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Abstract
We consider the problem of the optimization
of bidding strategies in prior-dependent revenue-
maximizing auctions, when the seller fixes the
reserve prices based on the bid distributions. Our
study is done in the setting where one bidder
is strategic. Using a variational approach, we
study the complexity of the original objective and
we introduce a relaxation of the objective func-
tional in order to use gradient descent methods.
Our approach is simple, general and can be ap-
plied to various value distributions and revenue-
maximizing mechanisms. The new strategies we
derive yield massive uplifts compared to the tradi-
tional truthfully bidding strategy.

1. Introduction
Modern marketplaces like Uber, Amazon or Ebay enable
sellers to fine-tune their selling mechanism by reusing their
large number of past interactions with consumers. In the
online advertising or the electricity markets, billions of auc-
tions are occurring everyday between the same bidders and
sellers. Based on the data gathered, different approaches
learn complex mechanisms maximizing the seller revenue
(Conitzer and Sandholm, 2002; Ostrovsky and Schwarz,
2011; Paes Leme et al., 2016; Golrezaei et al., 2017).

Most of the literature has focused on the auctioneer side
(Milgrom and Tadelis, 2018). Algorithms focused on the
bidder’s standpoint to enable them to be strategic against any
smart data-driven selling mechanisms are lacking. These
algorithms should ideally strengthen the balance of power
driving the relationship between buyers and sellers. Our
main objective is to exhibit simple robust algorithmic proce-
dures that take advantage of various data-dependent revenue-
maximizing mechanisms. This represents a big step forward
in understanding possible strategic behaviors in revenue
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maximizing auctions. This is a new argument support-
ing the Wilson doctrine (Wilson, 1987) claiming that data-
dependent revenue maximizing algorithms are not robust to
strategic bidders.

1.1. Framework

In the early stage of the market design literature (see, e.g.,
Myerson (1981)), a typical underlying assumption is that
the bidders’ value distributions were commonly known to
the seller and other bidders. This can be justified if differ-
ent group of bidders with the same value distribution are
interacting successively with one seller. In the aforemen-
tioned modern applications, the same bidders have billions
of interactions everyday with the seller. Even if the latter
does not know the value distribution beforehand, it might
use in many cases the past bid distributions as proxies of
value distribution.

Several mechanisms based on the value distribution of bid-
ders have already been introduced. We will focus on the
lazy second price auction with personalized reserve price
(Paes Leme et al., 2016), the Myerson auction (Myerson,
1981), the eager version of the second price auction and the
boosted second price auction (Golrezaei et al., 2017). When
repeating these auctions (every day, or every milli-second,
depending on the context) and if the bidder is myopic, i.e
optimizing per stage and not long-term revenue, it is optimal
to bid truthfully at each auction. So with myopic bidders,
bids and values have the same distribution and the seller can
design optimally the mechanism based on the former.

Non-myopic bidders optimize their long-term expected util-
ity taking into account that their current strategy will imply
a certain mechanism (for instance a specific reserve price)
in the future. More precisely, we will consider the following
steady state analysis. Assume the valuations of a bidder
vi ∈ R are drawn from a specific distribution Fi; a bidding
strategy is a mapping βi from R into R that indicates the
actual bid Bi = βi(vi) when the value is vi. As a conse-
quence, the distribution of bids FBi is the push-forward of
Fi by βi. In the steady state, the seller uses the distribu-
tions of bids FBi to choose a specific auction mechanism
M(FBi) among a given class of mechanismsM. The ob-
jective of a long-term strategic bidder is to find her strategy
βi that maximizes her expected utility when vi ∼ Fi, she
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bids βi(vi) and the induced mechanism isM(FBi). This
steady-state objective is particularly relevant in modern ap-
plications as most of the data-driven selling mechanisms
are using large batches of bids as examples to update their
mechanism.

In terms of game theory, these interactions are a game be-
tween the seller - whose strategy is to pick a mechanism
design that maps bid distributions to reserve prices - and
the bidders - who chose bidding strategies. Our overarching
objective is to derive the best-response, for a given bidder i,
to the strategy of the seller (i.e., a given mechanism) and the
strategies of the other bidders (i.e., their bid distributions).

1.2. Contributions

Our main contributions are the following. We first intro-
duce the optimization problem that strategic bidders are
facing when the seller is optimizing personalized reserve
prices based on their bid distributions. A straightforward
optimization can fail because the objective is discontinuous
as a function of the bidding strategy.

To circumvent this issue, we introduce a new relaxation of
the problem which is stable to local perturbations of the ob-
jective function and computationally tractable and efficient.
We numerically optimize this new objective through a sim-
ple neural network and get very significant improvements in
bidder utility compared to truthful bidding. We also provide
a theoretical analysis of thresholded strategies (introduced
in Nedelec et al. (2018)) and show their (local) optimality as
improvements of bidding strategies with non-zero reserve
value.

For the Myerson auction, the strategies learned by the model
can be independently proved to be optimal. We apply the
approach to other auction settings such as boosted second
price or eager second price with monopoly price. We report
massive uplifts compared to the traditional truthful strategy
advocated in all these settings. Our simple approach can be
plugged in any modern bidding algorithms learning distribu-
tion of the highest bid of the competition and we test it on
other classes of mechanism without any known closed form
optimal bidding strategies. We finally provide the code in
PyTorch that has been used to run the different experiments.
This approach opens avenues of research for designing good
bidding strategies in many data-driven revenue-maximizing
auctions.

1.3. Related work

Starting with the seminal work of Myerson (1981), a rich
line of work indicates the type of auctions that is revenue-
maximizing for the seller. In the case of symmetric bidders
(Myerson, 1981), one revenue maximizing auction is a sec-
ond price auction with a reserve price equal to the monopoly

price, i.e, the price r that maximizes r(1−F (r)). However,
in most applications, the symmetric assumption is not sat-
isfied (Golrezaei et al., 2017). In the asymmetric case, the
Myerson auction is optimal (Myerson, 1981) but is difficult
to implement in practice (Morgenstern and Roughgarden,
2015). In this case, a second price auction with a well-
chosen vector of reserve prices guarantees at least one-half
of the optimal revenue (Hartline and Roughgarden, 2009).

In modern markets, some bidders are myopic simply be-
cause truthful bidding is a simple strategy to implement.
Receiving truthful bid enables sellers to design various rev-
enue maximizing auctions. (Conitzer and Sandholm, 2002)
has therefore been interested in the automatic mechanism
design that fine tunes mechanism based on some examples
of bids. This work was extended recently in (Dütting et al.,
2017) with the use of deep learning. In (Ostrovsky and
Schwarz, 2011; Medina and Mohri, 2014; Paes Leme et al.,
2016), it is shown specifically how to learn the optimal
reserve prices in the lazy second price auction. This prac-
tice was theoretically addressed by (Cole and Roughgarden,
2014; Huang et al., 2018; Devanur et al., 2016) looking at
the sample complexity of a large class of auctions assuming
an oracle offering iid examples of the value distribution.

However, it is quite intuitive that non-myopic bidders should
not bid truthfully. Robustness to strategic bidders has been
studied in (Balseiro et al., 2017; Kanoria and Nazerzadeh,
2014; Epasto et al., 2018). A potential limitation of this type
of approach is that it is either assumed that all bidders have
the same value distribution (or up to ε for some specific
metric on distributions) or that there is a very large number
of bidders and a global mechanism designed so that any of
them has no incentive to bid untruthfully. In (Ashlagi et al.,
2016), an involved mechanism was designed that keeps the
incentive compatibility property even if the seller is learning
on former bids of the bidders.

None of these papers have exhibited optimal strategies that
can be used when the seller is optimizing her mechanism
based on past bids. This strategic behavior has been studied
for posted price with one bidder and one seller (Mohri and
Munoz, 2015). An independent line of work has focused on
learning to bid when the value is not known to the bidders
(Weed et al., 2016; Feng et al., 2018). Some Bayes-Nash
equilibria corresponding to games where bidders can choose
their bid distribution were designed (Tang and Zeng, 2018;
Abeille et al., 2018) with some derivations of seller revenue
and bidders utility at these equilibria. However, no strate-
gies corresponding to these equilibria were provided in the
general case. Our work is finally strongly related to (Ned-
elec et al., 2018) where a new class of shading strategies for
second price auctions with personalized reserve price is pro-
posed. Our new optimization pipeline is very general and
enables bidders to learn good bidding strategies in multiple



Learning to bid in revenue-maximizing auctions

settings and for any value distribution.

2. The bidder’s optimization problem
We introduce in this section the optimization problem, start-
ing with the lazy second price auction with personalized
reserve prices (formalized below).

2.1. Notations and setting

To describe precisely our approach, we use the traditional
setting of auction theory (see e.g. Krishna (2009)). Recall
that Fi is the value distribution of bidder i and βi : R→ R
her strategy that maps values to bids. The corresponding
distribution of bids is then FBi = βi]Fi, the push-forward
of Fi w.r.t. βi. In the steady-state, we assume that the seller
has the perfect knowledge of each bid distribution FBi .
Notice that we have implicitly identified the distribution
Fi (resp. FBi ) with its cumulative distribution function (cdf)
and use both terms exchangeably. We use fi (resp. fBi ) for
the corresponding probability density function (pdf).

For the sake of simplicity, let us first consider a lazy second
price auction Krishna (2009). We recall that in this auction
each bidder has a personalized reserve price. The item is
attributed to the highest bidder, if she clears her reserve
price, and not attributed otherwise; the winner then pays the
maximum between the second highest bid and her reserve
price. It is known that the optimal reserve price of bidder
i is her monopoly price equal to argmaxr r(1 − FBi(r)),
or equivalently1 to ψ−1Bi (0), where ψBi is the usual virtual
value function defined as

ψBi(b) = b− 1− FBi(b)
fBi(b)

.

As a consequence, it is natural to assume that the strategy of
bidder i does not impact the strategy of other bidders (that
can be either myopic or not) and from now on, we assume
that bids are independent.

2.2. A variational approach

A fundamental result in auction theory is the Myerson
lemma (Myerson, 1981). It expresses the expected pay-
ment of a bidder depending on her virtual value and the
value distribution of the competition. An important nota-
tion is Gi, the cdf of the maximum bid of players other
than i; obviously, if the other bidders are truthful, Gi is the
distribution of the maximum value of the other bidders.

Lemma 1 (Integrated version of the Myerson lemma). In a
lazy second price auction with personalized reserve price

1at least for regular distributions, i.e., when ψ is non-decreasing

ri, the payment of bidder i with continuous strategy βi is

Π(βi) = EBi∼FBi

(
ψBi(Bi)Gi(Bi)1(Bi ≥ ri)

)
.

Proof. The proof is similar to the original one (Myerson,
1981), see also (Krishna, 2009), so we do not spell it out. It
consists of using Fubini’s theorem and integration by parts
to transform the standard form of the seller revenue, i.e.

EBi∼FBi ,Xj∼FBj

(
max
j 6=i

(Bj , r)1[Bi≥maxj 6=i(Bj ,r)]

)
into the above equation. It then suffices to work along
the lines mentioned above with Yi = maxj 6=iBj and
realize that i’s expected payment can be written as

EBi∼FBi ,Yi∼Gi
(

max(Yi, r)1[Bi≥max(Yi,r)]

)
.

In lazy second price auction, the seller chooses as reserve
price the monopoly price corresponding to the bid distri-
bution of bidder i. In this case, Lemma 1 implies that the
expected payment of bidder i is equal to

Π(βi) = EB∼FBi

(
ψBi(B)Gi(B)1(B ≥ ψ−1Bi (0))

)
.

In order to simplify the computation of the expectation and
remove the dependence on βi, this expected payment can
be rewritten in the space of values, by introducing

hβi(x) , ψFBi (βi(x)) ,

and noting the equivalent following formulation

Π(βi) = EXi∼Fi
(
hβi(Xi)Gi(βi(Xi))1(Xi ≥ xβi)

)
,

where xβi = h−1βi (0) when hβi is increasing. We call it the
reserve value, as it is the smallest value above which the
seller accepts all bids from bidder i.

The expected utility can be derived as a function of βi as

U(βi) = EXi∼Fi
(

(Xi−hβi(Xi))Gi(β(Xi))1(Xi ≥ xβi)
)
.

(1)
Finally, we remark that if βi is increasing and differentiable,
hβi verifies a simple first order differential equation.

Lemma 2. Suppose βi is increasing and differentiable then

hβi(xi) = ψFBi (βi(x)) = βi(x)− β′i(x)
1− Fi(x)

fi(x)
. (2)

Proof. ψFBi (b) = b− 1−FBi (b)
fBi (b)

with FBi(b) = Fi(β
−1
i (b))

and fBi(b) = fi(β
−1
i (b)/β′i(β

−1
i (b). Then, hβi(x) =

ψBi(βi(x)) = βi(X)− β′i(X) 1−Fi(X)
fi(X) .
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If we consider only monotonically increasing differentiable
strategies, and we denote by I the class of such functions,
the problem of the strategic bidder is therefore to solve
maxβ∈I U(β) with U defined in Equation (1). This equa-
tion is crucial, as it indicates that optimizing over bidding
strategy can be reduced to finding a distribution with a well-
specified virtual value h(·). A crucial difference between
the long term vision and the classical, myopic (or one-shot)
auction theory is that bidders also maximize expected util-
ity. They might therefore be willing to sometime over-bid
(incurring a negative utility at some specific auctions) if this
reduces their reserve price. Indeed, having a lower reserve
price increases the revenue of many other auctions. Lose
small to win big. This reasoning is possible as there exist
multiple interactions between bidders and seller, billions
every day in the case of online advertising.

2.3. Discontinuity of the objective

In the previous section, we assumed the reserve value was
defined as h−1βi (0), which is well defined only if hβi is in-
creasing. This condition is complicated to ensure as, for
instance, restricting the strategies to be increasing does not
provide any guarantee on hβi . If the later is not increasing,
then the function r(1− FBi(r)) that the seller maximizes
might have several local optima, as illustrated with a specific
bid distribution in Figure 1. We mention here that this dis-
tribution actually arises during our numerical optimization
using first order splines as described in the next section.
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Figure 1. Revenue of the seller as a function of the reserve
value. This shape of revenue by running the first order spline
method described in Section 2.4 . For this distribution, there exists
two local optima that are equivalent in terms of revenue for the
seller but dramatically change the utility of the strategic bidder.

The fact that r(1− FBi(r)) is not always strictly concave
implies that the set of maximizer is not continuous but only
upper hemi-continuous; stated otherwise, the reserve value
xβi can “jump” from a small to high value with an arbitrar-
ily small change in the bidding strategy. In the example
of Figure 1, the reserve value switches from 0.18 to 0.58.
As a consequence, the expected utility of the bidder, which
is another function depending on xβi , might also jumps

erratically. In the same example, the lower bound of integra-
tion increases from 0.18 to 0.58, so that the overall integral
decreases from 0.14 to 0.09. This discontinuity makes the
optimization of the real objective difficult.

2.4. An attempt with first-order splines

A natural question is whether the buyer can compute shading
strategies numerically. A first approach is to look back
at the gradient of the bidder’s utility in the direction of a
certain function ρ, i.e., the directional derivative, that can
be computed by elementary calculus. and to look at shading
function expressed in a specific basis as

β(x) =

N∑
i=1

ci(β)fi(x) ,

and try to optimize over ci. It would be also quite natural to
do an isotonic regression and optimize over non-decreasing
functions directly; this approach is tackled later on.

A natural basis Splines (see e.g. (Hastie et al., 2001)
for a practical introduction) are a natural candidate for the
function fi’s. In particular, first order splines are piecewise
continuous functions, hence evaluating derivatives is trivial
and it is easy to account in the formula above for the finitely
many discontinuities of the derivative that will arise. If ξk’s
are given knots, first order splines are the functions

f1 = 1, f2(x) = x, fk+2(x) = (x−ξk)+ = max(x−ξk, 0) .

Higher order splines could of course also be used.

Lemma 3. As described above, the optimal shading prob-
lem can be numerically approximated using steepest de-
scent by a succession of linear programs, provided the non-
decreasing constraint on β can be written linearly in ci.
This is of course the case for 1st order spline.

Proof. After the function is expanded in a basis, the func-
tional gradient becomes a standard gradient, and the shading
function can be improved with a steepest descent. If the re-
serve value is not one of the knots, the gradient above is easy
to compute: each step of the optimization requires to solve
a constrained LP to ensure that the solution is increasing.

For 1st order splines, the derivative is constant between
knots, thus checking that β′(·) ≥ 0 amounts to check finitely
many linear constraints and so is amenable to an LP.

The objective is not even continuous, though differentiable
in a large part of the parameter space. The optimization
problem is hard. In our experiments, we got significant
improvement over bidding truthfully by using the above
numerical method. However, we encountered the disconti-
nuities of the optimization problem described above: our
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numerical optimizer got stuck at shading functions around
which the reserve value was very unstable, which corre-
sponds to revenue curves for the seller with several distant
(approximate) local maxima: a small perturbation in func-
tion space does not induce much loss of the revenue on the
seller side, but can have a huge impact on the reserve value
and hence the buyer revenue. Note that in our numerical ex-
periments we did not enforce the non-decreasing-constraint
on β but ended up with solutions that were non-decreasing.
More details on this approach are provided in Appendix D.

This is precisely the reason why, in the next section, we
introduce a relaxation of the problem that is easier to op-
timize and with the same solutions as our initial objective.
We also change the class of shading functions we consider
and use neural networks to fit them. Before we describe
these experiments, we provide some theory for the problem
of optimizing buyer revenue in lazy second price auctions.

3. Theory and a relaxation of the problem
enabling the use of gradient descent

3.1. The family of optimal extensions of a strategy

In the context of lazy second price auctions, any increasing
and continuous bidding strategy β whose reserve value r
is not 0 can be improved with β∗(x) = β(r)(1−F (r))

1−F (x) on
[0, r] where β(r) = r, i.e. by thresholding the virtual value
below the current reserve value and keeping β∗ = β on
(r,+∞). Indeed, Lemma 2 yields that hβ∗(x) = 0 on
[0, r] and hβ∗ = hβ elsewhere. So the seller is indifferent
between setting the reserve price anywhere in [0, r] and we
might assume she picks 0 (if she is welfare benevolent, or
it is always possible to give an ε-incentive to pick 0, for
ε arbitrarily small). According to Myerson’s Lemma, the
strategy β∗ generates the same payment as β, so the revenue
of the seller coming from this bidder is unchanged. On
the other hand, that bidder wins more auctions with this
new strategy, hence it improves her revenue and thus her
expected utility.

In this subsection, we address the question of whether the
strategy β∗, which is simple and robust can be improved for
the bidder. Our previous argument already shows that any
improvement would be a strategy with 0 reserve value.

Differentiating Equation (2) yields

f(x)hβ(x) = (β(x)(F (x)− 1))′ .

Let us denote by r the current reserve price; we rewrite the
family of bidding strategies β with reserve value at 0 as
elements of the following constraint set:

E
(
ψB(β(X))G(β(X))1[r0≤X≤r]

)
≤ 0 ,∀0 ≤ r0 ≤ r ,

E
(
ψB(β(X))G(β(X))1[0≤X≤r]

)
= 0 .

For all those strategies, the seller revenue is maximal for the
reserve value ropt = 0, and hence under the assumption of
welfare benevolence, the seller will accept all bids of the
bidder. It is also clear that this set of constraints define all
possible strategies with reserve value 0.

The strategy β (which is increasing and continuous, say)
that maximizes the revenue of the bidder corresponds to

max
β

E
(
(X − ψB(β(X)))G(β(X))1[X≥0]

)
under the constraints that

gr0(β) = E
(
ψB(β(X))G(β(X))1[r0≤X≤r]

)
≤ 0

g0(β) = E
(
ψB(β(X))G(β(X))1[0≤X≤r]

)
= 0 .

Let us limit ourselves to not changing our strategy beyond
r, e.g. by bidding truthfully beyond r. Then we effectively
need to maximize

max
β

F (β) = E
(
(X − hβ(X))G(β(X))1[0≤X≤r]

)
.

with the continuity constraints that β(r) = r. The con-
straints can be rewritten into

gr0(β) = −E
(
ψB(β(X))G(β(X))1[0≤X≤r0]

)
= −E

(
hβ(X)G(β(X))1[0≤X≤r0]

)
.

along with gr(β) = 0. We call those strategies continua-
tion strategies as they extend the bidding below the current
reserve price/value.

Remark : in this class of feasible strategies, the optimal
reserve value for the seller is zero. So the discontinuities
of the objective function in the broader class of strategies
considered before, which stemmed from discontinuities of
the reserve value as a function of the shading function, are
not anymore problematic.

The following theorem states one of our main results.

Theorem 1. Let F , 1/(1 − F ) and G be differentiable
on [0, r]. Suppose that the virtual value ψF is such that
ψF (x) ≤ 0 on [0, r]. We consider increasing shading func-
tions β on [0, r] with β(r) = r.

Thresholding, i.e. using β∗(x) = r(1− F (r))/(1− F (x))
for 0 ≤ x ≤ r is locally optimal among continuation
strategies for which β is differentiable on [0, r], provided
G(β∗(x)) > 0 on [0, r]. It is also locally optimal among
β’s such that gr(β) is differentiable as function of r.

Furthermore, if r < 1 and G(x) = min(x, 1), i.e. the com-
petition’s distribution is Uniform[0, 1], then thresholding is
globally optimal among functions that are bounded by 1 and
differentiable.

Sketch of proof : the proof consists in keeping track of
the slack function h(r) = gr(β), rewriting locally feasible
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β’s as functions of h through differential equation manip-
ulations and finally comparing their revenue and showing
that the optimal h is zero for our objective. This requires
somewhat lengthy and delicate manipulations. In the case
of G(x) = min(x, 1), we are able to write all feasible β’s
as a function of h and carry out the program globally.

We note that we did not require in our analysis that our opti-
mization be limited to non-decreasing functions; it turns out
that our local optima are optimal in larger class of functions.

3.2. One relaxation of the objective

Instead of computing the exact reserve value in the defini-
tion of the expected utility of the bidder, we introduce a
relaxation Ur of the objective corresponding to :

Ur(βi) = E
(
(Xi − hβi(Xi))Gi(β(Xi))1[hβi (Xi)≥0]

)
.
(3)

We replaced 1[Xi≥xβi ] by 1[hβi (Xi)≥0]. This relaxation
avoids to compute the reserve value at each step of the
gradient descent and remove most of the discontinuities of
the previous objective. We now prove that the function max-
imizing Equation. 3 has non-negative virtual value. The
value of the relaxation objective at its optimum is equal to
the one in the strategic bidder problem.
Theorem 2. If an increasing and differentiable function βi
is maximizing

Ur(βi) = E
(
(Xi − hβi(Xi))Gi(βi(Xi)))1[hβi (Xi)≥0]

)
,

it has non-negative virtual value, a reserve value equal to
zero and Ur(βi) = U(βi) with

U(βi) = E
(
(Xi − hβi(Xi))Gi(βi(Xi)))1[Xi≥xβi ]

)
.

Proof. We use the fact that if hβ(x) < 0 on a certain in-
terval [a,b], we can find a new strategy β+ with higher
Ur. Let us consider the rightmost interval [a,b] where
hβ(x) < 0. On [b,+∞], β+ = β. Then on [a,b], β+(x) =
β(b)(1 − F (b)/(1 − F (x)). β+ verifies hβ+(x) = 0 on
[a, b]. Then if we denote T = β+(a), we define β+ on [0,a]
as β+(x) = β(x) + (T − β(a))(1 − F (a))/(1 − F (x)).
We have hβ+ = hβ on [0,a]. β+ is continuous. With
f(x)hβ(x) = (β(x)(F (x)− 1))′, we see that β(1− F ) is
non-decreasing on [a,b]. Hence β+(a) ≥ β(a). Therefore,
∀x, β+(x) ≥ β(x) and G(β+(x)) ≥ G(β(x)). Hence,
Ur(β

∗) ≥ Ur(β). Then, we tackle the next interval where
hβ(x) < 0 by doing the same manipulation on β+. We
conclude by induction on the intervals where hβ ≤ 0.

Thus, a solution of the relaxation has a virtual value positive
everywhere and a reserve value equal to zero. In this case,
Ur(βi) = U(βi).

This new objective enables to run simple gradient descent
algorithms without the need to recompute the reserve value

at each iteration. It is also more stable than the original one
since a local change of the virtual value does not completely
change the value of the objective, which could be the case
when the reserve value were part of the objective.

4. Experimental setup
We present in this section the complete approach and report
the uplift of the new bidding strategies in various revenue-
maximizing auctions.

4.1. Our architecture

To fit the optimal strategies, we use a simple one-layer
neural network with 200 ReLus. We replace the indicator
function by a sigmoid function to have a fully differentiable
objective and we optimize

Uη(βi) = EXi∼Fi
(

(Xi−hβi(Xi))Gi(β(Xi))σ(ηhβi(Xi))

)
.

with σ(x) = 1
1+exp(−x) and η = 1000. We start with a

batch size of 10000 examples, sampled according to the
value distribution of the bidder. We use a stochastic gradient
algorithm (SGD) with a decreasing learning rate starting
at 0.001. The full code in PyTorch is provided with the
paper. The learning of an affine shading strategy is also
provided in the notebook and is reaching already very decent
performance.

In our setting, we assume that Gi is known. However, we
could replace its expression by an approximation Ĝi learned
from past examples of bids of the competition or on the
winning distribution of bidder i computed on past auctions
(in practice one may have to use survival analysis techniques
to account for censoring of the observations). The results
for the lazy second price auction with personalized price are
presented in Table 1 and in Table 2.

4.2. Extension to other types of auction

Our approach can easily be extended to many other types of
auctions. Only a few lines of code are needed to adapt the
objective to other mechanisms.

The Myerson auction. The Myerson auction (Myerson,
1981) consists in using the virtual value both for the alloca-
tion and payment rules. The item is allocated to the bidder
with the highest non-negative virtual value that pays:

ψ−1Bi (max(max
j 6=i

ψBj (Xj), 0))

As for the lazy second price auction, we can use the Myerson
lemma and show that the expected utility of the strategic
bidder using the strategy β in the Myerson auction is

Ui(βi) = E ([Xi − hβi(Xi)]FZ(hβi(Xi))) .
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with FZ the cumulative distribution function of Z =
max2≤j≤K(0, ψj(Xj)), Xi is the value of bidder i, and
hβi = ψBi(βi(Xi)) is the virtual value function associated
with the bid distribution. For some distribution, the optimal
strategy can be analytically computed. For instance, for
the uniform distribution, we can prove this lemma which
defines the optimal strategies.
Lemma 4 (Shading against (K− 1) uniform bidders). Sup-
pose that x has a positive density on its support and assume
that x is bounded by (K+1)/(K−1). Let ε > 0 be chosen
by bidder 1 arbitrarily close to 0. Let us call

h
(ε)
K (x) =

{
K−1
K

ε
1+εx if x ∈ [0, (1 + ε)/(K − 1)) ,

K−1
K

(
x− 1

K−1

)
if x ≥ (1 + ε)/(K − 1) .

A near-optimal shading strategy is for bidder 1 to shade her
value through

β
(ε)
1 (x) = E

(
h
(ε)
K (t)|t ≥ x

)
.

As ε goes to 0+, this strategy approaches the optimum.

If the support of x is within (1/(K− 1), (K+ 1)/(K− 1)),
then ε can be taken equal to 0.

The full proof is in Appendix C. Since in this specific set-
ting optimal strategies have a known closed form, our op-
timization pipeline can be tested to see if it recovers these
strategies. With the same pipeline used in Section 4.1, we
optimize

Ui(βi) = E ([Xi − hβi(Xi)]FZ(hβi(Xi))) .

Appendix E.2 focuses on the uniform distribution where our
algorithm recover exactly the strategies proposed in Lemma
9 showing the robustness of our approach.

The interest of the optimization pipeline is the direct exten-
sion to all possible value distributions without the need to
solve at each time a new system of differential equations.
The performance with an exponential value distribution is
provided in Table 1.

Eager second price auction with monopoly reserve
prices. The eager second price auction consists of running
a second price auction but only among bidders that clear
their personalized reserve price. The objective function is
very similar to the one of the lazy second price auction
except that the winning distribution is different below the
reserve price of the other bidders. Indeed, if all other bidders
are below their reserve price, the strategic bidders that bids
above his monopoly price is sure to win and only pays her
monopoly price. We provide more details in Appendix E.3.

The boosted second price auction. (BSP) Two small
variants of the boosted second price auction (BSP) (Gol-
rezaei et al., 2017) can also be addressed. We deal with the

BSP auction as it seems to be one of the state of the art alter-
native to the second price auction with personalized reserve
price to be used in practice and deals with heterogeneities
between bidders. In the original paper, the seller computes
first the reserve prices of each bidder based on their bid
distributions. Then, the algorithm computes a boosting fac-
tor γi > 0 for each bidder by counterfactually maximizing
the revenue of the seller. More precisely, the auction is ran
according to :

Algorithm 1 Boosted second price (r, γ)

- First each bidder i submits his bid bi
- Define S as a set of bidders whose bids exceed their
reserve price, i.e, S = {i : bi ≥ ri}
- If the set S is empty, the item is not allocated. Oth-
erwise, the item is allocated to bidder i∗ with the high-
est boosted bid, i.e., i∗ = argmaxi∈S{biγi} and she
pays max{ri∗ ,maxi∈S,i 6=i∗{biγi/γi∗}}. For other bid-
ders, the payment is zero.

To explain intuitively our two objectives corresponding to
this auction, we consider first the example of the family
of generalized Pareto distributions. As the virtual value of
all distributions in this family is affine, the boosted second
price auction is strictly equivalent to the Myerson auction
in this family. It explains why this auction can perform well
in practice for the seller since it avoids to compute exactly
the virtual value by approximating it by a linear fit.

In the first model, we assume that the seller first makes an
affine-fit through an L2 regression on the virtual values she
observes. Then, she runs a Myerson auction based on these
L2 fits. In the case of Generalized Pareto distributions, this
procedure results exactly in the BSP auction. If we note ψ̂Bi
the L2 fit of the virtual value corresponding to the bid distru-
tion and ĥβi = ψ̂Bi ◦βi, we optimize the Myerson objective
with ĥβi corresponding to the fit of hβi . The main difference
with the BSP auction for non-generalized pareto distribu-
tions is that the fit is used to compute the reserve price. In
the second objective, we adress this limitation by computing
first the reserve price ri based on the observed ψBi . Then,
the algorithm computes a linear fit of ψBi on bids higher
than ri. This linear fit is used as the boosting parameter for
bidder i. To make the objective differentiable, we consider
the relaxation where ri is assumed to beminr(ψBi(r) > 0).
We verify retrospectively that the final strategy verifies
minr(ψBi(r) > 0) = argmax(ri(1− FBi(ri)))

Our experiments show that our approach can also be empiri-
cally generalized to more advanced, intricate, practical and
modern settings, on top of working well theoretically on the
lazy second price auctions.
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Auction Type K=2 K=3 K=4

Baselines Utility of truthful strategy (in revenue maximizing) 0.30 0.24 0.21
Utility of truthful strategy (in welfare maximizing) 0.50 0.33 0.25

Lazy second price auction Utility of strategic bidder 0.45 ± 0.001 0.31 ± 0.001 0.24 ± 0.001

Uplift vs truthful bidding +50% +29% +14%

Eager second price auction Utility of strategic bidder 0.52 ± 0.02 0.33 ± 0.02 0.25 ± 0.02

Uplift vs truthful bidding +73% +37% +19%

Myerson auction Utility of strategic bidder 0.64 ± 0.001 0.45 ± 0.001 0.35 ± 0.001

Uplift vs truthful bidding +113% +87% +67%

Boosted second price Utility of strategic bidder 0.48 ± 0.03 0.41 ± 0.001 0.32 ± 0.001

Uplift vs truthful bidding +60% +71% +52%

Table 1. All bidders have an exponential value distribution with parameter λ = 1. The strategic bidder has K-1 opponents
bidding truthfully and having a reserve price equal to 1.0, their monopoly price. The reserve price of the strategic bidder is
computed on her bid distribution. For each run, the evaluation is based on 106 samples, and we average the performances over
10 learnings. The utility of the strategic bidder can be higher that in the welfare-maximizing auction because revenue maximizing
auctions remove competition below the reserve price, as illustrated by some examples in Appendix E.

4.3. Evaluation and results

Two different value distributions were used to run the ex-
periments: the exponential distribution in Table 1 and the
uniform distribution in Table 2 in Appendix. We focus on a
small number of bidders since it is where the reserve price
play an important role for the seller. (Celis et al., 2014)
also noticed that the median of the number of participants
in online advertising auctions is 6.

To compute the real performance of the strategy, we are
conservative in the computation of the reserve price since
we use ri = max(b|ψBi(b) < 0). We then compute the
performance by computing the objective (expected utility)
with Monte-Carlo simulations. For the lazy second price
with personalized reserve price, we use for instance

U(βi) = E
(

(Xi−hβi(Xi))Gi(β(Xi))1(βi(Xi) ≥ ri)
)
.

We compare the performance of our strategies with two base-
lines: the utility of one bidder bidding truthfully in a second
price auction without reserve price (the welfare maximizing
auction) and in a second price auction with monopoly price
(with symmetric bidders, this auction is equivalent to the
Myerson auction and is revenue-maximizing for the seller).

For BSP, we report results for the second objective which
is the closest one to the corresponding procedure of (Gol-
rezaei et al., 2017). The first one gives similar uplifts that
the strategic behavior in the Myerson auction. The order
of magnitude of the uplift reported is significant. We ob-
serve that BSP and the Myerson auction are less robust to
strategic behavior than the lazy second price auction with
personalized reserve price. Indeed, as in the eager version
of the second price auction there is no competition when all
other bidders are below their reserve price. It is not the case

for the lazy second price auction explaining why the uplift
are slightly lower for this specific auction.

We focused on the stationary case where the strategic bid-
der has to choose one strategy implying a bid distribution
and the seller will immediately optimize their mechanism
according to this bid distribution. However, our differential
approach allows some generalizations. In future work, we
could adapt the differential approach to more dynamic set-
tings where the seller uses a particular dynamic to update
the reserve price based on past bids of the bidders.

5. Conclusion
In this paper, we showed that machine learning can be
efficiently used on the bidder side to learn how to shade
in revenue-maximizing auctions that are optimized based
on past bids (or a distribution announced by the bidder
to which she commits). Our work, both theoretical and
practical, complements the classical approach using sta-
tistical learning from the seller’s standpoint showing that
strategic bidding can be implemented in some of the main
revenue-maximizing auctions. Our work also raises ques-
tions about many automatic mechanism procedures since
many are based on the assumption of having observed past
truthful bids in order to optimize mechanisms. From an
industry point of view, our work provides a new argument
to come back to simple and more transparent auction mech-
anisms that are less subject to optimization on both the
bidders’ and the seller’s sides.
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