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Abstract
This work generalizes graph neural networks
(GNNs) beyond those based on the Weisfeiler-
Lehman (WL) algorithm, graph Laplacians, and
diffusions. Our approach, denoted Relational
Pooling (RP), draws from the theory of finite
partial exchangeability to provide a framework
with maximal representation power for graphs.
RP can work with existing graph representation
models and, somewhat counterintuitively, can
make them even more powerful than the orig-
inal WL isomorphism test. Additionally, RP
allows architectures like Recurrent Neural Net-
works and Convolutional Neural Networks to be
used in a theoretically sound approach for graph
classification. We demonstrate improved perfor-
mance of RP-based graph representations over
state-of-the-art methods on a number of tasks.

1. Introduction

Applications with relational graph data, such as molecule
classification, social and biological network prediction,
first order logic, and natural language understanding, re-
quire an effective representation of graph structures and
their attributes. While representation learning for graph
data has made tremendous progress in recent years, current
schemes are unable to produce so-called most-powerful
representations that can provably distinguish all distinct
graphs up to graph isomorphisms. Consider for instance the
broad class of Weisfeiler-Lehman (WL) based Graph Neu-
ral Networks (WL-GNNs) (Duvenaud et al., 2015; Kipf &
Welling, 2017; Gilmer et al., 2017; Hamilton et al., 2017a;
Velickovic et al., 2018; Monti et al., 2017; Ying et al., 2018;
Xu et al., 2019; Morris et al., 2019). These are unable
to distinguish pairs of nonisomorphic graphs on which the
standard WL isomorphism heuristic fails (Cai et al., 1992;
Xu et al., 2019; Morris et al., 2019). As graph neural net-
works (GNNs) are applied to increasingly more challeng-

1Department of Statistics, and 2Department of Computer Sci-
ence, Purdue University, West Lafayette, Indiana, USA. Corre-
spondence to: Ryan L. Murphy <murph213@purdue.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

ing problems, having a most-powerful framework for graph
representation learning would be a key development in ge-
ometric deep learning (Bronstein et al., 2017).

In this work we introduce Relational Pooling (RP), a novel
framework with maximal representation power for any
graph input. In RP, we specify an idealized most-powerful
representation for graphs and a framework for tractably ap-
proximating this ideal. The ideal representation can dis-
tinguish pairs of nonisomorphic graphs even when the WL
isomorphism test fails, which motivates a straightforward
procedure using approximate RP – we call this RP-GNN –
for making GNNs more powerful.

A key inductive bias for graph representations is invari-
ance to permutations of the adjacency matrix (graph iso-
morphisms), see Aldous (1981); Diaconis & Janson (2008);
Orbanz & Roy (2015). Our work differs in its focus on
learning representations of finite but variable-size graphs.
In particular, given a finite but arbitrary-sized graph G po-
tentially endowed with vertex or edge features, RP outputs
a representation f(G)∈ Rdh , dh> 0 , that is invariant to
graph isomorphisms. RP can learn representations for each
vertex in a graph, though to simplify the exposition, we fo-
cus on learning one representation of the entire graph.

Contributions. We make the following contributions: (1)
We introduce Relational Pooling (RP), a novel framework
for graph representation that can be combined with any
existing neural network architecture, including ones not
generally associated with graphs such as Recurrent Neu-
ral Networks (RNNs). (2) We prove that RP has maxi-
mal representation power for graphs and show that com-
bining WL-GNNs with RP can increase their representa-
tion power. In our experiments, we classify graphs that
cannot be distinguished by a state-of-the-art WL-GNN (Xu
et al., 2019). (3) We introduce approximation approaches
that make RP computationally tractable. We demonstrate
empirically that these still lead to strong performance and
can be used with RP-GNN to speed up graph classification
when compared to traditional WL-GNNs.

2. Relational Pooling

Notation. We consider graphs endowed with vertex and
edge features. That is, let G = (V,E,X(v),X(e)) be a
graph with vertices V , edges E ⊆ V × V , vertex fea-
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tures stored in a |V | × dv matrix X(v), and edge features
stored in a |V | × |V | × de tensor X(e). W.l.o.g, we let
V := {1, . . . , n}, choosing some arbitrary ordering of the
vertices. Unlike the vertex features X(v), these vertex la-
bels do not represent any meaningful information about
the vertices, and learned graph representations should not
depend upon the choice of ordering. Formally, there al-
ways exists a bijection on V (called a permutation or iso-
morphism) between orderings so we desire permutation-
invariant, or equivalently, isomorphic-invariant functions.

In this work, we encode G by two data structures: (1) a
|V | × |V | × (1 + de) tensor that combines G’s adjacency
matrix with its edge features and (2) a |V | × dv matrix
representing node features X(v). The tensor is defined as
Av,u,· =

[
1(v,u)∈E on X (e)

v,u

]
for v, u ∈ V where [· on ·] de-

notes concatenation along the 3rd mode of the tensor, 1(·)

denotes the indicator function, and X (e)
v,u denotes the fea-

ture vector of edge (v, u) by a slight abuse of notation.
A permutation is bijection π : V → V from the label
set V to itself. If vertices are relabeled by a permutation
π, we represent the new adjacency tensor by Aπ,π , where
(Aπ,π)π(i),π(j),k = Ai,j,k ∀i, j∈ V , k ∈{1, . . . , 1 + de};
the index k over edge features is not permuted. Simi-
larly, the vertex features are represented by X

(v)
π where

(X
(v)
π )π(i),l =X

(v)
i,l , ∀i ∈ V and l ∈ {1, . . . , dv}. The

Supplementary Material shows a concrete example and
Kearnes et al. (2016) use a similar representation.

For bipartite graphs (e.g., consumers× products), V is par-
titioned by V (r) and V (c) and a separate permutation func-
tion can be defined on each. Their encoding is similar to the
above and we define RP for the two different cases below.

Joint RP. Inspired by joint exchangeability (Aldous,
1981; Diaconis & Janson, 2008; Orbanz & Roy, 2015),
we define a joint RP permutation-invariant function of non-
bipartite graphs, whether directed or undirected, as

f(G) =
1

|V |!
∑

π∈Π|V |

f
⇀

(Aπ,π,X(v)
π ), (1)

where Π|V | is the set of all distinct permutations of V
and f

⇀

is an arbitrary (possibly permutation-sensitive) func-
tion of the graph with codomain Rdh . Following Murphy
et al. (2019), we use the notation · to denote permutation-
invariant function. Since Equation 1 averages over all per-
mutations of the labels V , f is a permutation-invariant
function and can theoretically represent any such function
g (consider f

⇀

= g). We can compose f with another func-
tion ρ (outside the summation) to capture additional signal
in the graph. This can give a maximally expressive, albeit
intractable, graph representation (Theorem 2.1). We later

discuss tractable approximations for f and neural network
architectures for f

⇀

.

Separate RP. RP for bipartite graphs is motivated by sep-
arate exchangeability (Diaconis & Janson, 2008; Orbanz &
Roy, 2015) and is defined as

f(G)=C
∑

π∈Π|V (r)|

∑
σ∈Π|V (c)|

f
⇀(

Aπ,σ,X(r,v)
π ,X(c,v)

σ

)
(2)

where C = (|V (r)|!|V (c)|!)−1 and π, σ are permutations of
V (r), V (c), respectively. Results that apply to joint RP ap-
ply to separate RP.

2.1. Representation Power of RP

Functions f should be expressive enough to learn distinct
representations of nonisomorphic graphs or graphs with
distinct features. We say f(G) is most-powerful or most-
expressive when f(G) = f(G′) iff G and G′ are isomor-
phic and have the same vertex/edge features up to permu-
tation. If f is not most-powerful, a downstream function
ρ may struggle to predict different classes for nonisormor-
phic graphs.
Theorem 2.1. If node and edge attributes come from a fi-
nite set, then the representation f(G) in Equation 1 is the
most expressive representation of G, provided f

⇀

is suffi-
ciently expressive (e.g., a universal approximator).

All proofs are shown in the Supplementary Material.
This result provides a key insight into RP; one can fo-
cus on building expressive functions f

⇀

that need not be
permutation-invariant as the summation over permutations
assures that permutation-invariance is satisfied.

2.2. Neural Network Architectures

Since f
⇀

may be permutation sensitive, RP allows one to
use a wide range of neural network architectures.

RNNs, MLPs. A valid architecture is to vectorize the graph
(concatenating node and edge features, as illustrated in the
Supplementary Material) and learn f

⇀

over the resulting se-
quence. f

⇀

can be an RNN, like an LSTM (Hochreiter &
Schmidhuber, 1997) or GRU (Cho et al., 2014), or a feed-
forward neural network (multilayer perceptron, MLP) with
padding if different graphs have different sizes. Concretely,

f(G) =
1

|V |!
∑

π∈Π|V |

f
⇀(

vec(Aπ,π,X(v)
π )
)
.

CNNs. Convolutional neural networks (CNNs) can also be
directly applied over the tensor Aπ,π and combined with
the node features X(v)

π , as in

f(G)=
1

|V |!
∑

π∈Π|V |

MLP

([
CNN(Aπ,π)onMLP(X(v)

π )
])
, (3)
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where CNN denotes a 2D (LeCun et al., 1989; Krizhevsky
et al., 2012) if there are no edge features and a 3D CNN (Ji
et al., 2013) if there are edge features, [· on ·] is a concatena-
tion of the representations, and MLP is a multilayer percep-
tron. Multi-resolution 3D convolutions (Qi et al., 2016) can
be used to map variable-sized graphs into the same sized
representation for downstream layers.

GNNs. The function f
⇀

can also be a graph neural network
(GNN), a broad class of models that use the graph G itself
to define the computation graph. These are permutation-
invariant by design but we will show that their integration
into RP can (1) make them more powerful and (2) speed up
their computation via theoretically sound approximations.
The GNNs we consider follow a message-passing (Gilmer
et al., 2017) scheme defined by the recursion

h(l)
u = φ(l)

(
h(l−1)
u , JP

(
(h(l−1)
v )v∈N (u)

))
, (4)

where φ(l) is a learnable function with distinct weights at
each layer 1 ≤ l ≤ L of the computation graph, JP is
a general (learnable) permutation-invariant function (Mur-
phy et al., 2019), N (u) is the set of neighbors of u ∈ V ,
and h

(l)
u ∈ Rd

(l)
h is a vector describing the embedding of

node u at layer l. h
(0)
u is the feature vector of node u,

(X(v))u,· or can be assigned a constant c if u has no fea-
tures. Under this framework, node embeddings can be used
directly to predict node-level targets, or all node embed-
dings can be aggregated (via a learnable function) to form
an embedding hG used for graph-wide tasks.

There are several variations of Equation 4 in the literature.
Duvenaud et al. (2015) proposed using embeddings from
all layers l ∈ {1, 2, . . . , L} for graph classification. Hamil-
ton et al. (2017a) used a similar framework for node clas-
sification and link prediction tasks, using the embedding
at the last layer, while Xu et al. (2018) extend Hamilton
et al. (2017a) to once again use embeddings at all layers
for node and link prediction tasks. Other improvements in-
clude attention (Velickovic et al., 2018). This approach can
be derived from spectral graph convolutions (e.g., (Kipf &
Welling, 2017)). More GNNs are discussed in Section 3.

Recently, Xu et al. (2019); Morris et al. (2019) showed
that these architectures are at most as powerful as the
Weisfeiler-Lehman (WL) algorithm for testing graph iso-
morphism (Weisfeiler & Lehman, 1968), which itself ef-
fectively follows a message-passing scheme. Accordingly,
we will broadly refer to models defined by Equation 4 as
WL-GNNs. Xu et al. (2019) proposes a WL-GNN called
Graph Isomorphism Network (GIN) which is as powerful
as the WL test in graphs with discrete features.

Can a WL-GNN be more powerful than the WL test?
WL-GNNs inherit a shortcoming from the WL test (Cai

Gskip(11, 2) Gskip(11, 3)

Figure 1: The WL test incorrectly deems these isomorphic.

et al., 1992; Arvind et al., 2017; Fürer, 2017; Morris et al.,
2019); node representations h

(l)
u do not encode whether

two nodes have the same neighbor or distinct neighbors
with the same features, limiting their ability to learn an ex-
pressive representation of the entire graph. Consider a task
where graphs represent molecules, where node features in-
dicate atom type and edges denote the presence or absence
of bonds. Here, the first WL-GNN layer cannot distinguish
that two (say) carbon atoms have a bond with the same car-
bon atom or a bond to two distinct carbon atoms. Succes-
sive layers of the WL-GNN update node representations
and the hope is that nodes eventually get unique representa-
tions (up to isomorphisms), and thus allow the WL-GNN to
detect whether two nodes have the same neighbor based on
the representations of their neighbors. However, if there are
too few WL-GNN layers or complex cycles in the graph,
the graph and its nodes will not be adequately represented.

To better understand this challenge, consider the extreme
case illustrated by the two graphs in Figure 1. These are
cycle graphs with M = 11 nodes where nodes that are
R ∈ {2, 3} ‘hops’ around the circle are connected by an
edge. These highly symmetric graphs, which are special
cases of circulant graphs (Vilfred, 2004) are formally de-
fined in Definition 2.1 but the key point is that the WL test,
and thus WL-GNNs, cannot distinguish these two noniso-
morphic graphs.

Definition 2.1: [Circulant Skip Links (CSL) graphs] Let
R and M be co-prime natural numbers1 such that R <
M − 1. Gskip(M,R) denotes an undirected 4-regular graph
with vertices {0, 1, . . . ,M − 1} whose edges form a cycle
and have skip links. That is, for the cycle, {j, j + 1} ∈ E
for j ∈ {0, . . . ,M − 2} and {M − 1, 0} ∈ E. For the
skip links, recursively define the sequence s1 = 0, si+1 =
(si +R) mod M and let {si, si+1} ∈ E for any i ∈ N. ♦

We will use RP to help WL-GNNs overcome this short-
coming. Let f

⇀

be a WL-GNN that we make permutation
sensitive by assigning each node an identifier that depends
on π. Permutation sensitive IDs prevent the RP sum from
collapsing to just one term but more importantly help dis-
tinguish neighbors that otherwise appear identical. In par-
ticular, given any π ∈ Π|V |, we append to the rows of X(v)

π

one-hot encodings of the row number before computing f
⇀

.
We can represent this by an augmented vertex attribute ma-

1Two numbers are co-primes if their only common factor is 1.
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trix
[
X

(v)
π on I|V |

]
for every π ∈ Π|V |, where I|V | is a

|V | × |V | identity matrix and [B on C] concatenates the
columns of matrices B and C. RP-GNN is then given by

f(G) =
1

|V |!
∑

π∈Π|V |

f
⇀
(

Aπ,π,
[
X(v)
π on I|V |

])
(5)

=
1

|V |!
∑

π∈Π|V |

f
⇀
(

A,
[
X(v) on (I|V |)π

])
,

where the second holds since f
⇀

a GNN and thus invari-
ant to permutations of the adjacency matrix. The following
theorem shows that f(G) in Equation 5 is strictly more ex-
pressive than the original WL-GNN; it can distinguish all
nodes and graphs that WL-GNN can in addition to graphs
that the original WL-GNN cannot.
Theorem 2.2. The RP-GNN in Equation 5 is strictly more
expressive than the original WL-GNN. Specifically, if f

⇀

is a
GIN (Xu et al., 2019) and the graph has discrete attributes,
its RP-GNN is more powerful than the WL test.

Equation 5 is computationally expensive but can be made
tractable while retaining expressive power over standard
GNNs. While all approximations discussed in Section 2.3
for RP in general are applicable to RP-GNN, a specific
strategy is to assign permutation-sensitive node IDs in a
clever way. In particular, if vertex features are avail-
able, we only need to assign enough IDs to make all
vertices unique and thereby reduce the number of per-
mutations we need to evaluate. For example, in the
molecule CH2O2, if we create node features with one-hot
IDs (C, 0, 1),(H, 0, 1),(H, 1, 0),(O, 0, 1),(O, 1, 0), then
we need only consider 1!· 2! · 2! = 4 permutations. For
unattributed graphs, we assign i mod m to node i; setting
m=1 reduces to a GNN and m=|V | is the most expressive.
More examples are in the Supplementary Material.

2.3. RP Tractability

2.3.1. TRACTABILITY VIA CANONICAL ORIENTATIONS

Equation 1 is intractable as written and calls for approxi-
mations. The most direct approximation is to compose a
permutation-sensitive f

⇀

with a canonical orientation func-
tion that re-orders A such that CANONICAL(A,X(v))=

CANONICAL(Aπ,π,X
(v)
π ), ∀π ∈ Π|V |. For instance,

vertices can be sorted by centrality scores with some tie-
breaking scheme (Montavon et al., 2012; Niepert et al.,
2016). This causes the sum over all permutations to
collapse to just an evaluation of f

⇀

◦ CANONICAL.
Essentially, this introduces a fixed component into the
permutation-invariant function f with only the second
stage learned from data. This simplifying approxima-
tion to the original problem is however only useful if

CANONICAL is related to the true function, and can oth-
erwise result in poor representations (Murphy et al., 2019).

A more flexible approach collapses the set of all per-
mutations into a smaller set of equivalent permutations
which we denote as poly-canonical orientation. Depth-
First Search (DFS) and Breadth-First Search (BFS) serve
as two examples. In a DFS, the nodes of the adjacency
matrix/tensor Aπ,π are ordered from 1 to |V | according to
the order they are visited by a DFS starting at π(1). Thus,
if G is a length-three path and we consider permutation
functions defined (elementwise) as π(1, 2, 3) = (1, 2, 3),
π′(1, 2, 3)=(1, 3, 2), DFS or BFS would see respectively
1 2 3 and 1 3 2 (where vertices are numbered by per-
muted indices), start at π(1)=1 and result in the same ‘left-
to-right’ orientation for both permutations. In disconnected
graphs, the search starts at the first node of each connected
component. Learning orientations from data is a discrete
optimization problem left for future work.

2.3.2. TRACTABILITY VIA π-SGD

A simple approach for making RP tractable is to sample
random permutations during training. This offers the com-
putational savings of a single canonical ordering but cir-
cumvents the need to learn a good canonical ordering for a
given task. This approach is only approximately invariant,
a tradeoff we make for the increased power of RP.

For simplicity, we analyze a supervised graph classifica-
tion setting with a single sampled permutation, but this
can be easily extended to sampling multiple permuta-
tions and unsupervised settings. Further, we focus on
joint invariance but the formulation is similar for sepa-
rate invariance. Consider N training data examples D ≡
{(G(1),y(1)), . . . , (G(N),y(N))}, where y(i) ∈ Y is the
target output and graphG(i) its corresponding graph input.
For a parameterized function f

⇀

with parameters W ,

f(G(i);W ) =
1

|V (i)|!
∑

π∈Π|V (i)|

f
⇀

(Aπ,π(i),X(v)
π (i);W ),

our (original) goal is to minimize the empirical loss

L(D;W ) =

N∑
i=1

L
(
y(i) , f(G(i);W )

)
, (6)

where L is a convex loss function of f(·; ·) such as cross-
entropy or square loss. For each graph G(i), we sample
a permutation si ∼ Unif(Π|V (i)|) and replace the sum in
Equation 1 with the estimate

ˆ
f(G(i);W ) = f

⇀

(Asi,si(i),X
(v)
si (i);W ). (7)

For separate invariance, we would sample a distinct permu-
tation for each set of vertices. The estimator in Equation 7
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is unbiased: Esi [
ˆ
f(Gsi,si(i);W )] = f(G(i);W ), where

Gsi,si is shorthand for a graph that has been permuted
by si. However, this is no longer true when f is chained

with a nonlinear loss L: Esi [L(y(i),
ˆ
f(Gsi,si(i);W ))] 6=

L(y(i), Esi [
ˆ
f(Gsi,si(i);W )]). Nevertheless, as we will

soon justify, we follow Murphy et al. (2019) and use this
estimate in our optimization.

Definition 2.2: [π-SGD for RP] Let Bt =
{(G(1),y(1)), . . . , (G(B),y(B))} be a mini-batch
i.i.d. sampled uniformly from the training data D at step t.
To train RP with π-SGD, we follow the stochastic gradient
descent update

Wt = Wt−1 − ηtZt, (8)

where Zt = 1
B

∑B
i=1∇WL

(
y(i),

ˆ
f(G(i);Wt−1)

)
is the

random gradient with the random permutations {si}Bi=1,
(sampled independently si ∼ Unif(Π|V (i)|) for all graphs
G(i) in batch Bt), and the learning rate is ηt ∈ (0, 1) s.t.
limt→∞ ηt = 0,

∑∞
t=1 ηt =∞, and

∑∞
t=1 η

2
t <∞. ♦

Effectively, this is a Robbins-Monro stochastic approxi-
mation algorithm of gradient descent (Robbins & Monro,
1951; Bottou, 2012) and optimizes the modified objective

J(D;W )=
1

N

N∑
i=1

Esi

[
L

(
y(i),

ˆ
f(Gsi,si(i);W )

)]

=
1

N

N∑
i=1

1

|V (i)|!
∑

π∈Π|V (i)|

L

(
y(i),

ˆ
f(Gπ,π(i);W )

)
. (9)

Observe that the expectation over permutations is now
outside the loss function (recall f(G(i);W ) in in Equa-
tion 6 is an expectation). The loss in Equation 9 is also
permutation-invariant, but π-SGD yields a result sensitive
to the random input permutations presented to the algo-
rithm. Further, unless the function f

⇀

itself is permutation-
invariant (f = f

⇀

), the optima of J are different from those
of the original objective function L. Instead, if L is convex
in f(·; ·), J is an upper bound to L via Jensen’s inequality,
and minimizing this bound forms a tractable surrogate to
the original objective in Equation 6.

The following convergence result follows from the π-SGD
formulation of Murphy et al. (2019).
Proposition 2.1. π-SGD stochastic optimization enjoys
properties of almost sure convergence to optimal W under
conditions similar to SGD (listed in Supplementary).
Remark 2.1. Given fixed point W ? of the π-SGD opti-
mization and a new graph G at test time, we may ex-

actly compute Es[
ˆ
f(Gs,s;W

?)] = f(G;W ?) or esti-

mate it with 1
m

∑m
j=1 f

⇀

(Gsj ,sj ;W
?), where s1. . . ,sm

i.i.d.∼
Unif

(
Π|V |

)
.

2.3.3. TRACTABILITY VIA k-ARY DEPENDENCIES

Murphy et al. (2019) propose k-ary pooling whereby the
computational complexity of summing over all permuta-
tions of an input sequence is reduced by considering only
permutations of subsequences of size k. Inspired by this,
we propose k-ary Relational Pooling which operates on
k-node induced subgraphs of G, which corresponds to
patches of size k × k × (de + 1) of A and k rows of X(v).
Formally, we define k-ary RP in joint RP by

f
(k)

(G;W )=
1

|V |!
∑

π∈Π|V |

f
⇀
(
Aπ,π[1:k, 1:k, :],X(v)

π [1:k,:];W
)
,

(10)
where A[·, ·, ·] denotes access to elements in the first, sec-

ond, and third modes of A; a : b denotes selecting ele-
ments corresponding to indices from a to b inclusive; and
“:” by itself denotes all elements along a mode. Thus, we
permute the adjacency tensor and select fibers along the
third mode from the upper left k × k × (de + 1) subten-
sor of A as well as the vertex attributes from the first k
rows of X(v)

π . An illustration is shown in Figure 2. The
graph on the right is numbered by its ‘original’ node in-
dices and we assume that it has no vertex features and one-
dimensional edge features. This ‘original’ graph would be
represented by a 5 × 5 × 2 tensor A where, for all pairs
of vertices, the front slice holds adjacency matrix informa-
tion and the back slice holds edge feature information (not
shown). Given the permutation function π† ∈ Π|V | defined
as π†(1, 2, 3, 4, 5) = (3, 4, 1, 2, 5), the permuted Aπ†,π† is
shown on the left. Its entries show elements from A shuf-
fled appropriately by π†. For k = 3 RP, we select the upper-
left 3×3 region from Aπ†,π† , shaded in red, and pass this to
f
⇀

. This is repeated for all permutations of the vertices. For
separate RP, the formulation is similar but we can select k1

and k2 nodes from V (r) and V (c), respectively.

In practice, the relevant k-node induced subgraphs can be
selected without first permuting the entire tensor A and ma-
trix X(v). Instead, we enumerate all subsets of size k from
index set V and use those to index A and X(v).

More generally, we have the following conclusion:
Proposition 2.2. The RP in Equation 10 requires summing
over all k-node induced subgraphs of G, thus saving com-
putation when k < |V |, reducing the number of terms in
the sum from |V |! to |V |!

(|V |−k)! .

Fewer computations are needed if f
⇀

is made permutation-
invariant over its input k-node induced subgraph. We now
show that the expressiveness of k-ary RP increases with k.

Proposition 2.3. f
(k)

becomes strictly more expressive as
k increases. That is, for any k∈N, defineFk as the set of all
permutation-invariant graph functions that can be repre-
sented by RP with k-ary dependencies. Then, Fk−1 ⊂ Fk.
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A(3,3,2) A(3,4,2) A(3,1,2) A(3,2,2) A(3,5,2)

A(4,3,2) A(4,4,2) A(4,1,2) A(4,2,2) A(4,5,2)

A(1,3,2) A(1,4,2) A(1,1,2) A(1,2,2) A(1,5,2)

A(2,3,2) A(2,4,2) A(2,1,2) A(2,2,2) A(2,5,2)

A(5,3,2) A(5,4,2) A(5,1,2) A(5,2,2) A(5,5,2)

A(3,3,1) A(3,4,1) A(3,1,1) A(3,2,1) A(3,5,1)

A(4,3,1) A(4,4,1) A(4,1,1) A(4,2,1) A(4,5,1)

A(1,3,1) A(1,4,1) A(1,1,1) A(1,2,1) A(1,5,1)

A(2,3,1) A(2,4,1) A(2,1,1) A(2,2,1) A(2,5,1)

A(5,3,1) A(5,4,1) A(5,1,1) A(5,2,1) A(5,5,1)

Adjacency tensor Aπ†,π† where π†(1, 2, 3, 4, 5) = (3, 4, 1, 2, 5)

(elementwise): the top-left 3× 3× 2 subtensor is passed to f
⇀(3)

.

1

2

3

4

5

An example five-node graph encoded by A. We select a
3-node induced subgraph, corresponding to the top-left of
Aπ†,π† indicated by shaded nodes and thickened edges.

Figure 2: Illustration of a k-ary (k = 3) RP on a 5-node graph with one-dimensional edge attributes (de=1) and no vertex
attributes. The graph is encoded as a 5×5×2 tensor A. k-ary RP selects the top-left k×k corner of a permuted tensor Aπ,π .

Further computational savings. The number of k-node
induced subgraphs can be very large for even moderate-
sized graphs. The following yield additional savings.

Ignoring some subgraphs: We can encode task- and model-
specific knowledge by ignoring certain k-sized induced
subgraphs, which amounts to fixing f

⇀

to 0 for these graphs.
For example, in most applications the graph structure – and
not the node features alone – is important so we may ignore
subgraphs of k isolated vertices. Such decisions can yield
substantial computational savings in sparse graphs.

Use of π-SGD: We can combine the k-ary approximation
with other strategies like π-SGD and poly-canonical orien-
tations. For instance, a forward pass can consist of sam-
pling a random starting vertex and running a BFS until a
k-node induced subgraph is selected. Combining π-SGD
and k-ary RP can speed up GNNs but will not provide un-
biased estimates of the loss calculated with the entire graph.
Future work could explore using the MCMC finite-sample
unbiased estimator of Teixeira et al. (2018) with RP.

3. Related Work

Our Relational Pooling framework leverages insights from
Janossy Pooling (Murphy et al., 2019), which learns ex-
pressive permutation-invariant functions over sequences by
approximating an average over permutation-sensitive func-
tions with tractability strategies. The present work raises
novel applications – like RP-GNN – that arise when pool-
ing over permutation-sensitive functions of graphs.

Graph Neural Networks (GNNs) and Graph Convolutional
Networks (GCNs) form an increasingly popular class of
methods (Scarselli et al., 2009; Bruna et al., 2014; Duve-
naud et al., 2015; Niepert et al., 2016; Atwood & Towsley,
2016; Kipf & Welling, 2017; Gilmer et al., 2017; Monti
et al., 2017; Defferrard et al., 2016; Hamilton et al., 2017a;
Velickovic et al., 2018; Lee et al., 2018; Xu et al., 2019).
Applications include chemistry, where molecules are rep-
resented as graphs and we seek to predict chemical prop-

erties like toxicity (Duvenaud et al., 2015; Gilmer et al.,
2017; Lee et al., 2018; Wu et al., 2018; Sanchez-Lengeling
& Aspuru-Guzik, 2018) and document classification on a
citations network (Hamilton et al., 2017b); and many oth-
ers (cf. Battaglia et al. (2018)).

Recently, Xu et al. (2019) and Morris et al. (2019) show
that such GNNs are at most as powerful as the standard
Weisfeiler-Lehman algorithm (also known as color refine-
ment or naive vertex classification (Weisfeiler & Lehman,
1968; Arvind et al., 2017; Fürer, 2017)) for graph isomor-
phism testing, and can fail to distinguish between certain
classes of graphs (Cai et al., 1992; Arvind et al., 2017;
Fürer, 2017). In Section 4, we demonstrate this phe-
nomenon and provide empirical evidence that RP can cor-
rect some of these shortcomings. Higher-order (k-th order)
versions of the WL test (WL[k]) exist and operate on tuples
of size k from V rather than on one vertex at a time (Fürer,
2017). Increasing k increases the capacity of WL[k] to dis-
tinguish nonisomorphic graphs, which can be exploited to
build more powerful GNNs (Morris et al., 2019). Meng
et al. (2018), introduce a WL[k]-type representation to pre-
dict high-order dynamics in temporal graphs. Using GNNs
based on WL[k] may be able to give better f

⇀

functions for
RP but we focused on providing a representation for more
expressive than WL[1] procedures.

In another direction, WL is used to construct graph ker-
nels (Shervashidze et al., 2009; 2011). CNNs have also
been used with graph kernels (Nikolentzos et al., 2018)
and some GCNs can be seen as CNNs applied to single
canonical orderings (Niepert et al., 2016; Defferrard et al.,
2016). RP provides a framework for stochastic optimiza-
tion over all or poly-canonical orderings. Another line of
work derives bases for permutation-invariant functions of
graphs and propose learning the coefficients of basis ele-
ments from data (Maron et al., 2018; Hartford et al., 2018).

In parallel, Bloem-Reddy & Teh (2019) generalized
permutation-invariant functions to group-action invariant
functions and discuss connections to exchangeable prob-
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ability distributions (De Finetti, 1937; Diaconis & Jan-
son, 2008; Aldous, 1981).Their theory uses a checkerboard
function (Orbanz & Roy, 2015) and the left-order canon-
ical orientation of Ghahramani & Griffiths (2006) to ori-
ent graphs but it will fail in some cases unless graph iso-
morphism can be solved in polynomial time. Also, as dis-
cussed, there is no guarantee that a hand-picked canonical
orientation will perform well on all tasks. On the tractabil-
ity side, Niepert & Van den Broeck (2014) shows that ex-
changeabilty assumptions in probabilistic graphical models
provide a form of k-ary tractability and Cohen & Welling
(2016); Ravanbakhsh et al. (2017) use symmetries to re-
duce sample complexity and save on computation. An-
other development explores the universality properties of
invariance-preserving neural networks and concludes some
architectures are computationally intractable (Maron et al.,
2019). Closer to RP, Montavon et al. (2012) discusses ran-
dom permutations but RP provides a more comprehensive
framework with theoretical analysis.

4. Experiments
Our first experiment shows that RP-GNN is more expres-
sive than WL-GNN. The second evaluates RP and its ap-
proximations on molecular data. Our code is on GitHub2.

4.1. Testing RP-GNN vs WL-GNN

Here we perform experiments over the CSL graphs from
Figure 1. We demonstrate empirically that WL-GNNs are
limited in their power to represent them and that RP can be
used to overcome this limitation. Our experiments compare
the RP-GNN of Equation 5 using the Graph Isomorphism
Network (GIN) architecture (Xu et al., 2019) as f

⇀

against
the original GIN architecture. We choose GIN as it is ar-
guably the most powerful WL-GNN architecture.

For the CSL graphs, the “skip length” R effectively defines
an isomorphism class in the sense that predicting R is tan-
tamount to classifying a graph into its isomorphism class
for a fixed number of vertices M . We are interested in pre-
dicting R as an assessment of RP’s ability to exploit graph
structure. We do not claim to tackle the graph isomorphism
problem as we use approximate learning (π-SGD for RP).

RP-GIN. GIN follows the recursion of Equation 4, re-
placing JP with summation and defining φ(l) as a function
that sums its arguments and feeds them through an MLP:

h(l)
u = MLP(l)

(
(1 + ε(l))h(l−1)

u +
∑

v∈N (u)

h(l−1)
v

)
,

for l = 1, . . . , L, where {ε(l)}Ll=1 can be treated as hyper-
parameters or learned parameters (we train ε). This recur-

2
https://github.com/PurdueMINDS/RelationalPooling

Table 1: RP-GNN outperforms WL-GNN in 10-class clas-
sification task. Summary of validation-set accuracy (%).

model mean median max min sd
RP-GIN 37.6 43.3 53.3 10.0 12.9
GIN 10.0 10.0 10.0 10.0 0.0

sion yields vertex-level representations that can be mapped
to a graph-level representation by summing across h

(l)
u at

each given l, then concatenating the results, as proposed by
Xu et al. (2019). When applying GIN directly on our CSL
graphs, we assign a constant vertex attribute to all vertices
in keeping with the traditional WL algorithm, as the graph
is unattributed. Recall that RP-GIN assigns one-hot node
IDs and passes the augmented graph to GIN (f

⇀

) (Equa-
tion 5). We cannot assign IDs with standard GIN as doing
so renders it permutation-sensitive. Further implementa-
tion and training details are in the Supplementary Material.

Classifying skip lengths. We create a dataset
of graphs from

{
Gskip(41, R)

}
R

where R ∈
{2, 3, 4, 5, 6, 9, 11, 12, 13, 16} and predict R as a dis-
crete response. Note M=41 is the smallest such that 10
nonisomorphic Gskip(M,R) can be formed; ∃R1 6= R2

such that Gskip(M,R1) and Gskip(M,R2) are isomorphic.
For all 10 classes, we form 15 adjacency matrices by first
constructing A(R) according to Definition 2.1 and then 14
more as A(R)

π,π for 14 distinct permutations π. This gives a
dataset of 150 graphs. We evaluate GIN and RP-GIN with
five-fold cross validation – with balanced classes on both
training and validation – on this task.

The validation-set accuracies for both models are shown in
Table 1 and Figure 3 in the Supplementary Material. Since
GIN learns the same representation for all graphs, it pre-
dicts the same class for all graphs in the validation fold,
and therefore achieves random-guessing performance of
10% accuracy. In comparison, RP-GIN yields substantially
stronger performance on all folds, demonstrating that RP-
GNNs are more powerful than their WL-GNN and serving
as empirical validation of Theorem 2.2.

4.2. Predicting Molecular Properties

Deep learning for chemical applications learns functions
on graph representations of molecules and has a rich liter-
ature (Duvenaud et al., 2015; Kearnes et al., 2016; Gilmer
et al., 2017). This domain provides challenging tasks on
which to evaluate RP, while in other applications, differ-
ent GNN models of varying sophistication often achieve
similar performance (Shchur et al., 2018; Murphy et al.,
2019; Xu et al., 2019). We chose datasets from the Molecu-
leNet project (Wu et al., 2018) – which collects chemi-
cal datasets and collates the performance of various mod-
els – that yield classification tasks and on which graph-

https://github.com/PurdueMINDS/RelationalPooling
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based methods achieved superior performance3. In partic-
ular, we chose MUV (Rohrer & Baumann, 2009), HIV, and
Tox21 (Mayr et al., 2016; Huang et al., 2016), which con-
tain measurements on a molecule’s biological activity, abil-
ity to inhibit HIV, and qualitative toxicity, respectively.

We processed datasets with DeepChem (Ramsundar et al.,
2019) and evaluated models with ROC-AUC per the
MoleculeNet project. Molecules are encoded as graphs
with 75- and 14-dimensional node and edge features. Ta-
ble 3 (in Supplementary) provides more detail.

We use the best-performing graph model reported by
MoleculeNet as f

⇀

to evaluate k-ary RP and to explore
whether RP-GNN can make it more powerful. This is a
model inspired by the GNN in Duvenaud et al. (2015),
implemented in DeepChem by Altae-Tran et al. (2017),
which we refer to as the ‘Duvenaud et al.’ model. This
model is specialized for molecules; it trains a distinct
weight matrix for each possible vertex degree at each layer,
which would be infeasible in other domains. One might ask
whether RP-GNN can add any power to this state-of-the-art
model, which we will explore here. We evaluated GIN (Xu
et al., 2019) but it was unable to outperform ‘Duvenaud
et al’. Model architectures, hyperparameters, and training
procedures are detailed in the Supplementary Material.

RP-GNN We compare the performance of the ‘Duve-
naud et al.’ baseline to RP-Duvenaud, wherein the ‘Duve-
naud et al.’ GNN is used as f

⇀

in Equation 5. We evaluate
f
⇀

on the entire graph but make RP-Duvenaud tractable by
training with π-SGD. At inference time, we sample 20 per-
mutations (see Remark 2.1). Additionally, we assign just
enough one-hot IDs to make atoms of the same type have
unique IDs (as discussed in Section 2.2). To quantify vari-
ability, we train over 20 random data splits.

The results shown in Table 2 suggest that RP-Duvenaud is
more powerful than the baseline on the HIV task and sim-
ilar in performance on the others. While we bear in mind
the over-confidence in the variability estimates (Bengio &
Grandvalet, 2004), this provides support of our theory.

k-ary RP experiments Next we empirically assess the
tradeoffs involved in the k-ary dependency models – eval-
uating f

⇀

on k-node induced subgraphs – discussed in Sec-
tion 2.3.3. Propositions 2.3 and 2.2 show that expres-
sive power and computation decrease with k. Here, f

⇀

is a ‘Duvenaud et al. model’ that operates on induced
subgraphs of size k = 10, 20, 30, 40, 50 (the percentages
of molecules with more than k atoms in each dataset are
shown in the Supplementary Material). We train using π-
SGD (20 inference-time samples) and evaluate using five
random train/val/test splits.

3
moleculenet.ai/latest-results, (Dec. 2018)

Table 2: Evaluation of RP-GNN and k-ary RP where
⇀

f is
the ‘Duvenaud et al.’ GNN or a neural-network. We show
mean (standard deviation) ROC-AUC across multiple ran-
dom train/val/test splits. DFS indicates Depth-First Search
poly-canonical orientation.

model HIV MUV Tox21
RP-Duvenaud et al. 0.832 (0.013) 0.794 (0.025) 0.799 (0.006)
Duvenaud et al. 0.812 (0.014) 0.798 (0.025) 0.794 (0.010)
k=50 Duvenaud et al. 0.818 (0.022) 0.768 (0.014) 0.778 (0.007)
k=40 Duvenaud et al. 0.807 (0.025) 0.776 (0.032) 0.783 (0.007)
k=30 Duvenaud et al. 0.829 (0.024) 0.776 (0.030) 0.775 (0.011)
k=20 Duvenaud et al. 0.813 (0.017) 0.777 (0.041) 0.755 (0.003)
k=10 Duvenaud et al. 0.812 (0.035) 0.773 (0.045) 0.687 (0.005)
CNN-DFS 0.542 (0.004) 0.601 (0.042) 0.597 (0.006)
RNN-DFS 0.627 (0.007) 0.648 (0.014) 0.748 (0.055)

Results are shown in Table 2 and Figures 4, 5, and 6 in
the Supplementary Material. With the Tox21 dataset, we
see a steady increase in predictive performance and com-
putation as k increases. For instance, k-ary with k = 10 is
25% faster than the baseline with mean AUC 0.687 (0.005
sd) and with k = 20 being 10% faster with AUC 0.755
(0.003 sd), where (sd) indicates the standard deviation over
5 bootstrapped runs. Results level off around k = 30. For
the other datasets, neither predictive performance nor com-
putation vary significantly with k. Overall, the molecules
are quite small and we do not expect dramatic speed-ups
with smaller k, but this enables comparing between using
the entire graph and its k-sized induced subgraphs.

RP with CNNs and RNNs. RP permits using neural net-
works for f

⇀

. We explored RNNs and CNNs and report the
results in Table 2. Specific details are discussed in the Sup-
plementary Material. The RNN achieves reasonable perfor-
mance on Tox21 and underperforms on the other tasks. The
CNN underperforms on all tasks. Future work is needed to
determine tasks where these approaches are better suited.

5. Conclusions

In this work, we proposed the Relational Pooling (RP)
framework for graph classification and regression. RP
gives ideal most-powerful, though intractable, graph rep-
resentations. We proposed several approaches to tractably
approximate this ideal and showed theoretically and empir-
ically that RP can make WL-GNNs more expressive than
the WL test. RP permits neural networks like RNNs and
CNNs to be brought to such problems. Our experiments
evaluate RP on a number of datasets and show how our
framework can be used to improve properties of state-of-
the-art methods. Future directions for theoretical study
include improving our understanding of the tradeoff be-
tween representation power and computational cost of our
tractability strategies.

moleculenet.ai/latest-results
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Arvind, V., Köbler, J., Rattan, G., and Verbitsky, O. Graph
isomorphism, color refinement, and compactness. com-
putational complexity, 26(3):627–685, 2017.

Atwood, J. and Towsley, D. Diffusion-convolutional neural
networks. In Advances in Neural Information Processing
Systems, pp. 1993–2001, 2016.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Re-
lational inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261, 2018.

Bengio, Y. and Grandvalet, Y. No unbiased estimator of the
variance of k-fold cross-validation. Journal of machine
learning research, 5(Sep):1089–1105, 2004.

Bloem-Reddy, B. and Teh, Y. W. Probabilistic sym-
metry and invariant neural networks. arXiv preprint
arXiv:1901.06082, 2019.

Bottou, L. Stochastic gradient descent tricks. In Neural net-
works: Tricks of the trade, pp. 421–436. Springer, 2012.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and
Vandergheynst, P. Geometric Deep Learning: Going be-
yond Euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, jul 2017. ISSN 1053-5888. doi: 10.1109/
MSP.2017.2693418. URL http://ieeexplore.
ieee.org/document/7974879/.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In
International Conference on Learning Representations,
2014.
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