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Appendix A: G-estimation
G-estimation applies to structural nested models, which di-
rectly model the counterfactual deviations in outcome from
a reference treatment value (which we take to be A = 0)
conditional on history, assuming all future decisions are
already optimal. Specifically, for each decision point k we
posit a structural nested mean model (SNMM) parameter-
ized by ψ as follows:

γk(Hk,ak;ψ) =

E[Y (āk−1, ak, f
∗
Ak+1

)− Y (āk−1, ak = 0, f∗Ak+1
) | Hk],

where Ak+1 represents all treatments administered from
time k + 1 onwards. In words, γk is the contrast of the
counterfactual mean (conditional on observed history Hk)
where the past decisions are set to their observed values, the
present decision is either ak or a reference decision ak = 0,
and all future decisions are made optimally, f∗Ak+1

.

Note that if the true γk(Hk, ak;ψ) were known, the opti-
mal treatment policies are those that maximize this “blip”
function at each stage: f∗Ak

= arg maxak
γk(Hk, ak;ψ). In

order to estimate ψ using data, let

U(ψ, ζ(ψ), α) =

K∑
k=1

{Gk(ψ)− E [Gk(ψ) | Hk; ζ]}

× {dk(Hk, Ak)− E [dk(Hk, Ak) | Hk;α]} ,
(1)

where dk(Hk, Ak) is any function ofHk andAk andGk(ψ)
is defined as

Y − γk(Hk, ak;ψ) +

K∑
i=k+1

[γi(Hi, a
∗
i ;ψ)− γi(Hi, ai;ψ)] ,

(a∗i is the optimal decision at ith stage). Consistent estima-
tors of ψ can be obtained solving the estimating equations
E[U(ψ, ζ(ψ), α)] = 0, as shown in Robins (2004).

Both of the modifications discussed for Q-learning and
value search must be applied when learning fair optimal
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policies by g-estimation. Specifically, we determine opti-
mal polities not from the SNMM contrast γk(Hk, ak;ψ) =
E[Y (āk−1, ak, f

∗
Ak+1

) − Y (āk−1, ak = 0, f∗Ak+1
) | Hk]

itself, but rather from a modified contrast γ∗k(Hk \
M,ak;ψ) =

∑
m,s γk(Hk, ak;ψ)p∗(M |S,X)p∗(S|X) =

E[Y (āk−1, ak, f
∗
Ak+1

) − Y (āk−1, ak = 0, f∗Ak+1
) | Hk \

{M,S}] which does not use M and S. This is analogous to
removing M and S from the Q-functions defined in Section
4 and is done for the same reason: M,S are drawn from
p(Z), not p∗(Z).

Second, the estimating equations for ψ must use constrained
models (in particular for M and S), and must be empiri-
cally solved using observations only from p∗(Z). As was
done with value search, we solve equation (1) empirically
using a dataset where each row xn, sn,mn is replaced by
I rows of the form xn, s

∗
ni,m

∗
ni, i = 1, . . . , I , with s∗ni

and m∗
ni drawn from p∗(S|xn;αs) and p∗(M |xn, S;αm),

respectively.

Appendix B: Simulation details and
additional results on synthetic data
Here we report the precise parameter settings used in our
simulation studies. The following regression models were
used in our simulation study of the two-stage decision prob-
lem:

X1 ∼ |N (0, 1)|
(X2, X3) ∼ N (0, diag(2))

S ∼ Bernoulli(p = 0.5)

logit(p(M = 1)) ∼ −1 +X1 +X2 +X3 + S

+ 3SX1 + SX2 + SX3

logit(p(A1 = 1)) ∼ 1−X1 +X2 + S +M − SX1 + SX2

+MS − 3MX1 + 0.5MX2

logit(p(Y1 = 1)) ∼ −2 +X1 +X2 + S +M +A

+ SX2 +MS +AS +AM

logit(p(A2 = 1)) ∼ 1−X1 +X2 +M +A+W

+ S(1−X1 +X2 +M −A)

− 3MX1 + 0.5MX2 −AX1 −AX2

Y = 2.5 +X1 +X2 +M +W +B

+ S(1 +X1 +X2 +M +A+W )

+A(1 +M − 2W ) +MW

+B(−X1 + 2X2 −M) +WX1 +N (0, 1)
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Unfair Policy Fair Policy

Q-learning 1.414±0.0056 1.189±0.0059

value search 1.134±0.0245 1.056±0.0299

g-estimation 1.375±0.0099 1.312±0.0102

Table 1. Comparison of population outcomes E[Y ] under policies
learned by different methods. The value under the observed policy
was 0.24±0.006.

For this two-stage setting we estimated the optimal poli-
cies using Q-learning and value search. In value search, we
considered restricted class of polices of the form p(A1 =
1|X,S,M) = −1 + αxX + αsS + αmM + αsxSX +
αsmSM + αmxMX , and p(A2 = 1|X,S,M,A1, Y1) =
−1 + αxX + αsS + αmM + αaA + αy1Y1 + αsxSX +
αsmSM+αmxMX+αasAS+αaxAX where all αs range
from −3 to 3 by 0.5 increments and estimated the value of
policies for each combination of αs using equation (7).

A third method for estimating policies is to directly model
the counterfactual contrasts known as optimal blip-to-zero
functions and then learn these functions by g-estimation
(Robins, 2004); see Appendix A. We implemented our mod-
ified fair g-estimation for a single-stage decision problem
and compared the results with Q-learning and value search.
The results are provided in Table 1. The data generating
process for the single-stage decision problem matches the
causal model shown in Fig. 1(a) whereX,S,M, andAwere
generated the same way as described above. The outcome
Y was generated from a standard normal distribution with
mean−2+X+S+M +A−3SX2 +MS+AS+AM +
AX2 +AX3. We used estimators in Theorem 1 to compute
PSEsy and PSEsa which require using M and S models. In
this synthetic data, the PSEsy was 1.618 (on the mean scale)
and was restricted to lie between −0.1 and 0.1. The PSEsa

was 0.685 (on the odds ratio scale) and was restricted to lie
between 0.95 and 1.05.

Appendix C: Details and additional results on
the COMPAS data experiment
The regression models we used in the COMPAS data analy-
sis were specified as follows:

logit(p(M = 1)) ∼ X1 +X2 + S + SX1 + SX2

logit(p(A = 1)) ∼ X1 +X2 + S +M + SX1

+ SX2 +MS +MX1 +MX2

Y ∼ X1 +X2 + S +M +A+ SX1 + SX2

+AS +AM +MS +MX1 +MX2

+AX1 +AX2

For estimating the PSEs which we constrain, we used the
same IPW estimators described in the main paper and repro-
duced in the theorem below. We constrained the PSEs to lie
between −0.05 and 0.05 and 0.95 and 1.05, respectively.
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Figure 3. Overall incarceration rates for the COMPAS data as a
function of the utility parameter θ.

In Fig. 3, we compare the overall incarceration rates rec-
ommended by the optimal fair and unconstrained policies
on the COMPAS data, as a function of the utility param-
eter θ. For low values of θ the incarceration rate is zero,
and becomes higher as θ increases, but differentially for
the fair and unconstrained optimal policies. The difference
between the policies depends crucially on the utility func-
tion. For some values of the utility parameter, the unfair and
fair policies coincide, but for other values we would expect
significantly different overall incarceration rates as well as
different disparities between racial groups (see result in the
main paper).

In Fig. 4, we show the relative utility achieved by the op-
timal fair and unconstrained policies, as well as the utility
of the observed decision pattern, as a function of θ. As
expected, choosing an optimal policy improves on the ob-
served policy, with the unfair (unconstrained) choice being
higher utility than the fair (constrained) choice; we sacrifice
some optimality to satisfy the fairness constraints. However,
the difference depends on the utility parameter and for a
range of parameter values the fair and unfair policies are
nearly the same in terms of optimality (even when they may
disagree on the resulting incarceration rate, around θ = 2.6).
The fair and unfair policies drift far apart in terms of utility
around θ = 3, when the policies recommend an incarcer-
ation rate comparable to or higher than the observed rate.
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Figure 4. The relative utility of policies for the COMPAS data as a
function of the utility parameter θ.

Appendix D: Proofs
Theorem 1 Assume S is binary. Under the causal model
above, the following are consistent estimators of PSEsy and
PSEsak , assuming all models are correctly specified:

ĝsy(Z) = (2)

1

N

N∑
n=1

{ I(Sn = s)

p(Sn|Xn)

p(Mn|s′, Xn)

p(Mn|s,Xn)
− I(Sn = s′)

p(Sn|Xn)

}
Yn

ĝsak (Z) = (3)

1

N

N∑
n=1

{ I(Sn = s)

p(Sn|Xn)

p(Mn|s′, Xn)

p(Mn|s,Xn)
− I(Sn = s′)

p(Sn|Xn)

}
Akn

Proof: The latent projection (Verma and Pearl, 1990) of
any K stage DAG onto X,S,M,A, Y suffices to identify
and estimate the two path-specific effects in question, and
this latent projection is the complete DAG with topological
ordering X,S,M,A, Y . The consistency of the estimators
above then follows directly from derivations in (Tchetgen
Tchetgen and Shpitser, 2014). As an example, we have the
following derivation for the first term of gsy(Z):∑
X,M

E [Y |s,M,X] p(M |s′, X)p(X)

=
∑

X,M,A,Y

Y p(Y |s,M,A,X)p(A|s,M,X)p(M |s′, X)p(X)

=
∑

X,S,M,A,Y

I(S = s)p(M |s′, X)

p(S|X)p(M |s,X)
Y dp(Y, S,M,A,X)

= E
[
I(S = s)p(M |s′, X)

p(S|X)p(M |s,X)
Y

]

which is precisely the identifying functional for the first term
of the PSE we are interested in. That the above estimator is
consistent for this functional is a standard result. �

Theorem 2 Consider the K-stage decision problem de-
scribed by the DAG in Fig 1c. Let p∗(M |S,X;αm) and

p∗(S|X;αs) be the constrained models chosen to satisfy
PSEsy = 0 and PSEsak = 0. Let p̃(Z) be the joint distri-
bution induced by p∗(M |S,X;αm) and p∗(S|X;αs), and
where all other distributions in the factorization are unre-
stricted. That is,

p̃(Z) ≡ p(X)p∗(S|X;αs)p∗(M |S,X;αm)

×
K∏

k=1

p(Ak|Hk)p(Yk|Ak, Hk).

Then the functionals PSEsy and PSEsak taken w.r.t. p̃(Z)
are also zero.

Proof: Let Y ≡ YK . Because M preceeds all Ak, Yk for
k = 1, . . .K, it suffices to consider the latent projection
with only variables X,S,M,A, Y without affecting identi-
fiability considerations. Then we have the following:

P̃SE
sy

= Ẽ[Y (s,M(s′))]− Ẽ[Y (s′)]

=
∑
X,M

{Ẽ[Y |s,M,X]− Ẽ[Y |s′,M,X]}p∗(M |s′, X;αm)p(X)

=
∑
X,M

{E[Y |s,M,X]− E[Y |s′,M,X]}p∗(M |s′, X;αm)p(X)

=
∑

X,M,Y

Y {p(Y |s,M,X)− p(Y |s′,M,X)}p∗(M |s′, X;αm)p(X)

=
∑

X,S,M,Y

Y
{ I(S = s)

p∗(S|X;αs)

p∗(M |s′, X;αm)

p∗(M |s,X;αm)
− I(S = s′)

p∗(S|X;αs)

}
× p(Y |M,S,X)p∗(M |S,X;αm)p∗(S|X;αs)p(X)

= 0

by choice of p∗(M |S,X;αm) and p∗(S|X;αs). The proof
is structurally the same for P̃SE

sak

. �

Appendix E: Modified results with multiple
sets of mediators
In the main paper, we discussed aK-stage decision problem
with one set of permissible mediators, M . Here, we extend
those results to the setting where we have multiple sets of
mediators M1, . . . ,MK , i.e., a DAG with topological order-
ing X,S,M1, A1, Y1, . . . ,MK , AK , YK . In this case, we
consider the following paths impermissible: PSEsy, repre-
senting the effect of S on Y along all paths other than the
paths of the form S →Mk → . . .→ Y (∀k); and PSEsak ,
representing the effect of S on Ak along all paths other than
the paths of the form S →Mj → . . .→ Ak (∀j ≤ k). That
is, we consider only pathways connecting S and Ak or Y
through the allowed mediators M1, . . . ,MK to be fair. In
this case, the PSEs are identified by a modification of the
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previous formula given in Section 3.2.

PSEsy = E[Y (s,M1(s′), . . . ,MK(s′))]− E[Y (s′)]

=
∑

x,mK ,aK−1,yK−1,

{E[Y |s,MK , AK−1, Y K−1, X]

− E[Y |s′,MK , AK−1, Y K−1, X]}
K∏

k=1

p(Mk|s′, Ak−1, Y k−1, X)

×
K−1∏
k=1

p(Ak|s,Mk, Ak−1, Y k, X)p(Yk|s,Mk, Ak, Y k−1, X)p(X)

PSEsak = E[Ak(s,M1(s′), . . . ,MK(s′))]− E[Ak(s′)]

=
∑

x,mk,ak−1,yk−1,

{E[Ak|s,Mk, Ak−1, Y k−1, X]

− E[Ak|s′,Mk, Ak−1, Y k−1, X]}
K∏

k=1

p(Mk|s′, Ak−1, Y k−1, X)

×
k−1∏
j=1

p(Aj |s,M j , Aj−1, Y j , X)p(Yj |s,M j , Aj , Y j−1, X)p(X)

With these definitions, we can replace the estimators in
Theorem 1 with:

ĝsy(Z) =

1

N

N∑
n=1

{ I(Sn = s)

p(Sn|Xn)

K∏
k=1

p(Mk,n|s′, Ak−1,n, Y k−1,n, Xn)

p(Mk,n|s,Ak−1,n, Y k−1,n, Xn)

− I(Sn = s′)

p(Sn|Xn)

}
Yn

ĝsak (Z) =

1

N

N∑
n=1

{ I(Sn = s)

p(Sn|Xn)

K∏
k=1

p(Mk,n|s′, Ak−1,n, Y k−1,n, Xn)

p(Mk,n|s,Ak−1,n, Y k−1,n, Xn)

− I(Sn = s′)

p(Sn|Xn)

}
Akn

Then, in Theorem 2 we analogously define p̃(Z) as follows:

p̃(Z) ≡ p(X)p∗(S|X;αs)

K∏
k=1

{
p∗(Mk|S,Ak−1, Y k−1, X;αm)

× p(Ak|Hk)p(Yk|Ak, Hk)
}
.

In this case we constrain the S and Mk models ∀k, the rest
of the procedure remaining the same. Aside from the form
of the identifying functional, the proofs of modified versions
of Theorem 1 and Theorem 2 are analogous.
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