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Definitions and more formal discussions are provided in
these sections.

A. Mixture Density Network
The Mixture Density networks predict a data conditional
Gaussian mixture model (GMM)in the data space. Condi-
tioning means that each latent vector, i.e., a point on the
learned manifold is projected back to a GMM in the data
space.

A GMM learns from the following energy function:

LGMM (x) = − log
∑
h

αhN (x;µh, σh) (1)

Whereby x is the input data, µh and σh parametrize the
h − th Gaussian distribution in the mixture. αh are the
mixing coefficients across the individual mixtures.

Contrary, a Mixture Density network hat multiple output
heads (multiple-hypotheses). The framework extends the
GMM-learning by the data conditioning as follows:

LMDN (x) = Ezi∼qφ(zi|x) [LGMM (x|zi)] (2)

whereby qφ is a inference network shared by all individual
mixtures. z is the latent code. The hypotheses are coupled
into forming a likelihood function by the mixing coefficients
αi.

B. Multimodal learning on the flipped moon
toy dataset

Fig. 1 shows the flipped half-moon dataset to demonstrate
MHP-learning in contrast to unimodal output distribution
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Figure 1. Flipped half-moon dataset: conditional prediction of y
based on x. Red points are samples from true distribution while
blue points represent samples from distributions approximations.
Learning with multiple-hypotheses predictions (MHP) loss or
MHP + Winner-takes-all (WTA) loss lead to support of artificial
data regions. Mixture density networks and our approach ConAD
reduces this effect.

learning. In this section, Fig 1 shows a qualitative evaluation
of different MHP-techniques. This task is a one-to-many
mapping from x to y with a discontinuity at the point x = 0
and x = 0.5.

When the local density function abruptly ends, MHP-
techniques support artificial data regions since they are not
penalized for artificial modes by the objective function as
discussed before. We refer to this property as an incon-
sistency concerning the true underlying distribution. In
contrast to that, Mixture Density Networks (MDN) and
our ConADs approaches reduce the inconsistencies to the
minimum.

C. One-to-many mapping tasks require
multi-modality

Consider a simple toy problem with an observable x and
hidden y which is to be predicted and expressed by the con-
ditional distribution ptrue(y|x) such as in Fig. 1. Since
the data conditional is multi-modal for some x, an uni-
modal output distribution cannot fully capture the under-
lying distribution. Instead, the bias-free solution for the
Mean-Squared-Error-minimizer is the empirical mean yxi
of ptrain(y|xi) on the training set. However, this learned
conditional density does not comply with the underlying
distribution: sampled data points fall into the low-likelihood
regions under ptrue(y|x). With increasing number of output
hypotheses, the data modes could be gradually captured.
For this task, the energy to be minimized is given by the
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Negative-log-likelihood of the Mixture Density Network
(MDN) App. A under a Gaussian Mixture with hypotheses
h in Eq. 4 :

(3)
EMDN (Θ) = − logL(Θ|X;Y )

= − log pGMM (Y |X,Θ)

= −
∑
i

∑
h

logαhpθh(yi|xi)

with

pθh(yi|xi, θh) =
1√

2πσh
exp− (yi − µh)2

2σ2
h

(4)

D. Lemma 4.1
Given a sufficient number of hypotheses H’, an optimal so-
lution Θ∗ for EWTA(Θ∗) is not unique (permutation is ex-
cluded). There exists a Θ

′
with EWTA(Θ∗) = EWTA(Θ

′
)

which is not consistent w.r.t. the underlying output distribu-
tion ptrain(yi|xi).

Proof. : Suppose c is the maximal modes count of the
dataset sampled from the real underlying conditional output
distribution p(yi|xi). Since |{(xi, yi)}| <∞→ c <∞.

Suppose H = c, then a trivial optimal solution for
EWTA(ΘH) is found by centering each hypothesis µik at a
different empirical data point k yik ∼ (yi, xi) and σik 7→ 0.
In this case lim

σik 7→0;∀i,k
EWTA(Θ̂H) = 0.

Suppose H ′ > c, then a solution Θ̂H′ can be formulated
s.t.: E(Θ̂H) = E(Θ̂H′).

Let Θ̂H′ = Θ̂H ∪ Θ̂H+1...H′ = Θ̂H ∪ {θh+1 . . . θh′} for
some random Θ̂H+1...H′ . Due to randomness and without
loss of generality, one can assume that ∀(xi, yi),∀θi ∈
ΘH+1...H′ , θi is not the optimal hypothesis for any training
point (xi, yi) ∈ Dtrain.

In this case due to the winner-takes-all energy formulation
we have:

(5)

EWTA(θ̂H′) = −
∑
i

max
1≤h≤H′

log pθh(yi|xi)

= −
∑
i

max
1≤h≤H

log pθh(yi|xi)

= EWTA(θ̂H)

So Θ̂H and Θ̂H′ with H ′ > H are both solutions to the loss
formulation and share the same energy level. The extended
hypotheses can support arbitrary artificial data regions with-
out being penalized.

E. Lemma 4.2

EMHP (Θ) = −
∑
i

∑
h

log (pθh(yi|xi))

∗

{
1− ε, pθh(yi|xi) ≥ pθk(yi|xi),∀k
ε

H−1 , else

(6)

Whereby xi,yi is corresponding input-output pairs from
the training dataset, 1 ≤ h ≤ H is a hypothesis branch,
which is generated by a parametrized neural network with
the parameter set θh. Furthermore, ε is a hyperparameter
used to distribute the learning signal to the non-optimal
hypotheses. Θ is the collection of all θh.

Lemma E.1. Similar to Lemma D, minimizing EMHP in
Eq. 6 might also lead to an inconsistent approximation of
the real underlying output distribution.

Proof. First, note that 0 ≤ ε ≤ H−1
H , since ε < 0 would

push away non-locally optimal hypotheses from the empiri-
cal solution, ε > H−1

H would penalize the best hypothesis
more than others. Both are undesired properties of MHP-
learning. First consider the case where ε 7→ H−1

H :

lim
ε7→H−1

H

EMHP (Θ) =
∑
i

∑
h

log (pθh(yi|xi)) ∗
1

H
(7)

=
1

H

∑
h

(∑
i

log (pθh(yi|xi))

)

=
1

H

∑
h

Eθh

∀θh and training data points (xi, yik) the optimal least-
squares solution is the mean, therefore we have:

θ∗h(yi|xi) = Eyik∼p(y|xi)[yi]

=
1

l

l∑
i=1

yi; yik ∼ p(yi|xi)

In this case, all hypotheses are optimized independently and
converge to the same solution similar to a single-hypothesis
approach. The resulting distribution is inconsistent w.r.t the
real output distribution (see Fig. 1 for an example).
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Now consider ε 7→ 1:

(8)

lim
ε 7→1

EMHP (Θ) = −
∑
i

∑
h

log (pθh(yi|xi))

∗

{
1; if θh is best hypothesis
0; else

= −
∑
i

max
1≤h≤H′

log pθh(yi|xi)

= EWTA(Θ)

In this case EMHP shares the same inconsistency property
with EWTA. Consequently, choosing ε ∈ [0, H−1H ] only
smoothes the penalty on suboptimal hypotheses. The risk re-
mains that distributions induced by non-optimal hypotheses
are beyond the real modes of the underlying distribution.

F. Related works in detail
Traditional one-class learning techniques (Schölkopf et al.,
2001; Tax & Duin, 2004; Liu et al., 2008; 2012; Breunig
et al., 2000) often fail in high-dimensional input domains
and require careful feature selection (Zong et al., 2018).

To cope with high-dimensional domains, typically a
reconstruction-based approach is used. This paradigm learns
the normal data distribution during training and uses the
data likelihood as an anomaly score at test time. Recently,
advances in generative modeling such as Generative Adver-
sarial Network (GAN) (Goodfellow et al., 2014) and Varia-
tional Autoencoder (VAE) (Rezende et al., 2014; Kingma &
Welling, 2013) are used for anomaly detection (Zong et al.,
2018; Schlegl et al., 2017; Deecke et al., 2018). However,
GAN and VAE approaches have limitations in anomaly de-
tection tasks. The GAN tends to assign less probability
mass to real samples, while VAE typically regresses to the
conditional means. The mean regression in VAE express the
model uncertainty and falsify the reconstruction-errors for
unseen images.

To address model uncertainty in VAE, the decoder is given
additional expressive power with multi-headed decoders.
The idea is to approximate multiple conditional modes
(dense data regions) by using networks with multiple heads.
This leads to training of multiple networks in Multi-Choice-
learning (Dey et al., 2015; Lee et al., 2017; 2016), the esti-
mation of a conditional Gaussian Mixture model in Mixture
Density Networks (MDN) (Bishop, 1994), and multiple-
hypotheses predictions (MHP) (Chen & Koltun, 2017; Bhat-
tacharyya et al., 2018; Rupprecht et al., 2016a; Ilg et al.,
2018). In MDN, the mixtures are strictly coupled via mix-
ture coefficients while mixtures in MHPs act as loosely
coupled local density estimators. In MHP, only the best

hypothesis branch will receive a learning signal, i.e., the one
that best explains the training sample.

For anomaly detection, our model uses MHP-training with
a VAE to address the model uncertainty directly. In MDN,
the anomaly score is proportional to the weighted distances
to all data modes, and in MHP only to closest data mode. To
highlight the change in paradigm, we refer to this learning in
MHP as consistency-based learning. Samples have a small
effect on the loss as long as they are close to one single
data mode. The learning dynamic in MHP is also different
and more efficient than in MDN: the number of samples
with a large loss is much lower. In this sense, we relax the
learning objective from strict density-based to consistency-
based learning.

This is related to the Local Outlier Factor (LOF) approach
(Breunig et al., 2000), where the outlier-score only depends
on the local neighborhood. In LOF, the outlier score is pro-
portional to the mean density of neighboring points divided
by the local point density. Hence, distant samples do not
influence the outlier-score. Motivated by this heuristic, our
model employs learning of many loosely decoupled local
density estimates with MHP-learning. While LOF computes
the outlier score only at test time and directly in the input
space, our model first approximates the data manifold and
subsequently performs anomaly detection in the input space
under the learned model.

The MHP-technique has been used for uncertainty estima-
tion in tasks like future prediction (Rupprecht et al., 2016b)
or optical flow prediction (Ilg et al., 2018). In the simplest
form, the multiple network heads learn from a winner-takes-
all (WTA) loss, whereby only the best branch receives the
learning signal. These works extended the loss with local
smoothness terms (Ilg et al., 2018) or distribution of the
learning signal also to the other, non-optimal branches (Rup-
precht et al., 2016b) to generate diverse and meaningful
hypotheses.

The major problem of MHP-approaches is that areas not
supported by samples can be covered by unused hypothe-
ses. This is fatal for anomaly detection. Therefore, our
ConAD approach employs a discriminator D to assess the
quality of the generated hypotheses to avoid support of non-
existent data modes. To avoid mode collapse due to the
GAN framework, we employ hypotheses discrimination. In
the spirit of minibatch discrimination (Salimans et al., 2016),
D additionally receives pair-wise distances across a batch
of hypotheses. Since a batch of real samples is typically
diverse, D can detect a homogeneous batch of hypotheses
as fake easily.
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Table 1. CIFAR-10 anomaly detection: AUROC-performance of different approaches. The column indicates which class was used as
in-class data for distribution learning. Note that random performance is at 50% and higher scores are better. Top-2-methods are marked.
Our ConAD approach outperforms traditional methods and vanilla MHP-approaches significantly and can benefit from an increasing
number of hypotheses.

CIFAR-10 0 1 2 3 4 5 6 7 8 9 MEAN
KDE-PCA 70.5 49.3 73.4 52.2 69.1 43.9 77.1 45.8 59.5 49.0 59.0
KDE-ALEXNET 55.9 48.7 58.2 53.1 65.1 55.1 61.3 59.3 60.0 52.9 57.0
OC-SVM-PCA 66.6 47.3 67.5 53.0 82.7 43.8 78.7 53.2 72.0 45.3 61.0
OC-SVM-ALEXNET 59.4 54.0 58.8 57.5 75.3 55.8 69.2 54.7 63.0 53.0 60.1
IF 63.0 37.9 63.0 40.8 76.4 51.4 66.6 48.0 65.1 45.9 55.8
GMM 70.9 44.3 69.7 44.5 76.1 50.5 76.6 49.6 64.6 38.4 58.5
ANOGAN 61.0 56.5 64.8 52.8 67.0 59.2 62.5 57.6 72.3 58.2 61.2
ADGAN 63.2 52.9 58.0 60.6 60.7 65.9 61.1 63.0 74.4 64.4 62.
VAE 77.1 46.7 68.4 53.8 71. 54.2 64.2 51.2 76.5 46.7 61.0
VAEGAN 76.2 46.9 69.7 52.0 75.6 53.6 58.8 55.4 75.4 46.0 60.9
OC-D-SVDD 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 63.2
MDN-2 76.1 46.9 68.7 53.8 70.4 53.8 63.2 52.3 76.8 46.7 60.9
MDN-4 76.9 46.8 68.6 53.5 69.3 54.4 63.5 54.1 76. 46.9 61.0
MDN-8 76.2 46.9 68.6 53.3 70.4 54.7 63.3 53. 76.3 47.3 61.
MDN-16 76.2 47.9 68.2 52.8 70.1 54. 63.5 52.9 76.4 46.9 60.9
MHP-WTA-2 77.3 51.6 68. 55.2 69.5 54.3 64.3 55.5 76. 51.2 62.2
MHP-WTA-4 77.8 53.9 65.1 56.7 66. 54.2 63.5 56.3 75.2 54.1 62.2
MHP-WTA-8 76.1 56. 62.7 58.8 62.6 55.3 61.4 57.8 74.3 54.8 61.9
MHP-WTA-16 75.7 56.7 60.9 59.8 62.7 56. 61. 56.8 73.8 57.3 62.
MHP-2 75.5 49.9 67.6 54.6 69.3 54.3 63.6 57.7 76.4 50.8 61.9
MHP-4 75.2 51. 66. 56.8 67.7 55.1 64.4 56. 76.4 51. 61.9
MHP-8 75.7 54. 65.2 57.6 64.8 55.4 62.5 54.7 75.9 53. 61.8
MHP-16 75.8 53.9 64.1 58.5 64.6 55.2 62.3 54.5 75.9 53.2 61.7
MDN+GAN-2 74.6 48.9 68.6 52.1 71.1 52.5 66.8 57.7 76.5 48.1 61.6
MDN+GAN-4 76.2 50.4 69. 52.4 71.6 53.2 65.9 58.3 75.3 48.9 62.1
MDN+GAN-8 77.4 48.3 69.3 53.1 72.2 53.7 67.9 54. 76. 51.9 62.3
MDN+GAN-16 73.6 46.9 69.4 52.2 75.3 54.1 65.7 56.8 75.3 45.4 61.4
CONAD - 2 (OURS) 77.3 60.0 66.6 56.2 69.4 56.1 70.6 63.0 74.8 49.9 64.3
CONAD - 4 (OURS) 77.6 52.5 66.3 57.0 68.7 54.1 80.1 54.8 74.1 53.9 63.9
CONAD - 8 (OURS) 77.4 65.2 64.8 60.1 67.0 57.9 72.5 66.2 74.8 66.0 67.1
CONAD - 16 (OURS) 77.2 63.1 63.1 61.5 63.3 58.8 69.1 64.0 75.5 63.7 65.9

G. Detailed performance on CIFAR-10

H. Metal anomaly results

Table 2. Anomaly detection performance on Metal Anomaly
dataset. Here the anomaly detection is measured by summing
up reconstructions errors over all pixel positions. This consider-
ation is rather sensitive to noise in very high-dimensional input
space such as in Metal Anomaly. The best two models are marked.

HYPOTHESES

MODEL 1 2 4 8

MHP
79.5=VAE

87.6 83.4 79.3
MHP+WTA 85.1 87.8 80.0

MDN 74.6 76.5 74.3

MDN+GAN 78.2 =VAEGAN 81.0 78.1 81.0
CONAD 86.7 81.2 81.7

Table 3. Anomaly detection performance on Metal Anomaly
dataset by summing over the 1% most-anomalous pixels for each
input image. The best two models are marked.

HYPOTHESES

MODEL 1 2 4 8

MHP
97.7=VAE

99.3 99.0 98.4
MHP+WTA 99.0 99.0 98.1

MDN 97.0 96.0 97.5

MDN+GAN 97.8 =VAEGAN 96.6 95.1 97.8
CONAD 99.2 99.0 98.7
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