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Abstract

This paper shows that every sublevel set of
the loss function of a class of deep over-
parameterized neural nets with piecewise linear
activation functions is connected and unbounded.
This implies that the loss has no bad local valleys
and all of its global minima are connected within
a unique and potentially very large global valley.

1. Introduction
It has been commonly observed in deep learning that over-
parameterization can be helpful for optimizing deep neural
networks. In particular, several recent work (Allen-Zhu
et al., 2018b; Du et al., 2018; Zou et al., 2018) have shown
that if “all the hidden layers” of a deep network have poly-
nomially large number of neurons compared to the number
of training samples and the network depth, then (stochas-
tic) gradient descent converges to a global minimum with
zero training error. While these theoretical guarantees are
interesting conceptually, it remains largely unclear why this
kind of simple local search algorithms can succeed given the
well-known non-convexity and NP-Hardness of the problem.
We are interested in the following questions:

Why local search algorithms such as (stochastic) gradient
descent do not seem to get stuck at bad valleys under exces-
sive over-parameterization regimes? Is there any geometric
structure of the loss function that can “intuitively” support
for the successes of these algorithms under such regimes?

In this paper, we shed light on these questions by showing
that every sublevel set of the loss is connected if “one of
the hidden layers” is wide enough. While connectivity of
sublevel sets does not ensure that gradient descent always
converges to a global minimum from arbitrary initialization,
such simple geometric structure still arguably makes the loss
function much more favorable to local search algorithms
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Figure 1. A non-convex function with connected sublevel sets.

than any other “wildly” non-convex functions. An example
function which satisfies this property is shown in Figure 1.

The key idea of our paper is to first prove the connectivity
of sublevel sets for arbitrary sized neural networks in the
regime where the training data are linearly independent.
Then we extend such result to “arbitrary training data” by
assuming that the network has a wide hidden layer. More
specifically, we show that if one of the hidden layers has
more neurons than the number of training samples, then the
loss function has no bad local valleys in the sense that there
is a continuous path from any starting point in parameter
space on which the loss is non-increasing and gets arbitrarily
close to its (asymptotic) minimal value. For a special case
of the network where the first hidden layer has twice more
neurons than the number of training samples, we show that
every sublevel set of the loss becomes connected. This is a
stronger property than before as it not only implies that the
loss has no bad local valleys, but also that all finite global
minima (if exist) are connected within a unique valley. All
our results hold for standard deep fully connected networks
with arbitrary convex losses and piecewise linear activation
functions. All missing proofs can be found in the appendix.

2. Background
Let N be the number of training samples and X =
[x1, . . . , xN ]T ∈ RN×d the training data with xi ∈ Rd. Let
L be the number of layers of the network, nk the number
of neurons at layer k, d the input dimension, m the output
dimension, and Wk ∈ Rnk−1×nk and bk ∈ Rnk the weight
matrix and biases respectively of layer k. By convention,
we assume that n0 = d and nL = m. Let σ : R→ R be a
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Figure 2. Examples of bad local valleys in one and two dimension. (Recall from Definition 4.1: A bad local valley is a connected
component of some strict sublevel set on which the loss cannot be made arbitrarily close to the infimum. Intuitively, bad local valleys are
regions in the search space where gradient descent can easily get stuck.)

continuous activation function specified later. The network
output at layer k is the matrix Fk ∈ RN×nk defined as

Fk =


X k = 0

σ
(
Fk−1Wk + 1Nb

T
k

)
1 ≤ k ≤ L− 1

FL−1WL + 1Nb
T
L k = L

(1)

Let θ := (Wl, bl)
L
l=1 be the set of all parameters. Let Ωl

be the space of (Wl, bl) for every layer l ∈ [1, L], and
Ω = Ω1 × . . . × ΩL the whole parameter space. Let
Ω∗l ⊂ Ωl be the subset of parameters of layer l for which
the corresponding weight matrix has full rank, that is
Ω∗l = {(Wl, bl) | Wl has full rank} . In this paper, we often
write Fk(θ) to denote the network output at layer k as a func-
tion θ, but sometimes we drop the argument θ and write just
Fk if it is clear from the context. We also use the notations
Fk

(
(W1, b1), . . . , (WL, bL)

)
, Fk

(
(W1, b1), (Wl, bl)

L
l=2

)
.

The training loss Φ : Ω→ R is defined as

Φ(θ) = ϕ(FL(θ)) (2)

where ϕ : RN×m → R is assumed to be any convex loss.
Typical examples include the standard cross-entropy loss
ϕ(FL) = 1

N

∑N
i=1− log

(
e
(FL)iyi∑m

k=1 e
(FL)ik

)
where yi is the

ground-truth class of xi, and the standard square loss for
regression ϕ(FL) = 1

2 ‖FL − Y ‖
2
F where Y ∈ RN×m is a

given training output.

In this paper, we denote p∗ = infG∈RN×m ϕ(G) which
serves as a lower bound on Φ. Note that p∗ is fully deter-
mined by the choice of ϕ(·) and thus is independent of the
training data. Please also note that we make no assumption
about finiteness of p∗ in this paper although for most of
practical loss functions as mentioned above one has p∗ = 0.
We list below several assumptions on the activation function
and will refer to them accordingly in our different results.

Assumption 2.1 σ is strictly monotonic and σ(R) = R.

Note that Assumption 2.1 implies that σ has a continuous
inverse σ−1 : R→ R, which is satisfied for Leaky-ReLU.

Assumption 2.2 There do not exist non-zero coefficients
(λi, ai)

p
i=1 with ai 6= aj ∀ i 6= j such that σ(x) =∑p

i=1 λiσ(x− ai) for every x ∈ R.

Assumption 2.2 is satisfied for every piecewise linear ac-
tivation functions except the linear one as shown below.

Lemma 2.3 Assumption 2.2 is satisfied for any continuous
piecewise linear activation function with at least two pieces
such as ReLU, Leaky-ReLU, etc and for the exponential

linear unit σ(x) =

{
x x ≥ 0

α(ex − 1) x < 0
where α > 0.

Through out the rest of this paper, we will make the follow-
ing mild assumption on our training data.

Assumption 2.4 All the training samples are distinct.

A key concept of this paper is the sublevel set of a function.

Definition 2.5 For every α ∈ R, the α-level set of Φ : Ω→
R is the preimage Φ−1(α) = {θ ∈ Ω | Φ(θ) = α} , and the
α-sublevel set of Φ is given as Lα = {θ ∈ Ω | Φ(θ) ≤ α} .

Below we recall the standard definition of connected sets
and some basic properties which are used in this paper.

Definition 2.6 (Connected set) A subset S ⊆ Rd is called
connected if for every x, y ∈ S, there exists a continuous
curve r : [0, 1]→ S such that r(0) = x and r(1) = y.

Proposition 2.7 Let f : U → V be a continuous map. If
A ⊆ U is connected then f(A) ⊆ V is also connected.

Proposition 2.8 The Minkowski sum of two connected
subsets U, V ⊆ Rn, defined as U + V =
{u+ v | u ∈ U, v ∈ V }, is a connected set.

In this paper, A† denotes the Moore-Penrose inverse of A.
If A has full row rank then it has a right inverse A† =
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AT (AAT )−1 with AA† = I, and if A has full column rank
then it has a left inverse A† = (ATA)−1AT with A†A = I.

3. Key Result: Linearly Independent Data
Leads to Connected Sublevel Sets

This section presents our key results for linearly independent
data, which form the basis for our additional results in the
next sections where we analyze deep over-parameterized net-
works with arbitrary data. Below we assume that the widths
of all hidden layers are decreasing, i.e. n1 > . . . > nL.
Note that it is still possible to have n1 ≥ d or n1 < d. The
above condition is quite natural as in practice (e.g., see Ta-
ble 1 in (Nguyen & Hein, 2018)) the first hidden layer often
has the most number of neurons, afterwards the number of
neurons starts decreasing towards the output layer, which
is helpful for the network to learn more compact represen-
tations at higher layers. We introduce the following key
property for a class of points θ = (Wl, bl)

L
l=1 in parameter

space and refer to it later in our theorems and proofs.

Property 3.1 Wl has full rank for every l ∈ [2, L].

Our main result in this section is stated as follows.

Theorem 3.2 Let Assumption 2.1 hold, rank(X) = N and
n1 > . . . > nL where L ≥ 2. Then the following hold:

1. Every sublevel set of Φ is connected. Moreover, Φ can
attain any value arbitrarily close to p∗.

2. Every non-empty connected component of every level
set of Φ is unbounded.

We have the following decomposition of sublevel set:
Φ−1((−∞, α]) = Φ−1(α)∪Φ−1((−∞, α)). It follows that
if Φ has unbounded level sets then its sublevel sets must also
be unbounded. We note that the reverse is not true, e.g. the
standard Gaussian distribution function has unbounded sub-
level sets but its level sets are bounded. Given that, the two
statements of Theorem 3.2 together imply that every sub-
level set of the loss must be both connected and unbounded.
While the connectedness property of sublevel sets implies
that the loss function is rather well-behaved, the unbounded-
ness property of level sets intuitively implies that there are
no bounded valleys in the loss surface, regardless of whether
these valleys contain a global minimum or not. Clearly this
also indicates that Φ has no strict local minima/maxima. In
the remainder of this section, we will present the proof of
Theorem 3.2. The following lemmas will be helpful.

Lemma 3.3 Let the conditions of Theorem 3.2 hold. Given
some k ∈ [2, L]. Then there is a continuous map h : Ω∗2 ×
. . .× Ω∗k × RN×nk → Ω1 which satisfy the following:

1. For every
(

(W2, b2), . . . , (Wk, bk), A
)

∈
Ω∗2 × . . . × Ω∗k × RN×nk it holds that

Fk

(
h
(

(Wl, bl)
k
l=2, A

)
, (Wl, bl)

k
l=2

)
= A.

2. For every θ = (W ∗l , b
∗
l )
L
l=1 where all the matrices

(W ∗l )kl=2 have full rank, there is a continuous curve

from θ to
(
h
(

(W ∗l , b
∗
l )
k
l=2, Fk(θ)

)
, (W ∗l , b

∗
l )
L
l=2

)
on

which the loss Φ is constant.

Proof: For every
(

(W2, b2), . . . , (Wk, bk), A
)
∈ Ω∗2 ×

. . .× Ω∗k × RN×nk , let us define the value of the map h as

h
(

(Wl, bl)
k
l=2, A

)
= (W1, b1),

where (W1, b1) is given by the following recursive formula

[
W1

bT1

]
= [X,1N ]†σ−1(B1),

Bl =
(
σ−1(Bl+1)− 1Nb

T
l+1

)
W †l+1, ∀ l ∈ [1, k − 2],

Bk−1 =

{
(A− 1Nb

T
L)W †L k = L(

σ−1(A)− 1Nb
T
k

)
W †k k ∈ [2, L− 1]

.

By our assumption n1 > . . . > nL, it follows from the
domain of h that all the matrices (Wl)

k
l=2 have full column

rank, and so they have a left inverse. Similarly, [X,1N ]
has full row rank due to our assumption that rank(X) = N ,
and so it has a right inverse. Moreover σ has a continuous
inverse by Assumption 2.1. Thus h is a continuous map as it
is a composition of continuous functions. In the following,
we prove that h satisfies the two statements of the lemma.

1. Let
(

(W2, b2), . . . , (Wk, bk), A
)
∈ Ω∗2 × . . . × Ω∗k ×

RN×nk . Since all the matrices (Wl)
k
l=2 have full column

rank and [X,1N ] has full row rank, it holds that W †l Wl = I
and [X,1N ][X,1N ]† = I and thus we easily obtain from
the above definition of h that

B1 = σ
(

[X,1N ]

[
W1

bT1

])
,

Bl+1 = σ(BlWl+1 + 1Nb
T
l+1), ∀ l ∈ [1, k − 2],

A =

{
BL−1WL + 1Nb

T
L k = L,

σ(Bk−1Wk + 1Nb
T
k ) k ∈ [2, L− 1].

One can easily check that the above formula of A
is exactly the definition of Fk from (1) and thus it
holds Fk

(
h
(

(Wl, bl)
k
l=2, A

)
, (Wl, bl)

k
l=2

)
= A for every(

(W2, b2), . . . , (Wk, bk), A
)
∈ Ω∗2 × . . .× Ω∗k × RN×nk .

2. Let Gl : RN×nl−1 → RN×nl be defined as

Gl(Z) =

{
ZW ∗L + 1N (b∗L)T l = L

σ
(
ZW ∗l + 1N (b∗l )

T
)

l ∈ [2, L− 1].
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For convenience, let us group the parameters of the first
layer into a matrix, say U = [WT

1 , b1]T ∈ R(d+1)×n1 .
Similarly, let U∗ = [(W ∗1 )T , b∗1]T ∈ R(d+1)×n1 . Let f :
R(d+1)×n1 → RN×nk be a function of (W1, b1) defined as

f(U) = Gk ◦Gk−1 . . . G2 ◦G1(U), where

G1(U) = σ([X,1N ]U), U = [WT
1 , b1]T .

We note that this definition of f is exactly Fk from (1),
but here we want to exploit the fact that f is a function of
(W1, b1) as all other parameters are fixed to the correspond-
ing values of θ. Let A = Fk(θ). By definition we have
f(U∗) = A and thus U∗ ∈ f−1(A). Let us denote

(Wh
1 , b

h
1 ) = h

(
W ∗l , b

∗
l )
k
l=2, A

)
, Uh = [(Wh

1 )T , bh1 ]T .

By applying the first statement of the lemma to(
(W ∗2 , b

∗
2), . . . , (W ∗k , b

∗
k), A

)
we have

A = Fk

(
(Wh

1 , b
h
1 ), (W ∗l , b

∗
l )
k
l=2

)
= f(Uh)

which impliesUh ∈ f−1(A). So far bothU∗ andUh belong
to f−1(A). The idea now is that if one can show that f−1(A)
is a connected set then there would exist a connected path
between U∗ and Uh (and thus a path between (W ∗1 , b

∗
1) and

(Wh
1 , b

h
1 )) on which the output at layer k is identical to A

and hence the loss is invariant, which concludes the proof.

In the following, we show that f−1(A) is indeed connected.
First, one observes that range(Gl) = RN×nl for every l ∈
[2, k] since all the matrices (W ∗l )kl=2 have full column rank
and σ(R) = R due to Assumption 2.1. Similarly, it follows
from our assumption rank(X) = N that range(G1) =
RN×n1 . By standard rules of compositions, we have

f−1(A) = G−11 ◦G
−1
2 ◦ . . . ◦G

−1
k (A).

where all the inverse maps G−1l have full domain. It holds

G−1k (A) ={
(A− 1Nb

T
L)(W ∗L)† + {B | BW ∗L = 0} k = L(

σ−1(A)− 1Nb
∗
k

)
(W ∗k )† + {B | BW ∗k = 0} else

which is a connected set in each case because of the follow-
ing reasons: 1) the kernel of any matrix is connected, 2)
the Minkowski-sum of two connected sets is connected by
Proposition 2.8, and 3) the image of a connected set under a
continuous map is connected by Proposition 2.7. By repeat-
ing the similar argument for k − 1, . . . , 2 we conclude that
V := G−12 ◦ . . . ◦G

−1
k (A) is connected. Lastly, we have

G−11 (V ) = [X,1N ]†σ−1(V ) + {B | [X,1N ]B = 0}

which is also connected by the same arguments above. Thus
f−1(A) is a connected set.

Overall, we have shown in this proof that the set of (W1, b1)
which realizes the same output at layer k (given the parame-
ters of other layers in between are fixed) is a connected set.
Since both (W ∗1 , b

∗
1) and h

(
(W ∗l , b

∗
l )
k
l=2, Fk(θ)

)
belong to

this solution set, there must exist a continuous path between
them on which the loss Φ is constant. �

The next lemma shows how to make the weight matrices
full rank. Its proof can be found in the appendix.

Lemma 3.4 Let the conditions of Theorem 3.2 hold. Let
θ = (Wl, bl)

L
l=1 be any point in parameter space. Then

there is a continuous curve which starts from θ and ends at
some θ′ = (W ′l , b

′
l)
L
l=1 so that θ′ satisfies Property 3.1 and

the loss Φ is constant on the curve.

Proposition 3.5 (Evard & Jafari, 1994) The set of full rank
matrices A ∈ Rm×n is connected for m 6= n.

3.1. Proof of Theorem 3.2

1. Let Lα be some sublevel set of Φ. Let θ = (Wl, bl)
L
l=1

and θ′ = (W ′l , b
′
l)
L
l=1 be arbitrary points in Lα. Let

FL = FL(θ) and F ′L = FL(θ′). These two quantities are
computed in the beginning and will never change during
this proof. But when we write FL(θ′′) for some θ′′ we
mean the network output evaluated at θ′′. The main idea
is to construct two different continuous paths which simul-
taneously start from θ and θ′ and are entirely contained in
Lα (this is done by making the loss on each individual path
non-increasing), and then show that they meet at a common
point in Lα, which then implies that Lα is a connected set.

First of all, we can assume that both θ and θ′ satisfy Property
3.1, because otherwise by Lemma 3.4 one can follow a
continuous path from each point to arrive at some other
point where this property holds and the loss on each path
is invariant, meaning that we still stay inside Lα. As θ and
θ′ satisfy Property 3.1, all the weight matrices (Wl)

L
l=2 and

(W ′l )
L
l=2 have full rank, and thus by applying the second

statement of Lemma 3.3 with k = L and using the similar
argument above, we can simultaneously drive θ and θ′ to
the following points,

θ =
(
h
(

(Wl, bl)
L
l=2, FL

)
, (W2, b2), . . . , (WL, bL)

)
,

θ′ =
(
h
(

(W ′l , b
′
l)
L
l=2, F

′
L

)
, (W ′2, b

′
2), . . . , (W ′L, b

′
L)
)

(3)

where h : Ω∗2 × . . .×Ω∗L×RN×m → Ω1 is the continuous
map from Lemma 3.3 which satisfies

FL

(
h
(

(Ŵl, b̂l)
L
l=2, A

)
, (Ŵl, b̂l)

L
l=2

)
= A, for every (4)(

(Ŵl, b̂l), . . . , (ŴL, b̂L), A
)
∈ Ω∗2 × . . .× Ω∗L × RN×nk .

Next, we construct a continuous path starting from θ on
which the loss is constant and it holds at the end point of
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the path that all parameters from layer 2 till layer L are
equal to the corresponding parameters of θ′. Indeed, by
applying Proposition 3.5 to the pairs of full rank matrices
(Wl,W

′
l ) for every l ∈ [2, L], we obtain continuous curves

W2(λ), . . . ,WL(λ) so that Wl(0) = Wl,Wl(1) = W ′l and
Wl(λ) has full rank for every λ ∈ [0, 1]. For every l ∈
[2, L], let cl : [0, 1]→ Ω∗l be the curve of layer l defined as

cl
(
λ) =

(
Wl(λ), (1− λ)bl + λb′l

)
.

We consider the curve c : [0, 1]→ Ω given by

c(λ) =
(
h
(

(cl(λ))Ll=2, FL

)
, c2(λ), . . . , cL(λ)

)
.

Then one can easily check that c(0) = θ and c is continuous
as all the functions h, c2, . . . , cl are continuous. Moreover,
we have

(
c2(λ), . . . , cL(λ)

)
∈ Ω∗2 × . . .× Ω∗L and thus it

follows from (4) that FL(c(λ)) = FL for every λ ∈ [0, 1],
which leaves the loss invariant on c.

Since the curve c above starts at θ and has constant loss, we
can reset θ to the end point of this curve, by setting θ = c(1),
while keeping θ′ from (3), which together give us

θ =
(
h
(

(W ′l , b
′
l)
L
l=2, FL

)
, (W ′2, b

′
2), . . . , (W ′L, b

′
L)
)
,

θ′ =
(
h
(

(W ′l , b
′
l)
L
l=2, F

′
L

)
, (W ′2, b

′
2), . . . , (W ′L, b

′
L)
)
.

Now we note that the parameters of θ and θ′ coincide at
all layers except at the first layer. We will construct two
continuous paths inside Lα, say c1(·) and c2(·), which starts
from θ and θ′ respectively , and show that they meet at a
common point in Lα. Let Ŷ ∈ RN×m be any matrix so that

ϕ(Ŷ ) ≤ min(Φ(θ),Φ(θ′)). (5)

Consider the curve c1 : [0, 1]→ Ω defined as

c1(λ)=
(
h
(

(W ′l , b
′
l)
L
l=2, (1− λ)FL + λŶ

)
, (W ′l , b

′
l)
L
l=2

)
.

Note that c1 is continuous as h is continuous, and it holds:

c1(0) = θ, c1(1) =
(
h
(

(W ′l , b
′
l)
L
l=2, Ŷ

)
, (W ′l , b

′
l)
L
l=2

)
.

It follows from the definition of Φ, c1(λ) and (4) that

Φ(c1(λ)) = ϕ(FL(c1(λ))) = ϕ((1− λ)FL + λŶ )

and thus by convexity of ϕ,

Φ(c1(λ)) ≤ (1− λ)ϕ(FL) + λϕ(Ŷ )

≤ (1− λ)Φ(θ) + λΦ(θ) = Φ(θ),

which implies that c1[0, 1] is entirely contained in Lα. Sim-
ilarly, we can also construct a curve c2(·) inside Lα which
starts at θ′ and satisfies

c2(0) = θ′, c2(1) =
(
h
(

(W ′l , b
′
l)
L
l=2, Ŷ

)
, (W ′l , b

′
l)
L
l=2

)
.

So far, the curves c1 and c2 start at θ and θ′ respectively and
meet at the same point c1(1) = c2(1).

Overall, we have shown that starting from any two points
in Lα we can find two continuous curves so that the loss
is non-increasing on each curve, and these curves meet at
a common point in Lα, and so Lα has to be connected.
Moreover, the point where they meet satisfies Φ(c1(1)) =
ϕ(Ŷ ). From (5), ϕ(Ŷ ) can be chosen arbitrarily small, and
thus Φ can attain any value arbitrarily close to p∗.

2. Let C be a non-empty connected component of some
level set, i.e. C ⊆ Φ−1(α) for some α ∈ R. Let θ =
(Wl, bl)

L
l=1 ∈ C. Similar as above, we first use Lemma 3.4

to find a continuous path from θ to some other point where
W2 attains full rank, and the loss is invariant on the path.
From that point, we apply Lemma 3.3 with k = 2 to obtain
another continuous path (with constant loss) which leads us
to θ′ :=

(
h
(

(W2, b2), F2(θ)
)
, (W2, b2), . . . , (WL, bL)

)
where h : Ω∗2 → Ω1 is a continuous map satisfying that

F2

(
h
(

(Ŵ2, b̂2), A
)
, (Ŵl, b̂l)

L
l=2

)
= A,

for every point (Ŵl, b̂l)
L
l=1 such that Ŵ2 has full rank, and

every A ∈ RN×n2 . Note that θ′ ∈ C as the loss is constant
on the above paths. Consider the following continuous curve

c(λ) =
(
h
(

(λW2, b2), F2(θ)
)
, (λW2, b2), . . . , (WL, bL)

)
for every λ ≥ 1. This curve starts at θ′ since c(1) = θ′.
Moreover F2(c(λ)) = F2(θ) for every λ ≥ 1 and thus
the loss is constant on this curve, meaning that the entire
curve belongs to C. Lastly, since W2 is full-rank, the curve
c is unbounded as λ goes to infinity, thusC is unbounded. �

4. Large Width of One of Hidden Layers
Leads to No Bad Local Valleys

In the previous section, we show that linearly independent
training data essentially leads to connected sublevel sets. In
this section, we show the first application of this result in
proving absence of bad local valleys on the loss landscape
of deep and wide neural nets with arbitrary training data.

Definition 4.1 A local valley is a nonempty connected com-
ponent of some strict sublevel set Lsα := {θ | Φ(θ) < α} .
A bad local valley is a local valley on which the training
loss Φ cannot be made arbitrarily close to p∗.

Intuitively, one can see that a small neighborhood of any
suboptimal strict local minimum is a bad local valley. How-
ever, we note that the notion of bad local valleys as analyzed
in this paper has a more general meaning. In particular, a
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bad local valley need not be restricted to any neighborhood
of a bad local minimum but can be any arbitrary subset
in parameter space over which the infimum of the loss is
strictly larger than the infimum over the entire space. This is
demonstrated via two simple examples as shown in Figure
2: in the left example, the corresponding bad local valley
contains multiple local minima, and in the right example,
the bad valley does not even contain any local minimum.

Figure 3. Left: an example function with exponential tails where
local minima do NOT exist but local/global valleys still exist.
Right: a different function which satisfies every local minimum is
a global minimum, but bad local valleys still exist at both infinities
(exponential tails) where local search algorithms easily get stuck.

Our main result in this section is stated as follows.

Theorem 4.2 Let Assumption 2.1 and Assumption 2.2 hold.
Suppose that there exists a layer k ∈ [1, L − 1] such that
nk ≥ N and nk+1 > . . . > nL. Then the following hold:

1. The loss Φ has no bad local valleys.

2. If k ≤ L− 2 then every local valley of Φ is unbounded.

The conditions of Theorem 4.2 are satisfied for any strictly
monotonic and piecewise linear activation function such as
Leaky-ReLU (see Lemma 2.3). We note that for Leaky-
ReLU and other similar homogeneous activation functions,
the second statement of Theorem 4.2 is straightforward.
Indeed, if one scales all parameters of one hidden layer by
some arbitrarily large factor k > 0 and the weight matrix
of the following layer by 1/k then the network output will
be unchanged, and so every connected component of every
level set (and sublevel set) must extend to infinity and thus
be unbounded. However, for general non-homogeneous
activation functions, this statement is non-trivial.

The first statement of Theorem 4.2 implies that there is a
continuous path from any point in parameter space on which
the loss is non-increasing and gets arbitrarily close to p∗.
At this point, one might wonder that if a function satisfying
“every local minimum is a global minimum” would auto-
matically contain no bad local valleys. Unfortunately this
is not true in general. Indeed, Figure 3 shows two counter-
examples where a function does not have any bad local
mimina, but bad local valleys still exist. The reason for this
lies at the fact that bad local valleys in general need not
contain any local minimum, or even critical point, although
in theory they can have arbitrarily large volume. Thus any
pure results on global optimality of local minima with no

further information on the loss would not be sufficient to
guarantee convergence of local search algorithms to the bot-
tom of the loss landscape, especially if they are initialized
in such non-optimal valleys. Similar phenomenon has also
been observed by (Sohl-Dickstein & Kawaguchi, 2019).

We note that while the statements of Theorem 4.2 imply the
absence of strict local minima and bounded local valleys,
they do not rule out the possibility of non-strict bad local
minima. Overall, the two statements of Theorem 4.2 imply
that every local valley must be an “unbounded global valley”
in which the loss can attain any value arbitrarily close to p∗.

The high level proof idea for Theorem 4.2 is that inside
every local valley one can find a point where the feature
representations of all training samples are linearly indepen-
dent at the wide hidden layer, and thus an application of
Theorem 3.2 to the subnetwork from this wide layer till the
output layer yields the result. We list below several technical
lemmas which are helpful to prove Theorem 4.2.

Lemma 4.3 Let (F,W, I) be such that F ∈ RN×n,W ∈
Rn×p, rank(F ) < n and I ⊂ {1, . . . , n} be a subset of
columns of F so that rank(F (:, I)) = rank(F ) and Ī the
remaining columns. Then there exists a continuous curve
c : [0, 1]→ Rn×p which satisfies the following:

1. c(0) = W and Fc(λ) = FW, ∀λ ∈ [0, 1].

2. The product Fc(1) is independent of F (:, Ī).

Lemma 4.4 Given v ∈ Rn with vi 6= vj ∀ i 6= j, and σ :
R→ R satisfies Assumption 2.2. Let S ⊆ Rn be defined as
S = {σ(v + b1n) | b ∈ R} . Then it holds Span(S) = Rn.

We recall the following standard result from topology (e.g.,
see Apostol (1974), Theorem 4.23, p. 82).

Proposition 4.5 Let f : Rm → Rn be a continuous func-
tion. If U ⊆ Rn is an open set then f−1(U) is also open.

4.1. Proof of Theorem 4.2

1. Let C be a connected component of some strict sublevel
set Lsα = Φ−1((−∞, α)), for some α > p∗. By Proposition
4.5, Lsα is an open set and thus C must be open.

Step 1: Finding a point inside C where Fk has full rank.
Let θ ∈ C be such that the pre-activation outputs at the first
hidden layer are distinct for all training samples. Note that
such θ always exist since Assumption 2.4 implies that the
set of W1 where this does not hold has Lebesgue measure
zero, whereas C has positive measure. This combined
with Assumption 2.1 implies that the (post-activation)
outputs at the first hidden layer are distinct for all training
samples. Now one can view these outputs at the first
layer as inputs to the next layer and argue similarly. By
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repeating this argument and using the fact that C has
positive measure, we conclude that there exists θ ∈ C such
that the outputs at layer k − 1 are distinct for all training
samples, i.e. (Fk−1)i: 6= (Fk−1)j: for every i 6= j. Let V
be the pre-activation output (without bias term) at layer
k, in particular V = Fk−1Wk = [v1, . . . , vnk

] ∈ RN×nk .
Since Fk−1 has distinct rows, one can easily perturb Wk

so that every column of V has distinct entries. Note here
that the set of Wk where this does not hold has measure
zero whereas C has positive measure. Equivalently, C must
contain a point where every vj has distinct entries. To
simplify notation, let a = bk ∈ Rnk , then by definition,

Fk = [σ(v1 + 1Na1), . . . , σ(vnk
+ 1Nank

)]. (6)

Suppose that Fk has low rank, otherwise we are done. Let
r = rank(Fk) < N ≤ nk and I ⊂ {1, . . . , nk} , |I| = r
be the subset of columns of Fk so that rank(Fk(:, I)) =
rank(Fk), and Ī the remaining columns. By applying
Lemma 4.3 to (Fk,Wk+1, I), we can follow a continuous
path with invariant loss (i.e. entirely contained inside C)
to arrive at some point where FkWk+1 is independent of
Fk(: .Ī). It remains to show how to change Fk(:, Ī) by
modifying certain parameters so that Fk has full rank. Let
p = |Ī| = nk − r and Ī = {j1, . . . , jp} . From (6) we have

Fk(:, Ī) = [σ(vj1 + 1Naj1), . . . , σ(vjp + 1Najp)].

Let col(·) denotes the column space of a matrix. Then
dim(col(Fk(:, I))) = r < N. Since vj1 has distinct en-
tries, Lemma 4.4 implies that there must exist aj1 ∈ R so
that σ(vj1 + 1Naj1) /∈ col(Fk(:, I)), because otherwise
Span {σ(vj1 + 1Naj1) | aj1 ∈ R} ∈ col(Fk(:, I)) whose
dimension is strictly smaller than N and thus contradicts
Lemma 4.4. So we pick one such value for aj1 and follow a
direct line segment between its current value and the new
value. Note that the loss is invariant on this segment since
any changes on aj1 only affects Fk(:, Ī) which however has
no influence on the loss by above construction. Moreover, it
holds at the new value of aj1 that rank(Fk) increases by 1.
Since nk ≥ N by our assumption, it follows that p ≥ N−r
and thus one can choose

{
aj2 , . . . , ajN−r

}
in a similar way

and finally obtain rank(Fk) = N.

Step 2: Applying Theorem 3.2 to the subnetwork above k.
Suppose that we have found from previous step a
θ = ((W ∗l , b

∗
l )
L
l=1) ∈ C so that Fk has full rank. Let

g : Ωk+1 × . . .× ΩL be given as

g
(

(Wl, bl)
L
l=k+1

)
=Φ

(
(W ∗l , b

∗
l )
k
l=1, (Wl, bl)

L
l=k+1

)
(7)

We recall that C is a connected component of Lsα. It holds
g
(

(W ∗l , b
∗
l )
L
l=k+1

)
= Φ(θ) ≤ α. Now one can view g

as the new loss for the subnetwork from layer k till layer
L and Fk can be seen as the new training data. Since

rank(Fk) = N and nk+1 > . . . > nL, Theorem 3.2 implies
that g has connected sublevel sets and g can attain any value
arbitrarily close to p∗. Let ε ∈ (p∗, α) and (W ′l , b

′
l)
L
l=k+1

be any point such that g
(

(W ′l , b
′
l)
L
l=k+1

)
≤ ε. Since

both (W ∗l , b
∗
l )
L
l=k+1 and (W ′l , b

′
l)
L
l=k+1 belongs to the α-

sublevel set of g, which is a connected set, there must exist
a continuous path from (W ∗l , b

∗
l )
L
l=k+1 to (W ′l , b

′
l)
L
l=k+1

on which the value of g is not larger than α. This com-
bined with (7) implies that there is also a continuous
path from θ =

(
(W ∗l , b

∗
l )
k
l=1, (W

∗
l , b
∗
l )
L
l=k+1

)
to θ′ :=(

(W ∗l , b
∗
l )
k
l=1, (W

′
l , b
′
l)
L
l=k+1

)
on which the loss Φ is not

larger than α. Since C is connected, it must hold θ′ ∈ C.
Moreover, we have Φ(θ′) = g

(
(W ′l , b

′
l)
L
l=k+1

)
≤ ε. Since

ε can be chosen arbitrarily small and close to p∗, we con-
clude that the loss Φ can be made arbitrarily small inside C,
and thus Φ has no bad local valleys.

2. Let C be a local valley, which by Definition 4.1 is a
connected component of some strict sublevel set Lsα =
Φ−1((−∞, α)). According the the proof of the first state-
ment above, one can find a θ = (W ∗l , b

∗
l )
L
l=1 ∈ C so that

Fk(θ) has full rank. Now one can view Fk(θ) as the training
data for the subnetwork from layer k till layer L. The new
loss is defined for this subnetwork as

g
(

(Wl, bl)
L
l=k+1

)
= Φ

(
(W ∗l , b

∗
l )
k
l=1, (Wl, bl)

L
l=k+1

)
.

By our assumptions, σ satisfies Assumption 2.1 and
nk+1 > . . . > nL, thus the above subnetwork with the new
loss g and training data Fk(θ) satisfy all the conditions of
Theorem 3.2, and so it follows that g has unbounded level set
components. Let β := g

(
(W ∗l , b

∗
l )
L
l=k+1

)
= Φ(θ) < α.

Let E be a connected component of the level set
g−1(β) which contains (W ∗l , b

∗
l )
L
l=k+1. Let D ={(

(W ∗l , b
∗
l )
k
l=1, (Wl, bl)

L
l=k+1

) ∣∣∣ (Wl, bl)
L
l=k+1 ∈ E

}
.

Then D is connected and unbounded since E is con-
nected and unbounded. It holds for every θ′ ∈ D that
Φ(θ′) = β, and thus D ⊆ Φ−1(β) ⊆ Lsα, where the
last inclusion follows from β < α. Moreover, we have
θ =

(
(W ∗l , b

∗
l )
k
l=1, (W

∗
l , b
∗
l )
L
l=k+1

)
∈ D and also θ ∈ C,

it follows that D ⊆ C since C is already the maximal
connected component of Lsα. Since D is unbounded, C
must also be unbounded, which finishes the proof. �

5. Large Width of First Hidden Layer Leads
to Connected Sublevel Sets

In Theorem 4.2, we show that if one of the hidden layers has
at leastN neurons then the loss function has no bad valleys –
see Figure 4 for an example. Note that according to Theorem
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Figure 4. A function which has no bad local valleys. Multiple
valleys are caused due to the disconnectedness of sublevel sets.

4.2 all the global valleys must be unbounded. However for
the purpose of illustration, we only plot bounded valleys
in Figure 4 as the key point which we want to mention
about this theorem here is that: every local valley is a global
valley, and there could exist multitude of them. In this
section, by analyzing a special case of the network where
the first hidden layer has at least 2N neurons, we can show
further that there is only one such global valley.

Theorem 5.1 Let Assumption 2.1 and Assumption 2.2 hold.
Suppose that n1 ≥ 2N and n2 > . . . > nL. Then every
sublevel set of Φ is connected. Moreover, every connected
component of every level set of Φ is unbounded.

Theorem 5.1 shows a stronger property than Theorem 4.2 as
it not only implies that the loss has no bad local valleys but
also that there is a unique valley. As a result, all finite global
minima of the loss (whenever they exist, e.g. for square
loss) are automatically connected. This can be seen as the
generalization of (Venturi et al., 2018) from one hidden
layer networks and square loss to arbitrary deep nets and
general convex loss functions. Interestingly, some other
recent work (Draxler et al., 2018; Garipov et al., 2018)
have empirically shown that different global minima of
several existing CNN architectures can be connected by
a continuous path on which the loss function has similar
values. While our current results are not directly applicable
to these models, we consider this as a stepping stone for
such extensions in future work. Lastly, the unboundedness
property of level sets of Φ as shown in the second statement
of Theorem 5.1 implies that the unique global valley of Φ
in this case is unbounded, and Φ has no strict local extrema.
The proof of Theorem 5.1 rests upon the following lemmas.

Lemma 5.2 Let (X,W, b, V ) ∈ RN×d × Rd×n × Rn ×
Rn×p. Let σ : R → R satisfy Assumption 2.2. Suppose
that n ≥ N and X has distinct rows. Let Z = σ(XW +
1Nb

T )V. There is a continuous curve c : [0, 1]→ Rd×n ×
Rn × Rn×p with c(λ) = (W (λ), b(λ), V (λ)) satisfying:

1. c(0) = (W, b, V ).

2. σ
(
XW (λ)) + 1Nb(λ)T

)
V (λ) = Z, ∀λ ∈ [0, 1].

3. rank
(
σ
(
XW (1) + 1Nb(1)T

))
= N.

Lemma 5.3 Let (X,W, V,W ′) ∈ RN×d×Rd×n×Rn×p×
Rd×n. Let σ : R→ R satisfy Assumption 2.2. Suppose that
n ≥ 2N and rank(σ(XW )) = N, rank(σ(XW ′)) = N.
Then there is a continuous curve c : [0, 1]→ Rd×n×Rn×p
with c(λ) = (W (λ), V (λ)) which satisfies the following:

1. c(0) = (W,V ).

2. σ(XW (λ))V (λ) = σ(XW )V, ∀λ ∈ [0, 1].

3. W (1) = W ′.

5.1. Proof of Theorem 5.1

Let θ = (Wl, bl)
L
l=1, θ

′ = (W ′l , b
′
l)
L
l=1 be arbitrary points in

some sublevel set Lα. It is sufficient to show that there is a
connected path between θ and θ′ on which the loss is not
larger than α. The output at the first layer is given by

F1(θ) = σ([X,1N ][WT
1 , b1]T ),

F1(θ′) = σ([X,1N ][W ′T1 , b′1]T ).

First, by applying Lemma 5.2 to (X,W1, b1,W2), we can
assume that F1(θ) has full rank, because otherwise there is
a continuous path starting from θ to some other point where
the rank condition is fulfilled and the loss is invariant on the
path, and so we can reset θ to this new point. Similarly, we
can assume that F1(θ′) has full rank.

Next, by applying Lemma 5.3 to the tuple(
[X,1N ], [WT

1 , b1]T ,W2, [W
′T
1 , b′1]T

)
, and using the

similar argument as above, we can drive θ to some other
point where the parameters of the first hidden layer agree
with the corresponding values of θ′. So we can assume
w.l.o.g. that (W1, b1) = (W ′1, b

′
1). Note that at this step we

did not modify θ′ but θ and thus F1(θ′) still has full rank.

Once the first hidden layer of θ and θ′ coincide, one can
view the output of this layer, say F1 := F1(θ) = F1(θ′)
with rank(F1) = N , as the new training data for the sub-
network from layer 1 till layer L (given that (W1, b1) is
fixed). This subnetwork and the new data F1 satisfy all
the conditions of Theorem 3.2, and so it follows that the
loss Φ restricted to this subnetwork has connected sublevel
sets, which implies that there is a connected path between
(Wl, bl)

L
l=2 and (W ′l , b

′
l)
L
l=2 on which the loss is not larger

than α. This indicates that there is also a connected path
between θ and θ′ in Lα and so Lα must be connected.

To show that every level set component of Φ is unbounded,
let θ ∈ Ω be an arbitrary point. Denote F1 = F1(θ) and let
I ⊂ {1, . . . , N} be such that rank(F1(:, I)) = rank(F1).
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Since rank(F1) ≤ min(N,n1) < n1, we can apply Lemma
4.3 to the tuple (F1,W2, I) to find a continuous path W2(λ)
which drives θ to some other point where the output at 2nd
layer F1W2 is independent of F1(:, Ī). Note that the net-
work output at 2nd layer is invariant on this path and hence
the entire path belongs to the same level set component with
θ. From that point, one can easily scale (W1(:, Ī), b1(Ī))
to arbitrarily large values without affecting the output.
Since this path has constant loss and is unbounded, it
follows that every level set component of Φ is unbounded. �

6. Extension to Other Activation Functions
One way to extend our results from the previous sections
to other activation functions such as ReLU and exponential
linear unit is to remove Assumption 2.1 from the previous
theorems, as shown next.

Theorem 6.1 Let K = min {n1, . . . , nL−1} . Then all the
following hold under Assumption 2.2:

1. If K ≥ N then the loss Φ has no bad local valleys.

2. If K ≥ 2N then every sublevel set of Φ is connected.

It is clear that the conditions of Theorem 6.1 are now much
stronger than that of our previous theorems as all the hidden
layers need to be wide enough. Nevertheless, it is worth
mentioning that this kind of technical conditions (i.e. all the
hidden layers are sufficiently wide) have also been used in
recent work (Allen-Zhu et al., 2018b; Du et al., 2018; Zou
et al., 2018) to establish convergence of gradient descent
methods to a global minimum. From a theoretical stand-
point, these results seem to suggest that Leaky-ReLU might
in general lead to a much “easier” loss surface than ReLU.

7. Connectivity of Sublevel Sets Does Not
Ensure Success of Gradient Descent

In the previous sections, we have shown that over-
parameterization in deep neural networks essentially leads
to connected sublevel sets of the loss function, which makes
it more favorable to local search algorithms such as gradient
descent. However, as mentioned in the introduction, this
result in general does not guarantee convergence of gradient
descent to a global minimum. First reason is due to the po-
tential presence of saddle points. Second, if gradient descent
has bad initialization, then in the worst case the algorithm
can get stuck infinitely as shown in Figure 5.

8. Related Work
Many interesting theoretical results have been developed on
the loss surface of neural networks (Livni et al., 2014; Choro-
manska et al., 2015; Haeffele & Vidal, 2017; Hardt & Ma,
2017; Xie et al., 2017; Yun et al., 2017; Lu & Kawaguchi,
2017; Pennington & Bahri, 2017; Zhou & Liang, 2018;
Liang et al., 2018b;a; Zhang et al., 2018; Nouiehed & Raza-
viyayn, 2018; Laurent & v. Brecht, 2018). There is also a
whole line of researches studying convergence of learning
algorithms in training neural networks (Andoni et al., 2014;
Sedghi & Anandkumar, 2015; Janzamin et al., 2016; Gautier
et al., 2016; Brutzkus & Globerson, 2017; Soltanolkotabi,
2017; Soudry & Hoffer, 2017; Tian, 2018; Wang et al., 2018;
Ji & Telgarsky, 2019; Arora et al., 2019; Allen-Zhu et al.,
2018a; Bartlett et al., 2018; Chizat & Bach, 2018) and oth-
ers studying generalization properties, which is however
beyond the scope of this paper.

The closest existing result is the work by (Venturi et al.,
2018) who show that if the number of hidden neurons is
greater than the intrinsic dimension of the network, defined
as the dimension of some function space, then the loss has
no spurious valley, and furthermore, if the number of hidden
neurons is greater than two times the intrinsic dimension
then every sublevel set is connected. The results apply to
one hidden layer networks with population risk and square
loss. As admitted by the authors in the paper, an extension
of such result, in particular the notion of intrinsic dimension,
to multiple layer networks would require the number of
neurons to grow exponentially with depth. Prior to this,
(Safran & Shamir, 2016) showed that for a class of deep
fully connected networks with common loss functions, there
exists a continuous descent path between specific pairs of
points in parameter space which satisfy certain conditions,
and these conditions can be shown to hold with probability
1/2 as the width of the last hidden layer goes to infinity.

Most closely related in terms of the setting are the work by
(Nguyen & Hein, 2017; 2018) who analyze the optimization
landscape of standard deep and wide (convolutional) neural
networks for multiclass problem. They both assume that the
network has a wide hidden layer k with nk ≥ N. This con-
dition has been recently relaxed to n1 + . . .+nL−1 ≥ N by
using flexible skip-connections (Nguyen et al., 2019). All of
these results so far require real analytic activation functions,
and thus are not applicable to the class of piecewise linear
activations analyzed in this paper. Moreover, while the pre-
vious work focus on global optimality of critical points, this
paper characterizes sublevel sets of the loss function which
gives us further insights and intuition on the underlying
geometric structure of the optimization landscape.

Conclusion. We have shown that every sublevel set of
the training loss function of a certain class of deep over-
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Figure 5. Failure of gradient descent on a function with connected sublevel sets. Left: A function with connected sublevel sets. Right:
Contour and negative gradient map of the function on the left. The plotted gradient flow (i.e. red curve) gets stuck infinitely as the function
continues to decrease along that direction and only reaches a suboptimal value at infinity. Note that it also does not converge to any finite
critical point as the function decreases exponentially in the direction of the trajectory.

parameterized neural nets is connected and unbounded. Our
results hold for standard deep fully connected networks with
piecewise linear activation functions, and general convex
losses, e.g. square loss, cross-entropy loss and multiclass
Hinge-loss. We note that the property of connected sublevel
sets as shown in this paper is satisfied by quasi-convex
functions, and intuitively, this kind of functions are more
favorable to (stochastic) gradient descent algorithms than
other wildly non-convex functions. On the other hand, we
also show that initialization conditions are very important
to ensure convergence of gradient descent to the bottom of
the loss landscape. In particular, even when all sublevel sets
are connected, the algorithm might still get stuck infinitely
or converge to a saddle point depending on where it starts.

For future work, we find it interesting to study the influence
of depth on optimization landscape of nonlinear networks.
We know previously that depth can improve the expressive
power of nonlinear neural nets (Telgarsky, 2016; Eldan
& Shamir, 2016), or accelerate the optimization of linear
networks (Arora et al., 2018). However, whether or not
depth has any influence on the geometry of sublevel sets of
the loss function still seems to be an entirely open problem.

Open problem. Given a reasonable fixed budget on each
hidden layer width (i.e. significantly less than N ), is it pos-
sible to make the loss function of nonlinear neural networks
be free of bad local valleys, or to make its sublevel sets
become connected, by just increasing the depth?
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A. Proof of Lemma 2.3
A function σ : R→ R is continuous piecewise linear with
at least two pieces if it can be represented as

σ(x) = aix+ bi, ∀x ∈ (xi−1, xi), ∀ i ∈ [1, n+ 1].

for some n ≥ 1, x0 = −∞ < x1 < . . . < xn < xn+1 =
∞ and (ai, bi)

n+1
i=1 . We can assume that all the linear pieces

agree at their intersection and there are no consecutive
pieces with the same slope: ai 6= ai+1 for every i ∈ [1, n].
Suppose by contradiction that σ does not satisfy Assump-
tion 2.2, then there are non-zero coefficients (λi, yi)

m
i=1 with

yi 6= yj(i 6= j) such that σ(x) =
∑m
i=1 λiσ(x − yi) for

every x ∈ R. We assume w.l.o.g. that y1 < . . . < ym.

Case 1: y1 > 0. For every x ∈ (−∞, x1) we have σ(x) =
a1x+b1 =

∑m
i=1 λi(a1(x−yi)+b1) and thus by comparing

the coefficients on both sides we obtain
∑m
i=1 λia1 = a1.

Moreover, for every x ∈
(
x1,min(x1 + y1, x2)

)
it holds

σ(x) = a2x + b2 =
∑m
i=1 λi(a1(x − yi) + b1) and so∑m

i=1 λia1 = a2. Thus a1 = a2, which is a contradiction.

Case 2: y1 < 0. By definition, for x ∈ (−∞, x1 + y1) we
have σ(x) = a1x + b1 =

∑m
i=1 λi(a1(x − yi) + b1) and

thus by comparing the coefficients on both sides we obtain
m∑
i=1

λia1 = a1. (8)

For x ∈
(
x1 + y1,min(x1 + y2, x1, x2 + y1)

)
it holds

σ(x) = a1x+ b1

= λ1(a2(x− y1) + b2) +

m∑
i=2

λi(a1(x− yi) + b1)

and thus by comparing the coefficients we have

λ1a2 +

m∑
i=2

λia1 = a1.

This combined with (8) leads to λ1a1 = λ1a2, and thus
a1 = a2 (since λ1 6= 0) which is a contradiction.

One can prove similarly for ELU (Clevert et al., 2016)

σ(x) =

{
x x ≥ 0

α(ex − 1) x < 0
where α > 0.

Suppose by contradiction that there exist non-zero coeffi-
cients (λi, yi)

m
i=1 with yi 6= yj(i 6= j) such that σ(x) =∑m

i=1 λiσ(x−yi), and assume w.l.o.g. that y1 < . . . < ym.
If ym > 0 then for every x ∈ (max(0, ym−1), ym) it holds

σ(x) = x = λmα(ex−ym − 1) +

m−1∑
i=1

λi(x− yi)

⇒ ex =
xeym −

∑m−1
i=1 λi(x− yi)eym
λmα

+ eym

which is a contradiction since ex cannot be identical to any
affine function on any open interval. Thus it must hold that
ym < 0. But then for every x ∈ (ym, 0) we have

σ(x) = α(ex − 1) =

m∑
i=1

λi(x− yi)

⇒ ex =
1

α

m∑
i=1

λi(x− yi) + 1

which is a contradiction for the same reason above.

B. Proof of Proposition 2.7
Pick some a, b ∈ f(A) and let x, y ∈ A be such that f(x) =
a and f(y) = b. Since A is connected, there is a continuous
curve r : [0, 1] → A so that r(0) = x, r(1) = y. Consider
the curve f ◦r : [0, 1]→ f(A), then it holds that f(r(0)) =
a, f(r(1)) = b. Moreover, f ◦ r is continuous as both f and
r are continuous. Thus it follows from Definition 2.6 that
f(A) is a connected.

C. Proof of Proposition 2.8
Let x, y ∈ U + V then there exist a, b ∈ U and c, d ∈ V
such that x = a+c, y = b+d. Since U and V are connected
sets, there exist two continuous curves p : [0, 1] → U
and q : [0, 1] → V such that p(0) = a, p(1) = b and
q(0) = c, q(1) = d. Consider the continuous curve r(t) :=
p(t) + q(t) then we have r(0) = a+ c = x, r(1) = b+d =
y and r(t) ∈ U + V for every t ∈ [0, 1]. This implies
that every two elements in U + V can be connected by a
continuous curve and thus U + V must be a connected set.

D. Proof of Lemma 3.4
The idea is to make one weight matrix full rank at a time
while keeping the others fixed (except the first layer). Each
step is done by following a continuous path which leads
to a new point where the rank condition is fulfilled while
keeping the loss constant along the path. Each time when
we follow a continuous path, we reset our starting point to
the end point of the path and proceed. This is repeated until
all the matrices (Wl)

L
l=2 have full rank.

Step 1: Make W2 full rank. If W2 has full rank then we pro-
ceed to W3. Otherwise, let rank(W2) = r < n2 < n1. Let
I ⊂ {1, . . . , n1} , |I| = r denote the set of indices of lin-
early independent rows of W2 so that rank(W2(I, :)) = r.
Let Ī denote the remaining rows ofW2. LetE ∈ R(n1−r)×r

be a matrix such that W2(Ī, :) = EW2(I, :). Let P ∈
Rn1×n1 be a permutation matrix which permutes the rows
of W2 according to I so that we can write

PW2 =

[
W2(I, :)
W2(Ī, :)

]
.
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We recall that F1(θ) is the output of the network at the first
layer, evaluated at θ. Below we drop θ and just write F1 as
it is clear from the context. By construction of P , we have

F1P
T = [F1(:, I), F1(:, Ī)].

The first step is to turn W1 into a canonical form. In partic-
ular, the set of all possible solutions of W1 which realizes
the same the output F1 at the first hidden layer is character-
ized by X†

(
σ−1(F1)−1Nb

T
1

)
+ ker(X) where we denote,

by abuse of notation, ker(X) =
{
A ∈ Rd×n1

∣∣ XA = 0
}
.

This solution set is connected because ker(X) is a con-
nected set and the Minkowski-sum of two connected sets
is known to be connected, and so there exists a con-
tinuous path between every two solutions in this set on
which the output F1 is invariant. Obviously the current
W1 and X†(σ−1(F1) − 1Nb

T
1 ) are elements of this set,

thus they must be connected by a continuous path on
which the loss is invariant. So we can assume now that
W1 = X†(σ−1(F1)− 1Nb

T
1 ). Next, consider the curve:

W1(λ) = X†
(
σ−1(A(λ))− 1Nb

T
1

)
,where

A(λ) = [F1(:, I) + λF1(:, Ī)E, (1− λ)F1(:, Ī)]P.

This curves starts at θ since W1(0) = W1, and it is con-
tinuous as σ has a continuous inverse by Assumption 2.1.
Using XX† = I, one can compute the pre-activation output
(without bias term) at the second layer as

σ
(
XW1(λ) + 1Nb

T
1

)
W2 = A(λ)W2 = F1W2,

which implies that the loss is invariant on this curve, and so
we can take its end point W1(1) as a new starting point:

W1 = X†
(
σ−1(A)− 1Nb

T
1

)
,where

A = [F1(:, I) + F1(:, Ī)E, 0]P.

Now, the output at second layer above, given by AW2, is
independent of W2(Ī, :) because it is canceled by the zero
component in A. Thus one can easily change W2(Ī, :) so
that W2 has full rank while still keeping the loss invariant.

Step 2: Using induction to make W3, . . . ,WL full rank.
Let θ = (Wl, bl)

L
l=2 be our current point. Suppose that all

the matrices (Wl)
k
l=2 already have full rank for some k ≥ 2

then we show below how to make Wk+1 full rank. We write
Fk to denote Fk(θ). By the second statement of Lemma
3.3, we can follow a continuous path (with invariant loss) to
drive θ to the following point:

θ :=
(
h
(

(Wl, bl)
k
l=2, Fk

)
, (Wl, bl)

L
l=2

)
(9)

where h : Ω∗2 × . . .× Ω∗k × RN×nk is the continuous map
from Lemma 3.3 which satisfies for every A ∈ RN×nk ,

Fk

(
h
(
(Wl, bl)

k
l=2, A

)
, (Wl, bl)

k
l=2

)
= A. (10)

Now, if Wk+1 already has full rank then we are done, other-
wise we follow the similar steps as before. Indeed, let r =
rank(Wk+1) < nk+1 < nk and I ⊂ {1, . . . , nk} , |I| = r
the set of indicies of r linearly independent rows of Wk+1.
Then there is a permutation matrix P ∈ Rnk×nk and some
matrix E ∈ R(nk−r)×r so that

PWk+1 =

[
Wk+1(I, :)
Wk+1(Ī, :)

]
,Wk+1(Ī, :)=EWk+1(I, :).

(11)

Moreover it holds

FkP
T = [Fk(:, I), Fk(:, Ī)]. (12)

Consider the following curve c : [0, 1]→ Ω which continu-
ously update (W1, b1) while keeping other layers fixed:

c(λ) =
(
h
(

(Wl, bl)
k
l=2, A(λ)

)
, (W2, b2), . . . , (WL, bL)

)
,

where A(λ) = [Fk(:, I) + λFk(:, Ī)E, (1− λ)Fk(:, Ī)]P.

It is clear that c is continuous as h is continuous. One can
easily verify that c(0) = θ by using (12) and (9). The pre-
activation output (without bias term) at layer k+ 1 for every
point on this curve is given by

Fk(c(λ))Wk+1 = A(λ)Wk+1 = FkWk+1, ∀λ ∈ [0, 1],

where the first equality follows from (10) and the second
follows from (11) and (12). As the loss is invariant on this
curve, we can take its end point c(1) as a new starting point:

θ :=
(
h
(

(Wl, bl)
k
l=2, A

)
, (W2, b2), . . . , (WL, bL)

)
,

where A = [Fk(:, I) + Fk(:, Ī)E, 0]P.

At this point, the output at layer k + 1 as mentioned above
is given by AWk+1, which is independent of Wk+1(Ī, :)
since it is canceled out by the zero component in A, and
thus one can easily change the submatrixWk+1(Ī, :) so that
Wk+1 has full rank while leaving the loss invariant.

Overall, by induction we can make all the weight matrices
W2, . . . ,WL full rank by following several continuous paths
on which the loss is constant, which finishes the proof.

E. Proof of Lemma 4.3
Let r = rank(F ) < n. Since I contains r linearly inde-
pendent columns of F , the remaining columns must lie on
their span. In other words, there exists E ∈ Rr×(n−r) so
that F (:, Ī) = F (:, I)E. Let P ∈ Rn×n be a permutation
matrix which permutes the columns of F according to I
so that we can write F = [F (:, I), F (:, Ī)]P. Consider the
continuous curve c : [0, 1]→ Rn×p defined as

c(λ) = PT
[
W (I, :) + λEW (Ī, :)

(1− λ)W (Ī, :)

]
, ∀λ ∈ [0, 1].
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It holds c(0) = PT
[
W (I, :)
W (Ī, :)

]
= W. For every λ ∈ [0, 1] :

Fc(λ) = [F (:, I), F (:, Ī)]PPT
[
W (I, :) + λEW (Ī, :)

(1− λ)W (Ī, :)

]
= F (:, I)W (I, :) + F (:, Ī)W (Ī, :) = FW.

Lastly, we have

Fc(1) = [F (:, I), F (:, Ī)]PPT
[
W (I, :) + EW (Ī, :)

0

]
= F (:, I)W (I, :) + F (:, I)EW (Ī, :)

which is independent of F (:, Ī).

F. Proof of Lemma 4.4
Suppose by contradiction that dim(Span(S)) < n. Then
there exists λ ∈ Rn, λ 6= 0 such that λ ⊥ Span(S), and
thus it holds

∑n
i=1 λiσ(vi + b) = 0 for every b ∈ R. We

assume w.l.o.g. that λ1 6= 0 then it holds

σ(v1 + b) = −
n∑
i=2

λi
λ1
σ(vi + b), ∀ b ∈ R.

By a change of variable, we have

σ(c) = −
n∑
i=2

λi
λ1
σ(c+ vi − v1), ∀ c ∈ R,

which contradicts Assumption 2.2. Thus Span(S) = Rn.

G. Proof of Lemma 5.2
Let F = σ(XW + 1Nb

T ) ∈ RN×n. If F already has
full rank then we are done. Otherwise let r = rank(F ) <
N ≤ n. Let I denote a set of column indices of F so
that rank(F (:, I)) = r and Ī the remaining columns. By
applying Lemma 4.3 to (F, V, I), we can find a continuous
path V (λ) so that we will arrive at some point where FV (λ)
is invariant on the path and it holds at the end point of the
path that FV is independent of F (:, Ī). This means that
we can arbitrarily change the values of W (:, Ī) and b(Ī)
without affecting the value of Z, because any changes of
these variables are absorbed into F (:, Ī) which anyway
has no influence on FV. Thus it is sufficient to show that
there exist W (:, Ī) and b(Ī) for which F has full rank.
Let p = n − r and Ī = {j1, . . . , jp} . Let A = XW
thenA(:, Ī) := [aj1 , . . . , ajp ] = XW (:, Ī).By assumption
X has distinct rows, one can choose W (:, Ī) so that each
ajk ∈ RN has distinct entries. Then we have

F (:, Ī) = [σ(aj1 + 1Nbj1), . . . , σ(ajp + 1Nbjp)].

Let col(·) denotes the column space of a matrix. It holds
dim(col(F (:, I))) = r < N. Since aj1 has distinct en-
tries, Lemma 4.4 implies that there must exist bj1 ∈ R so

that σ(aj1 + 1Nbj1) /∈ col(F (:, I)), because otherwise
Span {σ(aj1 + 1Nbj1) | bj1 ∈ R} ∈ col(F (:, I)) whose
dimension is strictly smaller than N , which contradicts
Lemma 4.4. So it means that there is bj1 ∈ R so that
rank(F ) increases by 1. By assumption n ≥ N, it follows
that p ≥ N − r, and thus we can choose

{
bj2 , . . . , bjN−r

}
similarly to obtain rank(F ) = N.

H. Proof of Lemma 5.3
We need to show that there is a continuous path from (W,V )
to (W ′, V ′) for some V ′ ∈ Rn×p, so that the output func-
tion, defined by Z := σ(XW )V, is invariant along the
path. Let F = σ(XW ) ∈ RN×n and F ′ = σ(XW ′).
It holds Z = FV. Let I resp. I ′ denote the maximum
subset of linearly independent columns of F resp. F ′ so
that rank(F (:, I)) = rank(F (:, I ′)) = N, and Ī and Ī ′

be their complements. By the rank condition, we have
|I| = |I ′| = N. Since rank(F ) = N < n, we can apply
Lemma 4.3 to the tuple (F, V, I) to arrive at some point
where the output Z is independent of F (:, Ī). From here,
we can update W (:, Ī) arbitrarily so that it does not affect Z
because any change to these weights only lead to changes on
F (:, Ī) which however has no influence on Z. So by taking
a direct line segment from the current value of W (:, Ī) to
W ′(:, I ′), we achieve W (:, Ī) = W ′(:, I ′). We refer to this
step below as a copy step. Note here that since n ≥ 2N by
assumption, we must have |Ī| ≥ |I ′|.Moreover, if |Ī| > |I ′|
then we can simply ignore the redundant space in W (:, Ī).

Now we already copy W ′(:, I ′) into W (:, Ī), so it holds
that rank(F (:, Ī)) = rank(F ′(:, I ′)) = N. Let K = I ′ ∩ Ī
and J = I ′ ∩ I be disjoint subsets so that I ′ = K ∪ J.
Suppose w.l.o.g. that the above copy step has been done
in such a way that W (:, Ī ∩ I ′) = W ′(:,K). Now we ap-
ply Lemma 4.3 to (F, V, Ī) to arrive at some point where
Z is independent of F (:, I), and thus we can easily ob-
tain W (:, I ∩ I ′) = W ′(:, J) by taking a direct line
segment between these weights. So far, all the rows of
W ′(:,K ∪ J) have been copied into W (:, I ′) at the right
positions so we obtain that W (:, I ′) = W ′(:, I ′). It follows
that rank(F (:, I ′)) = rank(F ′(:, I ′)) = N and thus we
can apply Lemma 4.3 to (F, V, I ′) to arrive at some other
point where Z is independent of F (:, Ī ′). From here we can
easily obtain W (:, Ī ′) = W ′(:, Ī ′) by taking a direct line
segment between these variables. Till now we already have
W = W ′. Moreover, all the paths which we have followed
leave the output Z invariant.

I. Proof of Theorem 6.1
Case 1: min {n1, . . . , nL−1} ≥ N. Let θ = (Wl, bl)

L
l=1 be

an arbitrary point of some strict sublevel set Lsα, for some
α > p∗.We will show that there is a continuous descent path
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starting from θ on which the loss is non-increasing and gets
arbitrarily close to p∗. Indeed, for every ε arbitrarily close
to p∗ and ε ≤ α, let Ŷ ∈ RN×m be such that ϕ(Ŷ ) ≤ ε.
Since X has distinct rows, n1 ≥ N, and the activation
σ satisfies Assumption 2.2, an application of Lemma 5.2
to (X,W1, b1,W2) shows that there is a continuous path
with constant loss which leads θ to some other point where
the output at the first hidden layer is full rank. So we can
assume w.l.o.g. that it holds for θ that rank(F1) = N.
By assumption n1 ≥ N and F1 ∈ RN×n1 , it follows that
F1 must have distinct rows, and thus by applying Lemma
5.2 again to (F1,W2, b2,W3) we can assume w.l.o.g. that
rank(F2) = N. By repeating this argument to higher layers
using our assumption on the width, we can eventually arrive
at some θ = (Wl, bl)

L
l=1 where rank(FL−1) = N. Thus

there must exist W ∗L−1 ∈ RnL−1×m so that FL−1W ∗L =

Ŷ − 1Nb
T
L. Consider the line segment WL(λ) = (1 −

λ)WL + λW ∗L, then it holds by convexity of ϕ that

Φ
(

(Wl, bl)
L−1
l=1 , (WL(λ), bL)

)
=ϕ
(
FL−1WL(λ) + 1Nb

T
L

)
=ϕ
(

(1− λ)(FL−1WL + 1Nb
T
L) + λ(FL−1W

∗
L + 1Nb

T
L)
)

≤(1− λ)ϕ(FL) + λϕ(Ŷ )

<(1− λ)α+ λε ≤ α.

Thus the whole line segment is contained in Lsα. By plug-
ging λ = 1 we obtain

(
(Wl, bl)

L−1
l=1 , (W

∗
L, bL)

)
∈ Lsα.

Moreover, it holds Φ
(

(Wl, bl)
L−1
l=1 , (W

∗
L, bL)

)
= ϕ(Ŷ ) ≤

ε. As ε can be chosen arbitrarily close to p∗, we conclude
that Φ can be made arbitrarily close to p∗ in every strict
sublevel set which implies that Φ has no bad local valleys.

Case 2: min {n1, . . . , nL−1} ≥ 2N.Our first step is similar
to the first step in the proof of Theorem 5.1, which we
repeat below for completeness. Let θ = (Wl, bl)

L
l=1, θ

′ =
(W ′l , b

′
l)
L
l=1 be arbitrary points in some sublevel set Lα. It is

sufficient to show that there is a connected path between θ
and θ′ on which the loss is not larger than α. In the following,
we denote Fk and F ′k as the output at a layer k for θ and θ′

respectively. The output at the first layer is:

F1 = σ([X,1N ][WT
1 , b1]T ),

F ′1 = σ([X,1N ][W ′T1 , b′1]T ).

By applying Lemma 5.2 to (X,W1, b1,W2) and
(X,W ′1, b

′
1,W

′
2) we can assume w.l.o.g. that both F1

and F ′1 have full rank, since otherwise there is a continuous
path starting from each point and leading to some other
point where the rank condition is fulfilled and the network
output at second layer is invariant on the path. Once
F1 and F ′1 have full rank, we can apply Lemma 5.3 to

(
[X,1N ], [WT

1 , b1]T ,W2, [W
′T
1 , b′1]T

)
in order to drive θ

to some other point where the parameters of the first layer
are all equal to the corresponding ones of θ′. So we can
assume w.l.o.g. that (W1, b1) = (W ′1, b

′
1).

Once the network parameters of θ and θ′ coincide at the first
hidden layer, we can view the output of this layer, which is
equal for both points (i.e., F1 = F ′1), as the new training
data for the subnetwork from layer 2 till layer L. Same
as before, we first apply Lemma 5.2 to (F1,W2, b2,W3)
and (F ′1,W

′
2, b
′
2,W

′
3) to drive θ and θ′ respectively to other

new points where both F2 and F ′2 have full rank. Note
that this path only acts on (W2, b2,W3) and thus leaves
everything else below layer 2 invariant, in particular we still
have F1 = F ′1. Then we can apply Lemma 5.3 again to the
tuple

(
[F1,1N ], [WT

2 , b2]T ,W3, [W
′T
2 , b′2]T

)
to drive θ to

some other point where (W2, b2) = (W ′2, b
′
2).

By repeating the above argument to the last hidden layer,
we can make all network parameters of θ and θ′ coincide for
all layers, except the output layer. In particular, the path that
each θ and θ′ has followed has invariant loss. The output of
the last hidden layer for these points isA := FL−1 = F ′L−1.
The loss at these two points can be rewritten as

Φ(θ) = ϕ
(

[A,1N ]

[
WL

bTL

])
,

Φ(θ′) = ϕ
(

[A,1N ]

[
W ′L
b′TL

])
.

By convexity of ϕ, it follows that the line segment

(1− λ)

[
WL

bTL

]
+ λ

[
W ′L
b′TL

]
must yield a continuous path between (WL, bL) and
(W ′L, b

′
L) where the loss of every point along this path is

upper bounded by max(Φ(θ),Φ(θ′)), which is clearly not
larger than α. Thus the entire line segment must belong to
Lα which implies that Lα is connected.


