
A Wrapped Normal Distribution on Hyperbolic Space
for Gradient-Based Learning

Yoshihiro Nagano 1 Shoichiro Yamaguchi 2 Yasuhiro Fujita 2 Masanori Koyama 2

Abstract

Hyperbolic space is a geometry that is known
to be well-suited for representation learning of
data with an underlying hierarchical structure. In
this paper, we present a novel hyperbolic distri-
bution called hyperbolic wrapped distribution, a
wrapped normal distribution on hyperbolic space
whose density can be evaluated analytically and
differentiated with respect to the parameters. Our
distribution enables the gradient-based learning
of the probabilistic models on hyperbolic space
that could never have been considered before.
Also, we can sample from this hyperbolic prob-
ability distribution without resorting to auxiliary
means like rejection sampling. As applications of
our distribution, we develop a hyperbolic-analog
of variational autoencoder and a method of prob-
abilistic word embedding on hyperbolic space.
We demonstrate the efficacy of our distribution
on various datasets including MNIST, Atari 2600
Breakout, and WordNet.

1. Introduction
Recently, hyperbolic geometry is drawing attention as a
powerful geometry to assist deep networks in capturing
fundamental structural properties of data such as a hi-
erarchy. Hyperbolic attention network (Gülçehre et al.,
2019) improved the generalization performance of neural
networks on various tasks including machine translation
by imposing the hyperbolic geometry on several parts of
neural networks. Poincaré embeddings (Nickel & Kiela,
2017) succeeded in learning a parsimonious representation
of symbolic data by embedding the dataset into Poincaré
balls.

1Department of Complexity Science and Engineering, The
University of Tokyo, Japan 2Preferred Networks, Inc., Japan.
Correspondence to: Yoshihiro Nagano <nagano@mns.k.u-
tokyo.ac.jp>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

(a) A tree representation of the
training dataset

!!!!!!"

!!!!!"" !!!!"!"

!!!"!"" !!"!!"" !"!!"!" "!!!"!"

!!"!"!"

"!!""!!
"!!!""!

(b) Vanilla VAE (β = 1.0) (c) Hyperbolic VAE

Figure 1: The visual results of Hyperbolic VAE applied to
an artificial dataset generated by applying random pertur-
bations to a binary tree. The visualization is being done
on the Poincaré ball. The red points are the embeddings
of the original tree, and the blue points are the embeddings
of noisy observations generated from the tree. The pink
× represents the origin of the hyperbolic space. The VAE
was trained without the prior knowledge of the tree struc-
ture. Please see 6.1 for experimental details

In the task of data embedding, the choice of the target space
determines the properties of the dataset that can be learned
from the embedding. For the dataset with a hierarchical
structure, in particular, the number of relevant features can
grow exponentially with the depth of the hierarchy. Eu-
clidean space is often inadequate for capturing the struc-
tural information (Figure 1). If the choice of the target
space of the embedding is limited to Euclidean space, one
might have to prepare extremely high dimensional space as
the target space to guarantee small distortion. However, the
same embedding can be done remarkably well if the desti-
nation is hyperbolic space (Sarkar, 2012; Sala et al., 2018).

A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

Now, the next natural question is; “how can we extend these
works to probabilistic inference problems on hyperbolic
space?” When we know in advance that there is a hier-
archical structure in the dataset, a prior distribution on hy-
perbolic space might serve as a good informative prior. We
might also want to make Bayesian inference on a dataset
with hierarchical structure by training a variational autoen-
coder (VAE) (Kingma & Welling, 2014; Rezende et al.,
2014) with latent variables defined on hyperbolic space.
We might also want to conduct probabilistic word embed-
ding into hyperbolic space while taking into account the
uncertainty that arises from the underlying hierarchical re-
lationship among words. Finally, it would be best if we can
compare different probabilistic models on hyperbolic space
based on popular statistical measures like divergence that
requires the explicit form of the probability density func-
tion.

The endeavors we mentioned in the previous paragraph all
require probability distributions on hyperbolic space that
admit a parametrization of the density function that can be
computed analytically and differentiated with respect to
the parameter. Also, we want to be able to sample from the
distribution efficiently; that is, we do not want to resort to
auxiliary methods like rejection sampling.

In this study, we present a novel hyperbolic distribution
called hyperbolic wrapped distribution, a wrapped nor-
mal distribution on hyperbolic space that resolves all these
problems. We construct this distribution by defining Gaus-
sian distribution on the tangent space at the origin of the hy-
perbolic space and projecting the distribution onto hyper-
bolic space after transporting the tangent space to a desired
location in the space. This operation can be formalized by
a combination of the parallel transport and the exponential
map for the Lorentz model of hyperbolic space.

We can use our hyperbolic wrapped distribution to con-
struct a probabilistic model on hyperbolic space that can
be trained with gradient-based learning. For example, our
distribution can be used as a prior of a VAE (Figure 1,
Figure 6). It is also possible to extend the existing prob-
abilistic embedding method to hyperbolic space using our
distribution, such as probabilistic word embedding. We
will demonstrate the utility of our method through the ex-
periments of probabilistic hyperbolic models on bench-
mark datasets including MNIST, Atari 2600 Breakout, and
WordNet.

2. Background
2.1. Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry with
a constant negative Gaussian curvature, and it can be vi-
sualized as the forward sheet of the two-sheeted hyper-

boloid. There are four common equivalent models used
for the hyperbolic geometry: the Klein model, Poincaré
disk model, and Lorentz (hyperboloid/Minkowski) model,
and Poincaré half-plane model. Many applications of hy-
perbolic space to machine learning to date have adopted
the Poincaré disk model as the subject of study (Nickel &
Kiela, 2017; Ganea et al., 2018a;b; Sala et al., 2018). In
this study, however, we will use the Lorentz model that, as
claimed in Nickel & Kiela (2018), comes with a simpler
closed form of the geodesics and does not suffer from the
numerical instabilities in approximating the distance. We
will also exploit the fact that both exponential map and par-
allel transportation have a clean closed form in the Lorentz
model.

Lorentz model Hn (Figure 2(a)) can be represented as a set
of points z ∈ Rn+1 with z0 > 0 such that its Lorentzian
product (negative Minkowski bilinear form)

⟨z; z0⟩L = −z0z0
0 +

nX
i=1

ziz
0
i;

with itself is −1. That is,

Hn =
�

z ∈ Rn+1 : ⟨z; z⟩L = −1; z0 > 0
	

: (1)

Lorentzian inner product also functions as the metric tensor
on hyperbolic space. We will refer to the one-hot vector
�0 = [1; 0; 0; :::0] ∈ Hn ⊂ Rn+1 as the origin of the
hyperbolic space. Also, the distance between two points
z; z0 on Hn is given by d‘(z; z0) = arccosh (−⟨z; z0⟩L),
which is also the length of the geodesic that connects z and
z0.

2.2. Parallel Transport and Exponential Map

The rough explanation of our strategy for the construction
of hyperbolic wrapped distribution G(�; �) with � ∈ Hn

and a positive positive definite matrix � is as follows. We
(1) sample a vector from N (0; �), (2) transport the vector
from �0 to � along the geodesic, and (3) project the vector
onto the surface. To formalize this sequence of operations,
we need to define the tangent space on hyperbolic space
as well as the way to transport the tangent space and the
way to project a vector in the tangent space to the surface.
The transportation of the tangent vector requires parallel
transport, and the projection of the tangent vector to the
surface requires the definition of exponential map.

Tangent space of hyperbolic space

Let us use T�Hn to denote the tangent space of Hn at �
(Figure 2(a)). Representing T�Hn as a set of vectors in
the same ambient space Rn+1 into which Hn is embed-
ded, T�Hn can be characterized as the set of points satisfy-
ing the orthogonality relation with respect to the Lorentzian

A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

(a) (b)

!"#"$$%$&'#"()*+#,

(c)

!"#$%&%'()*+,)#

Figure 2: (a) One-dimensional Lorentz model H1 (red) and its tangent space T�H1 (blue). (b) Parallel transport carries
v ∈ T�0

(green) to u ∈ T� (blue) while preserving ∥ · ∥L . (c) Exponential map projects the u ∈ T� (blue) to z ∈ Hn

(red). The distance between � and exp�(u) which is measured on the surface of Hn coincides with ∥u∥L.

product:

T�Hn := {u : ⟨u; �⟩L = 0}: (2)

T�Hn set can be literally thought of as the tangent space of
the forward hyperboloid sheet at �. Note that T�0

Hn con-
sists of v ∈ Rn+1 with v0 = 0, and ∥v∥L :=

p
⟨v; v⟩L =

∥v∥2.

Parallel transport and inverse parallel transport
Next, for an arbitrary pair of point �; � ∈ Hn, the par-
allel transport from � to � is defined as a map PT�!�

from T�Hn to T�Hn that carries a vector in T�Hn

along the geodesic from � to � in a parallel manner
without changing its metric tensor. In other words, if
PT is the parallel transport on hyperbolic space, then
⟨PT�!�(v); PT�!�(v0)⟩L = ⟨v; v0⟩L.

The explicit formula for the parallel transport on the
Lorentz model (Figure 2(b)) is given by:

PT�!�(v) = v +
⟨� − ��; v⟩L

� + 1
(� + �); (3)

where � = −⟨�; �⟩L. The inverse parallel transport
PT�1

�!� simply carries the vector in T�Hn back to T�Hn

along the geodesic. That is,

v = PT�1
�!�(u) = PT�!�(u): (4)

Exponential map and inverse exponential map
Finally, we will describe a function that maps a vector in a
tangent space to its surface.

According to the basic theory of differential geometry, ev-
ery u ∈ T�Hn determines a unique maximal geodesic
� : [0; 1] → Hn with �(0) = � and _�(0) = u. Ex-
ponential map exp� : T�Hn → Hn is a map defined by
exp�(u) = �(1), and we can use this map to project a

vector v in T�Hn onto Hn in a way that the distance from
� to destination of the map coincides with ∥v∥L, the met-
ric norm of v. For hyperbolic space, this map (Figure 2(c))
is given by

z = exp�(u) = cosh (∥u∥L)�+sinh (∥u∥L)
u

∥u∥L
: (5)

As we can confirm with straightforward computation, this
exponential map is norm preserving in the sense that
d‘(�; exp�(u)) = arccosh

�
−⟨�; exp�(u)⟩L

�
= ∥u∥L.

Now, in order to evaluate the density of a point on hyper-
bolic space, we need to be able to map the point back to the
tangent space, on which the distribution is initially defined.
We, therefore, need to be able to compute the inverse of
the exponential map, which is also called logarithm map,
as well.

Solving eq. (5) for u, we can obtain the inverse exponential
map as

u = exp�1
� (z) =

arccosh(�)√
�2 − 1

(z − ��); (6)

where � = −⟨�; z⟩L. See Appendix A.1 and A.2 for fur-
ther details.

3. Hyperbolic Wrapped Distribution
3.1. Construction

Finally, we are ready to provide the construction of our hy-
perbolic wrapped distribution G(�; �) on hyperbolic space
with � ∈ Hn and positive definite � (Figure 3).

In the language of the differential geometry, our strategy
can be re-described as follows:

1. Sample a vector ~v from the Gaussian distribution
N (0; �) defined over Rn.

A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

Algorithm 1 Sampling on hyperbolic space

Input: parameter � ∈ Hn, �
Output: z ∈ Hn

Require: �0 = (1; 0; · · · ; 0)> ∈ Hn

Sample ~v ∼ N (0; �) ∈ Rn

v = [0; ~v] ∈ T�0
Hn

Move v to u = PT�0!�(v) ∈ T�Hn by eq. (3)
Map u to z = exp�(u) ∈ Hn by eq. (5)

2. Interpret ~v as an element of T�0
Hn ⊂ Rn+1 by

rewriting ~v as v = [0; ~v].

3. Parallel transport the vector v to u ∈ T�Hn ⊂ Rn+1

along the geodesic from �0 to �.

4. Map u to Hn by exp�.

Algorithm 1 is an algorithmic description of the sampling
procedure based on our construction.

3.2. Probability Density Function

Note that both PT�0!� and exp� are differentiable func-
tions that can be evaluated analytically. Thus, by the con-
struction of G(�; �), we can compute the probability den-
sity of G(�; �) at z ∈ Hn using a composition of dif-
ferentiable functions, PT�0!� and exp�. Let proj� :=
exp� ◦PT�0!�.

In general, if X is a random variable endowed with the
probability density function p(x), the log likelihood of
Y = f(X) at y can be expressed as

log p(y) = log p(x) − log det

�
@f

@x

�
where f is a invertible and continuous map. Thus,
all we need in order to evaluate the probability density
of G(�; �) at z = proj�(v) is the way to evaluate
det

�
@ proj�(v)=@v

�
:

log p(z) = log p(v) − log det

�
@ proj�(v)

@v

�
: (7)

Algorithm 2 is an algorithmic description for the computa-
tion of the pdf.

For the implementation of algorithm 1 and algorithm 2,
we would need to be able to evaluate not only exp�(u),
PT�0!�(v) and their inverses, but also need to evaluate
the determinant. We provide an analytic solution to each
one of them below.

Log-determinant
For the evaluation of (7), we need to compute the log de-
terminant of the projection function that maps a vector in
the tangent space T�0(Hn) at origin to the tangent space
T�(Hn) at an arbitrary point � in the hyperbolic space.

Algorithm 2 Calculate log-pdf

Input: sample z ∈ Hn, parameter � ∈ Hn, �
Output: log p(z)
Require: �0 = (1; 0; · · · ; 0)> ∈ Hn

Map z to u = exp�1
� (z) ∈ T�Hn by eq. (6)

Move u to v = PT�1
�0!�(u) ∈ T�0

Hn by eq. (4)
Calculate log p(z) by eq. (7)

Appealing to the chain-rule and the property of determi-
nant, we can decompose the expression into two compo-
nents:

det

�
@ proj�(v)

@v

�
= det

�
@ exp�(u)

@u

�
· det

�
@ PT�0!�(v)

@v

�
: (8)

We evaluate each piece one by one. First, let us recall
that @ exp�(u)=@u is a map that sends an element in
Tu(T�(Hn)) = T�(Hn) to an element in Tv(Hn), where
v = exp�(u). We have a freedom in choosing a basis
to evaluate the determinant of this expression. For conve-
nience, let us choose an orthonormal basis of T�(Hn) that
contains �u = u=∥u∥L:

{�u; u0
1; u0

2; ::::u0
n�1}

Now, computing the directional derivative of exp� with re-
spect to each basis element, we get

d exp�(�u) = sinh(r)� + cosh(r)�u; (9)

d exp�(u0
k) =

sinh r

r
u0

k; (10)

where r = ∥u∥L. Because the directional derivative in the
direction of �u has magnitude 1 and because each compo-
nents are orthogonal to each other, the norm of the direc-
tional derivative is given by

det

�
@ exp�(u)

@u

�
=

�
sinh r

r

�n�1

; (11)

which yields the value of the desired determinant. Let us
next compute the determinant of the derivative of parallel
transport. Evaluating the determinant with an orthogonal
basis of Tv(T�0

(Hn)), we get

d PT�0!�(�) = PT�0!�(�):

Because parallel transport is itself a norm preserving map,
this means that det(@ PT�0!�(v)=@v) = 1.

All together, we get

det

�
@ proj�(v)

@v

�
=

�
sinh r

r

�n�1

:

A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

(a)

(b)

Figure 3: The heatmaps of log-likelihood of the hyperbolic
wrapped distribution with various � and �. We designate
the origin of hyperbolic space by the × mark. See Ap-
pendix B for further details.

We will provide the details of the computation in Appendix
A.3. and A.4. The whole evaluation of the log determinant
can be computed in O(n). Figure 3 shows example densi-
ties on H2.

Since the metric at the tangent space coincides with the
Euclidean metric, we can produce various types of distri-
butions on hyperbolic space by applying our construction
strategy to other distributions defined on Euclidean space,
such as Laplace and Cauchy distribution.

4. Applications of G(�,Σ)

4.1. Hyperbolic Variational Autoencoder

As an application of hyperbolic wrapped distribution
G(�; �), we will introduce hyperbolic variational autoen-
coder (Hyperbolic VAE), a variant of the variational au-
toencoder (VAE) (Kingma & Welling, 2014; Rezende et al.,
2014) in which the latent variables are defined on hyper-
bolic space. Given dataset D = {x(i)}N

i=1, the method
of variational autoencoder aims to train a decoder model
p�(x|z) that can create from p�(z) a dataset that resembles
D. The decoder model is trained together with the encoder
model q�(z|x) by maximizing the sum of evidence lower

bound (ELBO) that is defined for each x(i);

log p�(x(i)) ≥ L(�; �; x(i)) =

Eqϕ(zjx(i))

h
log p�(x(i)|z)

i
− DKL(q�(z|x(i))||p�(z));

(12)

where q�(z|x(i)) is the variational posterior distribution.
In classic VAE, the choice of the prior p� is the standard
normal, and the posterior distribution is also variationally
approximated by a Gaussian. Hyperbolic VAE is a simple
modification of the classic VAE in which p� = G(�0; I)
and q� = G(�; �). The model of � and � is often referred
to as encoder. This parametric formulation of q� is called
reparametrization trick, and it enables the evaluation of the
gradient of the objective function with respect to the net-
work parameters. To compare our method against, we used
�-VAE (Higgins et al., 2017), a variant of VAE that applies
a scalar weight � to the KL term in the objective function.

In Hyperbolic VAE, we assure that output � of the encoder
is in ∈ Hn by applying exp�0

to the final layer of the en-
coder. That is, if h is the output, we can simply use

� = exp�0
(h) =

�
cosh(∥h∥2); sinh(∥h∥2) h

khk2

�>
:

As stated in the previous sections, our distribution G(�; �)
allows us to evaluate the ELBO exactly and to take the gra-
dient of the objective function. In a way, our distribution
of the variational posterior is an hyperbolic-analog of the
reparametrization trick.

4.2. Word Embedding

We can use our hyperbolic wrapped distribution G for prob-
abilistic word embedding. The work of Vilnis & McCal-
lum (2015) attempted to extract the linguistic and contex-
tual properties of words in a dictionary by embedding every
word and every context to a Gaussian distribution defined
on Euclidean space. We may extend their work by chang-
ing the destination of the map to the family of G. Let us
write a ∼ b to convey that there is a link between words
a and b, and let us use qs to designate the distribution to
be assigned to the word s. The objective function used in
Vilnis & McCallum (2015) is given by

L(�) = E(s�t;s6�t′)[max (0; m + E(s; t) − E(s; t0))];

where E(s; t) represents the measure of similarity between
s and t evaluated with DKL(qs∥qt). In the original work, qs

and qt were chosen to be a Gaussian distribution. We can
incorporate hyperbolic geometry into this idea by choosing
qs = G(�(s); �(s)).

A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

5. Related Work
The construction of hyperbolic distribution based on pro-
jection is not entirely new on its own. For example, CCM-
AAE (Grattarola et al., 2018) uses a prior distribution on
hyperbolic space centered at origin by projecting a distri-
bution constructed on the tangent space. Wrapped normal
distribution (on sphere) also is a creation of similar phi-
losophy. Still yet, as mentioned in the introduction, most
studies to date that use hyperbolic space consider only de-
terministic mappings (Nickel & Kiela, 2017; 2018; Ganea
et al., 2018a;b; Gülçehre et al., 2019).

Very recently, Ovinnikov (2019) and Mathieu et al. (2019)
proposed an extension of Gaussian distribution on Poincaré
ball model and its application to VAEs. Ovinnikov (2019)
used Wasserstein Maximum Mean Discrepancy (Gretton
et al., 2012), and Mathieu et al. (2019) used Monte Carlo
approximation of ELBO for training their models. By con-
struction, however, their method can only create isotropic
distribution on Riemannian manifold and they also have to
use rejection sampling in their method. Meanwhile, our
method can wrap N (�; �) onto Hn for arbitrary choice of
�, and we do not have to use rejection sampling. Our dis-
tribution G(�; �) can be defined for any � in Hn and any
positive definite matrix � ∈ Rn�n

+ .

For word embedding, several deterministic methods have
been proposed to date, including the celebrated Word2Vec
(Mikolov et al., 2013). The aforementioned Nickel & Kiela
(2017) uses deterministic hyperbolic embedding to exploit
the hierarchical relationships among words. The proba-
bilistic word embedding was first proposed by Vilnis &
McCallum (2015). As stated in the method section, their
method maps each word to a Gaussian distribution on Eu-
clidean space. Their work suggests the importance of in-
vestigating the uncertainty of word embedding. In the field
of representation learning of word vectors, our work is the
first in using hyperbolic probability distribution for word
embedding.

On the other hand, the idea to use a noninformative, non-
Gaussian prior in VAE is not new. For example, Davidson
et al. (2018) proposes the use of von Mises-Fisher prior,
and Rolfe (2017); Jang et al. (2017) use discrete distribu-
tions as their prior. With the method of Normalizing flow
(Rezende & Mohamed, 2015), one can construct even more
complex priors as well (Kingma et al., 2016). The appropri-
ate choice of the prior shall depend on the type of dataset.
As we will show in the experiment section, our distribution
is well suited to the dataset with underlying tree structures.
Another choice of the VAE prior that specializes in such
dataset has been proposed by Vikram et al. (2018)．For the
sampling, they use time-marginalized coalescent, a model
that samples a random tree structure by a stochastic pro-
cess. Theoretically, their method can be used in combina-

Model Correlation Correlation w/ noise

V
an

ill
a

� = 0:1 0:665�:006 0:470�:018

� = 1:0 0:644�:007 0:550�:012

� = 2:0 0:644�:011 0:537�:012

� = 3:0 0:638�:004 0:501�:044

� = 4:0 0:217�:143 0:002�:042

Hyperbolic 0:768�:003 0:590�:018

Table 1: Results of tree embedding experiments for the
Hyperbolic VAE and Vanilla VAEs trained with different
weight constants for the KL term. We calculated the mean
and the ±1 SD with five different experiments.

tion with our approach by replacing their Gaussian random
walk with a hyperbolic random walk.

6. Experiments
6.1. Synthetic Binary Tree

We trained Hyperbolic VAE for an artificial dataset con-
structed from a binary tree of depth d = 8. To construct the
dataset, we first obtained a binary representation for each
node in the tree so that the Hamming distance between any
pair of nodes is the same as the distance on the graph rep-
resentation of the tree (Figure 1(a)). Let us call the set of
binaries obtained this way by A0. We then generated a set
of binaries, A, by randomly flipping each coordinate value
of A0 with probability � = 0:1. The binary set A was then
embedded into Rd by mapping a1a2:::ad to [a1; a2; :::; ad].
We used an Multi Layer Parceptron (MLP) of depth 3 and
100 hidden variables at each layer for both encoder and de-
coder. For activation function we used tanh.

Table 1 summarizes the quantitative comparison of Vanilla
VAE against our Hyperbolic VAE. For each pair of points
in the tree, we computed their Hamming distance as well
as their distance in the latent space of VAE. That is, we
used hyperbolic distance for Hyperbolic VAE, and used Eu-
clidean distance for Vanilla VAE. We used the strength of
correlation between the Hamming distances and the dis-
tances in the latent space as a measure of performance.
Hyperbolic VAE was performing better both on the orig-
inal tree and on the artificial dataset generated from the
tree. Vanilla VAE performed the best with � = 2:0, and
collapsed with � = 3:0. The difference between Vanilla
VAE and Hyperbolic VAE can be observed with much more
clarity using the 2-dimensional visualization of the gener-
ated dataset on Poincaré Ball (See Figure 1 and Appendix
C.1). The red points are the embeddings of A0, and the blue
points are the embeddings of all other points in A. The pink
× mark designates the origin of hyperbolic space. For the
visualization, we used the canonical diffeomorphism be-
tween the Lorenz model and the Poincaré ball model.

A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

n Vanilla VAE Hyperbolic VAE

2 −140:45�:47 −138:61�0:45

5 −105:78�:51 −105:38�0:61

10 −86:25�:52 −86:40�0:28

20 −77:89�:36 −79:23�0:20

Table 2: Quantitative comparison of Hyperbolic VAE
against Vanilla VAE on the MNIST dataset in terms of log-
likelihood (LL) for several values of latent space dimension
n. LL was computed using 500 samples of latent variables.
We calculated the mean and the ±1 SD with five different
experiments.

(a) (b)

Figure 4: (a) Samples generated from the Hyperbolic VAE
trained on MNIST with latent dimension n = 5. (b): In-
terpolation of the MNIST dataset produced by the Hyper-
bolic VAE with latent dimension n = 2, represented on the
Poincaré ball.

6.2. MNIST

We applied Hyperbolic VAE to a binarized version of
MNIST. We used an MLP of depth 3 and 500 hidden units
at each layer for both the encoder and the decoder. Table
2 shows the quantitative results of the experiments. Log-
likelihood was approximated with an empirical integration
of the Bayesian predictor with respect to the latent variables
(Burda et al., 2016). Our method outperformed Vanilla
VAE with small latent dimension. We also evaluated our
method in terms of ELBO. Please see Appendix C.2 for fur-
ther results. Figure 4(a) are the samples of the Hyperbolic
VAE that was trained with 5-dimensional latent variables,
and Figure 4(b) are the Poincaré Ball representations of the
interpolations produced on H2 by the Hyperbolic VAE that
was trained with 2-dimensional latent variables.

6.3. Atari 2600 Breakout

In reinforcement learning, the number of possible state-
action trajectories grows exponentially with the time hori-
zon. We may say that these trajectories often have a tree-
like hierarchical structure that starts from the initial states.
We applied our Hyperbolic VAE to a set of trajectories that

were explored by a trained policy during multiple episodes
of Breakout in Atari 2600. To collect the trajectories, we
used a pretrained Deep Q-Network (Mnih et al., 2015), and
used epsilon-greegy with � = 0:1. We amassed a set of tra-
jectories whose total length is 100,000, of which we used
80,000 as the training set, 10,000 as the validation set, and
10,000 as the test set. Each frame in the dataset was gray-
scaled and resized to 80 × 80. The images in the Figure 5
are samples from the dataset. We used a DCGAN-based
architecture (Radford et al., 2016) with latent space dimen-
sion n = 20. Please see Appendix D for more details.

Figure 5: Examples of the observed screens in Atari 2600
Breakout.

The Figure 6 is a visualization of our results. The top three
rows are the samples from Vanilla VAE, and the bottom
three rows are the samples from Hyperbolic VAE. Each row
consists of samples generated from latent variables of the
form a~v=∥~v∥2 with positive scalar a in range [1; 10]. Sam-
ples in each row are listed in increasing order of a. For
Vanilla VAE, we used N (0; I) as the prior. For Hyperbolic
VAE, we used G(�0; I) as the prior. We can see that the
number of blocks decreases gradually and consistently in
each row for Hyperbolic VAE. Please see Appendix C.3
for more details and more visualizations.

In Breakout, the number of blocks is always finite, and
blocks are located only in a specific region. Let’s refer
to this specific region as R. In order to evaluate each
model-output based on the number of blocks, we binarized
each pixel in each output based on a prescribed luminance
threshold and measured the proportion of the pixels with
pixel value 1 in the region R. For each generated image, we
used this proportion as the measure of the number blocks
contained in the image.

Figure 7 shows the estimated proportions of remaining
blocks for Vanilla and Hyperbolic VAEs with different
norm of ~v. For Vanilla VAE, samples generated from ~v
with its norm as large as ∥~v∥2 = 200 contained consid-
erable amount of blocks. On the other hand, the number
of blocks contained in a sample generated by Hyperbolic
VAE decreased more consistently with the norm of ∥~v∥2.
This fact suggests that the cumulative reward up to a given
state can be approximated well by the norm of Hyperbolic
VAE’s latent representation. To validate this, we computed
latent representation for each state in the test set and mea-
sured its correlation with the cumulative reward. The cor-

	Introduction
	Background
	Hyperbolic Geometry
	Parallel Transport and Exponential Map

	Hyperbolic Wrapped Distribution
	Construction
	Probability Density Function

	Applications of G(*,)
	Hyperbolic Variational Autoencoder
	Word Embedding

	Related Work
	Experiments
	Synthetic Binary Tree
	MNIST
	Atari 2600 Breakout
	Word Embeddings

	Conclusion

