable choices may be possible. We conclude this section by adding that alternative learning bounds can be derived for this problem, as discussed in Appendix D.

4. Algorithm

4.1. Regularization

The learning guarantees of the previous section suggest minimizing the sum of the empirical AFL term $\mathcal{L}_\mathcal{P}_\Lambda(h)$, a term controlling the complexity of \mathcal{H} and a term depending on the skewness parameter. Observe that, since $\mathcal{L}_\mathcal{P}_\Lambda(h)$ is linear in λ, the following equality holds:

$$
\mathcal{L}_\mathcal{P}_\Lambda(h) = \mathcal{L}_{\mathcal{P}_{\text{conv}(\Lambda)}}(h),
$$

where $\text{conv}(\Lambda)$ is the convex hull of Λ. Assume that \mathcal{H} is a vector space that can be equipped with a norm $\| \cdot \|$, as with most hypothesis sets used in learning applications. Then, given Λ and the regularization parameters $\mu \geq 0$ and $\gamma \geq 0$, our learning guarantees suggest the following minimization problem:

$$
\min_{h \in \mathcal{H}} \max_{\lambda \in \text{conv}(\Lambda)} \mathcal{L}_{\mathcal{P}_\Lambda}(h) + \gamma \| h \| + \mu \chi^2(\lambda \mid \text{m}).
$$

This defines our algorithm for AFL.

Assume that ℓ is a convex function of its first argument. Then, $\mathcal{L}_{\mathcal{P}_\Lambda}(h)$ is a convex function of h. Since $\| h \|$ is a convex function of h for any choice of the norm, for a fixed λ, the objective $\mathcal{L}_{\mathcal{P}_\Lambda}(h) + \gamma \| h \| + \mu \chi^2(\lambda \mid \text{m})$ is a convex function of h. The maximum over λ (taken in any set) of a family of convex functions is convex. Thus, $\max_{\lambda \in \text{conv}(\Lambda)} \mathcal{L}_{\mathcal{P}_\Lambda}(h) + \gamma \| h \| + \mu \chi^2(\lambda \mid \text{m})$ is a convex function of h and, when the hypothesis set \mathcal{H} is a convex, (6) is a convex optimization problem. In the next subsection, we present an efficient optimization solution for this problem in Euclidean norm, for which we prove convergence guarantees. In Appendix F.1, we generalize the results to other norms.

4.2. Optimization algorithm

When the loss function ℓ is convex, the AFL minmax optimization problem above can be solved using projected gradient descent or other instances of the generic mirror descent algorithm (Nemirovski & Yudin, 1983). However, for large datasets, that is p and m large, this can be computationally costly and typically slow in practice. Juditsky, Nemirovski, and Tsybakov (2011) proposed a stochastic Mirror-Prox algorithm for solving stochastic variational inequalities, which would be applicable in our context. We present a simplified version of their algorithm for the AFL problem that admits a more straightforward analysis and that is also substantially easier to implement.

Our optimization problem is over two sets of parameters, the hypothesis $h \in \mathcal{H}$ and the mixture weight $\lambda \in \Lambda$. In what follows, we will denote by \mathcal{W} a non-empty subset of \mathbb{R}^N and $w \in \mathcal{W}$ a vector of parameters defining a predictor h. Thus, we will rewrite losses and optimization solutions only in terms of w, instead of h. We will use the following notation:

$$
\mathcal{L}(w, \lambda) = \sum_{k=1}^P \lambda_k \mathcal{L}_k(w),
$$

where $\mathcal{L}_k(w)$ stands for $\mathcal{L}_{\mathcal{P}_\Lambda}(h)$, the empirical loss of hypothesis $h \in \mathcal{H}$ (corresponding to w) on domain k:

$$
\mathcal{L}_k(w) = \frac{1}{m_k} \sum_{i=1}^{m_k} \ell(h(x_{k,i}), y_{k,i}).
$$

We will consider the unregularized version of problem (6). We note that regularization with respect to w does not make the optimization harder. Thus, we will study the following problem given by the set of variables w:

$$
\min_{w \in \mathcal{W}} \max_{\lambda \in \Lambda} \mathcal{L}(w, \lambda).
$$

Observe that problem (8) admits a natural game-theoretic interpretation as a two-player game, where nature selects $\lambda \in \Lambda$ to maximize the objective, while the learner seeks $w \in \mathcal{W}$ minimizing the loss. We are interested in finding the equilibrium of this game, which is attained for some w^*, the minimizer of Equation 8 and $\lambda^* \in \Lambda$, the hardest domain mixture weights. At the equilibrium, moving w away from w^* or λ from λ^*, increases the objective function. Hence, λ^* can be viewed as the center of Λ in the manifold imposed
by the loss function L, whereas \mathbb{P}, the empirical distribution of samples, may lie elsewhere, as illustrated by Figure 2.

By Equation 5, using the set $\text{conv}(\Lambda)$ instead of Λ does not affect the solution of the optimization problem. In view of that, in what follows, we will assume, without loss of generality, that Λ is a convex set. Observe that, since $L_k(w)$ is not an average of functions, standard stochastic gradient descent algorithms cannot be used to minimize this objective. We will present instead a new stochastic gradient-type algorithm for this problem.

Let $\nabla_w L(w, \lambda)$ denote the gradient of the loss function with respect to w and $\nabla_\lambda L(w, \lambda)$ the gradient with respect to λ. Let $\delta_w L(w, \lambda)$ and $\delta_\lambda L(w, \lambda)$ be unbiased estimates of the gradient, that is,

$$\mathbb{E}[\delta_\lambda L(w, \lambda)] = \nabla_\lambda L(w, \lambda), \quad \mathbb{E}[\delta_w L(w, \lambda)] = \nabla_w L(w, \lambda).$$

We first give an optimization algorithm STOCHASTIC-AFL for the AFL problem, assuming access to such unbiased estimates. The pseudocode of the algorithm is given in Figure 3. At each step, the algorithm computes a stochastic gradient with respect to λ and updates the model accordingly. It then projects λ to Λ by computing a value λ^* for which to optimize the loss function L_λ^* for which to optimize the loss function L_λ^*.

There are several natural candidates for the sampling method defining stochastic gradients. We highlight two techniques: PERDOMAIN GRADIENT and WEIGHTED GRADIENT. We analyze the time complexity and give bounds on the variance for both techniques in Lemmas 3 and 4 respectively.

4.3. Analysis

Throughout this section, for simplicity, we adopt the notation introduced for Equation 7. Our convergence guarantees hold under the following assumptions, which are similar to those adopted for the convergence proof of gradient descent-type algorithms.

Properties 1. Assume that the following properties hold for the loss function L and sets \mathcal{W} and $\Lambda \subseteq \Delta_p$:

Algorithm STOCHASTIC-AFL

Initialization: $w_0 \in \mathcal{W}$ and $\lambda_0 \in \Gamma$.

Parameters: step size $\gamma_w > 0$ and $\gamma_\lambda > 0$.

For $t = 1$ to T:

1. Obtain stochastic gradients: $\delta_w L(w_{t-1}, \lambda_{t-1})$ and $\delta_\lambda L(w_{t-1}, \lambda_{t-1})$.
2. $w_t = \text{PROJECT}(w_{t-1} - \gamma_w \delta_w L(w_{t-1}, \lambda_{t-1}), \mathcal{W})$
3. $\lambda_t = \text{PROJECT}(\lambda_{t-1} + \gamma_\lambda \delta_\lambda L(w_{t-1}, \lambda_{t-1}), \Lambda)$.

Output: $w^* = \frac{1}{T} \sum_{t=1}^T w_t$ and $\lambda^* = \frac{1}{T} \sum_{t=1}^T \lambda_t$.

Subroutine PROJECT

Input: x', \mathcal{X}. Output: $x = \arg\min_{x \in \mathcal{X}} \|x - x''\|_2$.

Figure 3. Pseudocode of the STOCHASTIC-AFL algorithm.

1. Convexity: $w \mapsto L(w, \lambda)$ is convex for any $\lambda \in \Lambda$.
2. Compactness: $\max_{\lambda \in \Lambda} \|\lambda\|_2 \leq R_\lambda$, $\max_{w \in \mathcal{W}} \|w\|_2 \leq R_w$.
3. Bounded gradients: $\|\nabla_w L(w, \lambda)\|_2 \leq G_w$ and $\|\nabla_\lambda L(w, \lambda)\|_2 \leq G_\lambda$ for all $w \in \mathcal{W}$ and $\lambda \in \Lambda$.
4. Stochastic variance: $\mathbb{E}[\|\delta_w L(w, \lambda) - \nabla_w L(w, \lambda)\|^2] \leq \sigma_w^2$ and $\mathbb{E}[\|\delta_\lambda L(w, \lambda) - \nabla_\lambda L(w, \lambda)\|^2] \leq \sigma_\lambda^2$ for all $w \in \mathcal{W}$ and $\lambda \in \Lambda$.
5. Time complexity: U_w denotes the time complexity of computing $\delta_w L(w, \lambda)$, U_λ that of the projection, and d denotes the dimensionality of \mathcal{W}.

Theorem 2. [Appendix E.1] Assume that Properties 1 hold. Then, the following guarantee holds for STOCHASTIC-AFL:

$$\mathbb{E}\left[\max_{\lambda \in \Lambda} L(w^A, \lambda) - \min_{w \in \mathcal{W}} \max_{\lambda \in \Lambda} L(w, \lambda)\right] \leq 3R_w \sqrt{(\sigma_w^2 + G_w^2) / T} + 3R_\lambda \sqrt{(\sigma_\lambda^2 + G_\lambda^2) / T},$$

for the step sizes $\gamma_w = \frac{2R_w}{\sqrt{T(\sigma_w^2 + G_w^2)}}$ and $\gamma_\lambda = \frac{2R_\lambda}{\sqrt{T(\sigma_\lambda^2 + G_\lambda^2)}}$, and the time complexity of the algorithm is in $O((U_w + U_\lambda + U_p + d + p)T)$.

We note that similar algorithms have been proposed for solving minimax objectives (Namkoong & Duchi, 2016; Chen et al., 2017). Chen et al. (2017) assume the existence of an α-approximate Bayesian oracle, whereas our guarantees hold regardless of such assumptions. Namkoong & Duchi (2016) use importance sampling to obtain λ gradients, thus, their convergence guarantee for the Euclidean norm depends inversely on a lower bound on $\min_{\lambda \in \Lambda} \min_{k \in \mathbb{N}} \lambda_k$.
Figure 4. Definition of the stochastic gradients with respect to λ and w.

In contrast, our convergence guarantees are not affected by that.

4.4. Stochastic gradients

The convergence results of Theorem 4 depend on the variance of the stochastic gradients. We first discuss the stochastic gradients for λ. Notice that the gradient for λ is independent of λ. Thus, a natural choice for the stochastic gradient with respect to λ is based on uniformly sampling a domain $K \in [p]$ and then sampling $x_{K,i}$ from domain K. This leads to the definition of the stochastic gradient $\delta_\lambda L(w, \lambda)$ shown in Figure 4. The following lemma bounds the variance for that definition of $\delta_\lambda L(w, \lambda)$.

Lemma 2. [Appendix E.2] The stochastic gradient $\delta_\lambda L(w, \lambda)$ is unbiased. Further, if the loss function is bounded by M, then the following upper bound holds for the variance of $\delta_\lambda L(w, \lambda)$:

$$\sigma^2_\lambda = \max_{w \in W, \lambda \in \Lambda} \text{Var}(\delta_\lambda L(w, \lambda)) \leq p^2 M^2.$$

If the above variance is too high, then we can sample one J_k for every domain K. This is the same as computing the gradient of a batch and reduces the variance by a factor of p.

The gradient with respect to w depends both on λ and w. There are two natural stochastic gradients: the PERDOMAIN-stochastic gradient and the WEIGHTED-stochastic gradient. For a PERDOMAIN-stochastic gradient, we sample an element uniformly from $[m_k]$ for each $k \in [p]$. For the WEIGHTED-stochastic gradient, we sample a domain according to λ and sample an element out of it. We can now bound the variance of both PERDOMAIN and WEIGHTED stochastic gradients.

Let U denote the time complexity of computing the loss and gradient with respect to w for a single sample.

Lemma 3. [Appendix E.3] PERDOMAIN stochastic gradient is unbiased and runs in time $pU + \mathcal{O}(p \log m)$ and the variance satisfy, $\sigma^2_w \leq R_\lambda \sigma^2_\lambda (w)$, where

$$\sigma^2_w(w) = \max_{w \in W, \lambda \in \Lambda} \sum_{j=1}^{m_k} \left[\nabla_w L_{K,j}(w) - \nabla_w L_{K}(w) \right]^2.$$

Lemma 4. [Appendix E.4] WEIGHTED stochastic gradient is unbiased and runs in time $U + \mathcal{O}(p + \log m)$ and the variance satisfy the following inequality: $\sigma^2_w \leq \sigma^2_\lambda (w) + \sigma^2_\lambda (w)$, where

$$\sigma^2_\lambda (w) = \max_{w \in W, \lambda \in \Lambda} \sum_{j=1}^{p} \left[\nabla_w L_{K,j}(w) - \nabla_w L_{K}(w) \right]^2$$

and $\sigma^2_\lambda (w)$ is defined in Lemma 3.

Since $R_\lambda \leq 1$, at first glance, the above two lemmas may suggest that PERDOMAIN stochastic is always better than WEIGHTED stochastic gradient. Note, however, that the time complexity of the algorithms is dominated by U and thus, the time complexity of PERDOMAIN-stochastic gradient is roughly p times larger than that of WEIGHTED-stochastic gradient. Hence, if p is small, it is preferable to choose the PERDOMAIN-stochastic gradient. For large values of p, we analyze the differences in Appendix E.5.

4.5. Related optimization algorithms

In Appendix F.1, we show that STOCHASTIC-AFL can be extended to the case where arbitrary mirror maps are used, as in the standard mirror descent algorithm. In Appendix F.2, we give an algorithm with convergence rate $\mathcal{O}(\log T/T)$, when the loss function is strongly convex. Finally, in Appendix F.3, we present an optimistic version of STOCHASTIC-AFL.

5. Experiments

To study the benefits of our AFL algorithm, we carried out experiments with three datasets. Even though our optimization convergence guarantees hold only for convex functions and stochastic gradient, we show that our domain-agnostic learning performs well for non-convex functions and variants of stochastic gradient descent such as Adagrad too.

In all the experiments, we compare the domain agnostic model with the model trained with \bar{U}, the uniform distribution over the union of samples, and the models trained on
Table 1. Adult dataset: test accuracy for various test domains of models trained with different loss functions.

<table>
<thead>
<tr>
<th>Training loss function</th>
<th>U</th>
<th>doctorate</th>
<th>non-doctorate</th>
<th>D_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_\delta</td>
<td>89.1 ± 1.3</td>
<td>77.8 ± 4.0</td>
<td>64.4 ± 4.0</td>
<td>71.5 ± 4.6</td>
</tr>
<tr>
<td>L_\omega</td>
<td>82.1 ± 0.0</td>
<td>69.4 ± 1.2</td>
<td>69.1 ± 0.9</td>
<td>71.5 ± 0.9</td>
</tr>
<tr>
<td>L_\lambda</td>
<td>82.1 ± 0.4</td>
<td>71.5 ± 3.8</td>
<td>54.1 ± 0.8</td>
<td>71.5 ± 0.9</td>
</tr>
<tr>
<td>L_\mu</td>
<td>80.1 ± 0.3</td>
<td>71.5 ± 3.8</td>
<td>53.2 ± 0.9</td>
<td>71.5 ± 0.9</td>
</tr>
</tbody>
</table>

Table 2. Fashion MNIST dataset: test accuracy for various test domains of models trained with different loss functions.

<table>
<thead>
<tr>
<th>Training loss function</th>
<th>U</th>
<th>shirt</th>
<th>pullover</th>
<th>t-shirt/top</th>
<th>D_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_\delta</td>
<td>81.3 ± 1.3</td>
<td>72.1 ± 4.0</td>
<td>63.3 ± 3.6</td>
<td>72.1 ± 4.0</td>
<td></td>
</tr>
<tr>
<td>L_\omega</td>
<td>82.1 ± 0.0</td>
<td>74.5 ± 6.0</td>
<td>67.6 ± 4.5</td>
<td>74.5 ± 6.0</td>
<td></td>
</tr>
<tr>
<td>L_\lambda</td>
<td>82.1 ± 0.4</td>
<td>74.5 ± 6.0</td>
<td>64.9 ± 4.4</td>
<td>74.5 ± 6.0</td>
<td></td>
</tr>
<tr>
<td>L_\mu</td>
<td>80.1 ± 0.3</td>
<td>74.5 ± 6.0</td>
<td>60.3 ± 4.9</td>
<td>74.5 ± 6.0</td>
<td></td>
</tr>
</tbody>
</table>

individual domains. In all the experiments, we used PERDO-MAIN stochastic gradients and set $\delta = \Delta_p$. All algorithms were implemented in Tensorflow (Abadi et al., 2015).

5.1. Adult dataset

The Adult dataset is a census dataset from the UCI Machine Learning Repository (Blake, 1998). The task consists of predicting if the person’s income exceeds $50,000. We split this dataset into two domains depending on whether the person had a doctorate degree or not, resulting into domains: the doctorate domain and the non-doctorate domain. We trained a logistic regression model with just the categorical features and Adagrad optimizer. The performance of the models averaged over 50 runs is reported in Table 1. The performance on D_A of the model trained with \tilde{U}, that is standard federated learning, is about 69.6%. In contrast, the performance of our AFL model is at least about 71.5% on any target distribution D_A. The uniform average over the domains of the test accuracy of the AFL model is slightly less than that of the uniform model, but the agnostic model is less biased and performs better on D_A.

5.2. Fashion MNIST

The Fashion MNIST dataset (Xiao et al., 2017) is an MNIST-like dataset where images are classified into 10 categories of clothing, instead of handwritten digits. We extracted the subset of the data labeled with three categories t-shirt/top, pullover, and shirt and split this subset into three domains, each consisting of one class of clothing. We then trained a classifier for the three classes using logistic regression and the Adam optimizer. The results are shown in Table 2. Since here the domain uniquely identifies the label, in this experiment, we did not compare against models trained on specific domains. Of the three domains or classes, the shirt class is the hardest one to distinguish from others. The domain-agnostic model improves the performance for shirt more than it degrades it on pullover and shirt, leading to both shirt-specific and overall accuracy improvement when compared to the model trained with the uniform distribution \tilde{U}. Furthermore, in this experiment, note that our agnostic learning solution not only improves

the loss of the worst domain, but also generalizes better and hence improves the average test accuracy.

5.3. Language models

Motivated by the keyboard application (Hard et al., 2018), where a single client uses a trained language model in multiple environments such as chat apps, email, and web input, we created a dataset that combines two very different types of language datasets: conversation and document. For conversation, we used the Cornell movie dataset that contains movie dialogues (Danescu-Niculescu-Mizil & Lee, 2011). For documents, we used the Penn TreeBank (PTB) dataset (Marcus et al., 1993). We created a single dataset by combining both of the above corpuses, with conversation and document as domains. We preprocessed the data to remove punctuations, capitalized the data uniformly, and computed a vocabulary of 10,000 most frequent words. We trained a two-layer LSTM model with momentum optimizer. The performance of the models are measured by their perplexity, that is the exponent of cross-entropy loss. The results are reported in Table 3. Of the two domains, the document domain is the one admitting the higher perplexity. For this domain, the test perplexity of the domain agnostic model is close to that of the model trained only on document data and is better than that of the model trained with the uniform distribution \tilde{U}.

6. Conclusion

We introduced a new framework for federated learning, based on principled learning objectives, for which we presented a detailed theoretical analysis, a learning algorithm motivated by our theory, a new stochastic optimization solution for large-scale problems and several extensions. Our experimental results suggest that our solution can lead to significant benefits in practice. In addition, our framework and algorithms benefit from favorable fairness properties. This constitutes a global solution that we hope will be generally adopted in federated learning, and other related learning tasks such as domain adaptation.

7. Acknowledgements

We thank Corinna Cortes, Satyen Kale, Shankar Kumar, Rajiv Mathews, and Brendan McMahan for helpful comments and discussions.
References

Duchi, J. C., Shalev-Shwartz, S., Singer, Y., and Chandra, T. Efficient projections onto the ℓ_1-ball for learning in high dimensions. In ICML, pp. 272–279, 2008.

