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2 Proof of Theorem 5

2.1 Comments on properness vs the Q-loss
We explain here why we have left open the unit interval for the definition of (2) and why parameter
ε in the definition of the partial losses of the Q-loss is important for its properness, even when
the actual value of ε has absolutely no influence on RATBOOST nor the decision tree induction
algorithm using LQ. A large class of partial losses is defined in Buja et al. (2005, Theorem 1)1,
from which the following,

`1(u)
.

=

∫ 1−ε

u

(1− c)w(dc), (1)

`−1(u)
.

=

∫ u

ε

cw(dc) (2)

defines partial losses of a proper loss, where w is a positive measure require to be finite on any
interval (ε, 1− ε) with2 0 < ε ≤ 1/2. The definition of proper losses in Reid & Williamson (2010,
Theorem 6) implicitly assumes that the integrals are proper so the limits of (1), (2) exist for ε→ 0.

In our case, it is not hard to reconstruct the partial losses of Definition 4 from (1), (2) provided
we pick

w(dc)
.

=
% · dc

err(c)2
, (3)

which indeed meets the requirements of Buja et al. (2005, Theorem 1) (see (9) below). So, the
Q-loss implicitly constrains the domain of the pointwise Bayes risk to be (ε, 1 − ε) for it to fit
to (1), (2). While this brings the benefit to prevent infinite values for the pointwise Bayes risk
(lim0 L

Q(u) = lim1 L
Q(u) = −∞), this also does not represent a restriction for learning:

• this restricts in theory the image of HT in RATBOOST to [ψ(ε),−ψ(ε)] using the canonical
link, that is:

ImHT ⊆ % ·
(

1

ε
− 2

)
· [−1, 1] , (4)

but all components of HT have finite values in RATBOOST (including the images of weak
hypotheses, wlog), so we can just consider that ε is implicitly fixed as small as possible for
(4) to hold (again, learning HT in RATBOOST does not depend on ε);

• this restricts in theory the proportion p of examples of class ±1 at each leaf of a decision tree
to be in (ε, 1 − ε) for the tree to be learned with LQ, but this happens not to be restrictive,
for three reasons. First, all classical top-down induction algorithms use losses whose Bayes
risk zeroes in 0, 1, so we can train those trees by discarding pure leaves in the computation
of L (Section 7). Second, discarding pure leaves from the computation of the loss does
not endanger the weak learning assumption. Third, in practice DTs are pruned for good
generalization: classical statistical methods will in general end up with trees with pure leaves
removed Kearns & Mansour (1998).

1And an even larger class is defined in Schervish (1989, Theorem 4.2).
2Buja et al. (2005, Theorem 1) is slightly more general as the integrals bounds depending on ε are replaced by

variables in (ε, 1− ε).
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2.2 Detailed proof
We use Shuford, Jr et al. (1966, Theorem 1), Reid & Williamson (2010, Theorem 1) to show that the
Q-loss is proper. For this to hold, we just need to show that−u`Q1

′
(u) = (1−u)`Q−1

′
(u), ∀u ∈ (0, 1),

where ’ denotes derivative. We then check that whenever u ≤ 1/2, we have `Q1
′
(u) = % · (−1/u2 +

1/u) and `Q−1
′
(u) = % · (1/u), so that

−u`Q1
′
(u) = % ·

(
1

u
− 1

)
= % ·

(
1− u
u

)
;

(1− u)`Q−1
′
(u) = % ·

(
1− u
u

)
, (5)

so the Q-loss is proper. To show that it is strictly proper is just a matter of completing three steps:
(i) computing the pointwise Bayes risk LQ, (ii) computing its weight function wQ(u) and showing
that it is strictly positive for any u ∈ [0, 1] Reid & Williamson (2010, Theorem 6). To achieve step
(i), we remark that because `Q is proper Reid & Williamson (2010),

1

%
· LQ(u)

= LQ(u, u)

= u · `Q1 (u) + (1− u) · `Q−1(u)

=

{
−u log ε− 2u+ 1 + u log u− (1− u) log ε+ (1− u) log u if u ≤ 1/2

−u log ε+ u log(1− u)− (1− u) log ε− 2(1− u) + 1 + (1− u) log(1− u) otherwise(6)

= − log ε+

{
−2u+ 1 + log u if u ≤ 1/2

−2(1− u) + 1 + log(1− u) otherwise (7)

= − log ε+ log err(u) + 1− 2err(u)

= log

(
err(u)

ε

)
+ 1− 2err(u), (8)

and we retrieve (11). We then easily check that its weight function equals Buja et al. (2005)

wQ(u)
.

= −LQ′′(u)

= −% ·
({

1
u
− 2 if u ≤ 1/2

− 1
1−u + 2 otherwise

)′
= % ·

{ 1
u2

if u ≤ 1/2
1

(1−u)2 otherwise

=
%

err(u)2
, (9)

which is indeed > 0 for any u ∈ [0, 1], and shows that the Q-loss is strictly proper. We also remark
that LQ is twice differentiable. The computation of the inverse link is then, from (5) (we recall that
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K = 0),

ψQ
−1

(z)
.

=
(
−LQ′

)−1
(z)

=

(
% ·
{

2− 1
u

if u ≤ 1/2
−2 + 1

1−u otherwise

)−1
(10)

=


1

2− z
%

if z ≤ 0
1+ z

%

2+ z
%

otherwise

=
%+ H(−z)

2%+ |z|
, (11)

as claimed (link immediate from (10)). The convex surrogate for the Q-loss is obtained from (7),
and we first search for (−L)?:

(−LQ)?(z)
.

= sup
z′∈dom(LQ)

{zz′ + LQ(z′)}

= sup
u∈[0,1]

{
zu+ % ·

(
log

(
err(u)

ε

)
+ 1− 2err(u)

)}
= % · (1− log ε) + max

{
sup

u∈[0,1/2]
{(z − 2%)u+ % · log u} ,−2%+ sup

u∈(1/2,1]
{(z + 2%)u+ % · log(1− u)}

}

= % · (1− log ε) + max

{
% log %+ % · z−2%

2%−z − % · log(2%− z) for u = % · 1
2%−z ∈ [0, 1/2]

% log %− 2%+ (z+%)(z+2%)
z+2%

− % · log(2%+ z) for u = z+%
z+2%

∈ (1/2, 1]

= % log %− % · log ε+ max

{
−% · log(2%− z) for u = % · 1

2%−z ∈ [0, 1/2]

z − % · log(2%+ z) for u = z+%
z+2%

∈ (1/2, 1]

= −% log

(
ε

%

)
+ max

{
−% · log(2%− z) for z ≤ 0
z − % · log(2%+ z) for z > 0

= −% log

(
ε

%

)
+

{
−% · log(2%− z) for z ≤ 0
z − % · log(2%+ z) for z > 0

= −% · log

(
2ε+

ε|z|
%

)
+ H(−z), (12)

and we get

FQ(z)
.

= (−LQ)?(−z) (13)

= −% · log

(
2ε+

ε|z|
%

)
+ H(z), (14)

as claimed. This derivation also allows us to prove that the Q-loss is proper canonical using Nock &
Nielsen (2008, Lemma 1). That the Q-loss is symmetric is just a consequence of its definition Reid
& Williamson (2010). This ends the proof of Theorem 5.
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3 Proof of Lemma 6
Denote for short

v
.

= z + % ·
(

1− 2u

err(u)

)
. (15)

It is not hard to check that indeed

z � u =
%+H(v)

2%+ |v|
.

= g(v), (16)

as well as g(−v) = 1 − g(v). So, we focus on the second equality. Denote for short u .
= nu/du,

z
.

= % · nz/dz. We remark that the definition of z makes % simplify:

z � u =

1 +H

(
nz

dz
+

1−2·nu
du

nu
du
∧ du−nu

du

)
2 +

∣∣∣∣nz

dz
+

1−2·nu
du

nu
du
∧ du−nu

du

∣∣∣∣
=

1 +H
(
nz

dz
+ du−2nu

nu∧(du−nu)

)
2 +

∣∣∣nz

dz
+ du−2nu

nu∧(du−nu)

∣∣∣ (17)

Case 1: v ≥ 0 and nu ≤ du − nu. We have

z � u =
1

2 + nz

dz
+ du−2nu

nu

=
1

nz

dz
+ du

nu

=
nudz

nunz + dudz
. (18)

Case 2: v ≥ 0 and nu > du − nu. We have

z � u =
1

2 + nz

dz
+ du−2nu

du−nu

=
1

3 + nz

dz
− nu

du−nu

=
(du − nu)dz

(du − nu)(3dz + nz)− nudz

=
(du − nu)dz

(du − nu)nz + dudz + 2(du − 2nu)dz
. (19)

Folding both cases 1 and 2, we get

z � u =
(nu ∧ (du − nu))dz

(nu ∧ (du − nu))nz + dudz − 2H(du − 2nu)dz
. (20)

Note that this holds when v ≥ 0, equivalent to

nz
dz

+
du − 2nu

nu ∧ (du − nu)
> 0, (21)
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that is, assuming wlog dz > 0,

(nu ∧ (du − nu))nz > −(du − 2nu)dz. (22)

So, let us denote a .
= (nu ∧ (du − nu))dz, b

.
= (nu ∧ (du − nu))nz, c

.
= dudz, d

.
= 2(du − 2nu)dz.

We get that if b+ (d/2) ≥ 0, then

z � u =
a

b+ c− H(d)
, (23)

and if b+ (d/2) < 0, then we remark that −b− (d/2) > 0, so

z � u = 1− a

−b+ c− H(−d)
=
−b− a+ c− H(−d)

−b+ c− H(−d)
, (24)

as claimed.

4 Proof of Theorem 7
The proof revolves on two simple facts about FQ: (i) since FQ is convex and differentiable, we
have FQ(y)− FQ(x)− (y − x)FQ′(x) ≥ 0 (the left hand side is just the Bregman divergence with
generator FQ). Also, (ii) FQ being twice differentiable, Taylor Theorem says that for any x, y we
can expand the derivative as FQ′(y) = FQ′(x) + (y − x)FQ′′(z) for some z ∈ [x, y]. Using (i) and
(ii) in this order, we get that fo for any i ∈ {1, 2, ...,m}, there exists αi ∈ [0, 1] and

βi = yiHt(xi) + αiδtyiht(xi) ∈ [yiHt(xi), yiHt+1(xi)] (25)

such that:

Ei∼D
[
FQ(yiHt(xi))

]
− Ei∼D

[
FQ(yiHt+1(xi))

]
≥ Ei∼D

[
(yiHt(xi)− yiHt+1(xi))F

Q′(yiHt+1(xi))
]

(26)

= Ei∼D
[
(yiHt(xi)− yiHt+1(xi))F

Q′(yiHt(xi))
]

︸ ︷︷ ︸
.
=X

−Ei∼D
[
(yiHt(xi)− yiHt+1(xi))

2FQ′′(βi)
]

︸ ︷︷ ︸
.
=Y

.(27)

Because FQ is convex, Y ≥ 0. We want to show that not just X ≥ 0 but in fact the difference
X − Y is sufficiently large for the bound of the Theorem to hold. We first remark

X
.

= Ei∼D
[
(yiHt(xi)− yiHt+1(xi))F

Q′(yiHt(xi))
]

= −δtEi∼D
[
yiht(xi) · −ψQ

−1
(−yiHt(xi))

]
= δtEi∼D [wtiyiht(xi)]

= δt ·
∑

iwtiyiht(xi)

m
= a · η2t . (28)
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We also have FQ′′(z) = %/(2%+ |z|)2, so

Y
.

= Ei∼D
[
(yiHt(xi)− yiHt+1(xi))

2FQ′′(βi)
]

= % · Ei∼D
[

(yiHt(xi)− yiHt+1(xi))
2

(2 + |βi|)2

]
= %δ2t · Ei∼D

[
h2t (xi)

(2%+ |βi|)2

]
. (29)

Now we get because of assumption (M):

Ei∼D
[

h2t (xi)

(2%+ |βi|)2

]
≤ 1

4%2
· Ei∼D

[
h2t (xi)

]
≤ M2

4%2
. (30)

So,

Y ≤ δ2tM
2

4%

=
a2 · η2tM2

4%
. (31)

We finally get

Ei∼D
[
FQ(yiHt(xi))

]
− Ei∼D

[
FQ(yiHt+1(xi))

]
≥ X − Y

≥
(

1− aM2

4%

)
· a︸ ︷︷ ︸

.
=Z(a)

·η2t . (32)

Suppose now that we fix any π ∈ [0, 1] and then choose any

a ∈ 2%

M2
· [1− π, 1 + π] . (33)

It is not hard to check that Z(a) satisfies

Z(a) ≥ (1− π2) · %

M2
· η2t , (34)

so we get

Ei∼D
[
FQ(yiHt(xi))

]
− Ei∼D

[
FQ(yiHt+1(xi))

]
≥ (1− π2)%η2t

M2
,∀t, (35)

and so the final classifier HT satisfies

Ei∼D
[
FQ(yiHT (xi))

]
≤ FQ(0)− (1− π2)% ·

∑T
t=1 η

2
t

M2
. (36)

Remark that this holds regardless of the sequence {ηt}t. If we want to guarantee that Ei∼D
[
FQ(yiHT (xi))

]
≤

FQ(z∗) for some z∗ ≥ 0, then it suffices to iterate until
T∑
t=1

η2t ≥
FQ(0)− FQ(z∗)

(1− π2)%
·M2, (37)

and we get the statement of the Theorem.
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5 Proof of Theorem 8
The proof uses the same basic steps as the proof of Theorem 7. Denote for short

w̃ti
.

= wti + κti, (38)

where wti
.

= −ψQ−1 (−yiHt(xi)) is the non-quantized weights and κti is the quantization shift in
weights. Note that we do not have access to wti. We indicate with a tilda quantities that depend on
w̃.

This time, we have for X the expression:

X = −δ̃tEi∼D
[
yiht(xi) · −ψQ

−1
(−yiHt(xi))

]
= δ̃tEi∼D [wtiyiht(xi)]

= δ̃t ·
(∑

i w̃tiyiht(xi)

m
−
∑

i κtiyiht(xi)

m

)
= a · η̃2t − a · η̃t ·

∑
i κtiyiht(xi)

m
, (39)

while the expression of Y does not change (yet including ”tilda” parameters affected by the
quantization of weights). Denote for short

∆t
.

=

∑
i κtiyiht(xi)

m
. (40)

We get in lieu of (32),

Ei∼D
[
FQ(yiHt(xi))

]
− Ei∼D

[
FQ(yiHt+1(xi))

]
≥ X − Y

≥
(

1− ∆t

η̃t
− aM2

4%

)
· aη̃2t

=

(
4%

M2
· η̃t −∆t

η̃t
− a
)
· a︸ ︷︷ ︸

.
=Z(a)

·M
2η̃2t

4%
.(41)

Choose

a ∈ 2%

M2
·
[
η̃t −∆t

η̃t
− π, η̃t −∆t

η̃t
+ π

]
, (42)

for any 0 ≤ π ≤ |η̃t −∆t|/η̃t. It follows

Z(a) ≥

((
η̃t −∆t

η̃t

)2

− π2

)
· %

M2
· η̃2t . (43)

Suppose that the quantisation shift satisfies |η̃t −∆t| ≥ ζ · |η̃t| (which holds if |∆t| ≤ (1− ζ) · |η̃t|)
for some ζ > 0. We obtain that for any 0 ≤ π < ζ ,

Z(a) ≥
(
ζ2 − π2

)
· %

M2
· η̃2t > 0, (44)
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which leads to the statement of the Theorem after posing κt
.

= |∆t|.
Remark: assumption (Q) is in fact stronger than what would really be needed to get the Theorem.
Under some conditions, we could indeed accept |∆t| > (1− ζ) · |η̃t|, but in the derivations above,
the shift in weights due to quantisation would result in a disguised way to strenghten weak learning.
Clearly, such an assumption where quantisation compensates for the weakness of the weak classifiers
is unfit in a boosting setting.

6 Proof of Theorem 10
We assume basic knowledge of the proofs of Kearns & Mansour (1996). We shall briefly present
the proof scheme as well as the notations, that we keep identical to Kearns & Mansour (1996) for
readability.

The basic of the proof is to show that each time a leaf is replaced by a split under the weak
learning assumption, there is a sufficient decrease of L(H). Denote H+ tree H in which a leaf λ has
been replaced by a split indexed with some g : R→ {0, 1} satisfying the weak learning assumption.
The decrease in L(.), ∆

.
= L(H)− L(H+), is lowerbounded as a function of γ and then used to

lowerbound the number of iterations (each of which is the replacement of a leaf by a binary subtree)
to get to a given value of L(.)

It turns out that ∆ can be abstracted by a better quantity to analyze, ∆
.

= ω(λ) ·∆LQ(q, τ, δ)
with

∆LQ(q, τ, δ)
.

= LQ(q)− (1− τ)LQ(q − τδ)− τLQ(q + (1− τ)δ) (45)

with q .
= q(λ) and δ = γq(1− q)/(τ(1− τ)) with τ denoting the relative proportion of examples

for which g = +1 in leaf λ, following Kearns & Mansour (1996). The following Lemma is the key
to the proof of Theorem 10.

Lemma 1 Suppose the weak hypothesis assumption is satisfied for the current split, for some
constant γ > 0. For any q, τ ∈ [0, 1], using δ = γq(1− q)/(τ(1− τ)) yields:

∆LQ(q, τ, δ) ≥ γ2

2
. (46)

Proof Our proof follows the proof of Kearns & Mansour (1996).

Lemma 2 Suppose τ ≤ 1/2, q > 1/2 or τ ≥ 1/2, q < 1/2. If γ ≤ 1/25, ∆LQ(q, τ, δ) is minimized
by some τ ∈ [0.4, 0.6].

Proof To prove the Lemma we use the trick of Kearns & Mansour (1996, Lemma 4), which consists
of studying function

U(q,X)
.

= LQ(q −X) +XLQ
′
(q −X)

=

{
log (q −X) + X

q−X + 1− 2q if q −X ≤ 1
2

log (1− q +X)− X
1−q+X − 1 + 2q if q −X > 1

2

(47)

10



and show

U(q, τδ) ≤ U(q,−(1− τ)δ),∀τ ≤ 0.4, (48)
U(q, τδ) ≥ U(q,−(1− τ)δ),∀τ ≥ 0.6, (49)

Case 1: τ ≤ 0.4 (and therefore q < 1/2). We have two subcases to show (48).

Case 1.1: q + (1− τ)δ < 1/2. In this case, q −X < 1/2 for both instantiations of X in (48). We
then have

U(q, τδ) = log

(
1− γ(1− q)

1− τ

)
+

γ(1−q)
1−τ

1− γ(1−q)
1−τ

+ 1− 2q + log q (50)

= log

(
τ − 1 + γ(1− q)

τ − 1

)
− γ(1− q)
τ − 1 + γ(1− q)

+ 1− 2q + log q (51)

U(q,−(1− τ)δ) = log

(
1 +

γ(1− q)
τ

)
−

γ(1−q)
τ

1 + γ(1−q)
τ

+ 1− 2q + log q (52)

= log

(
τ + γ(1− q)

τ

)
− γ(1− q)
τ + γ(1− q)

+ 1− 2q + log q, (53)

so (48) is equivalent to showing

log

(
τ − 1 + γ(1− q)

τ − 1

)
− γ(1− q)
τ − 1 + γ(1− q)

≤ log

(
τ + γ(1− q)

τ

)
− γ(1− q)
τ + γ(1− q)

,(54)

which after reorganising and simplification amounts to showing

log

(
1− γ(1− q)

(τ + γ(1− q))(1− τ)

)
≤ − γ(1− q)

(τ + γ(1− q))(1− τ − γ(1− q))
. (55)

We remark that for the log to be defined in (51), we must have τ < 1−γ(1− q), which implies that
the RHS of (55) is negative. To show (55), we use the fact that log(1−X) ≤ −X −X2/2 when
X ≥ 0, so fixing X .

= γ(1− q)/((τ + γ(1− q))(1− τ)) we obtain

log

(
1− γ(1− q)

(τ + γ(1− q))(1− τ)

)
≤ − γ(1− q)

τ + γ(1− q)
·
(

1

1− τ
+

γ(1− q)
2(τ + γ(1− q))(1− τ)2

)
.(56)

To show (55), we can then show

1

1− τ − γ(1− q)
≤ 1

1− τ
+

γ(1− q)
2(τ + γ(1− q))(1− τ)2

, (57)

which, after simplification, is equivalent to

1− τ − γ(1− q)
2(τ + γ(1− q))(1− τ)

≥ 1, (58)

or equivalently 3τ − 2τ 2 + 3γ(1 − q) − 2τγ(1 − q) ≤ 1. Since τ ≤ 2/5, 3τ − 2τ 2 ≤ 22/25.
If we pick γ ≤ 1/25, then 3γ(1 − q) − 2τγ(1 − q) ≤ 3γ(1 − q) ≤ 3γ = 3/25, so that
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3τ − 2τ 2 + 3γ(1− q)− 2τγ(1− q) ≤ 1, as claimed (end of Case 1.1).

Case 1.2: q + (1− τ)δ > 1/2. In this case,

U(q,−(1− τ)δ) = log
(

1− γq

τ

)
+

γq
τ

1− γq
τ

+ 1− 2(1− q) + log(1− q) (59)

= log

(
τ − γq

τ

)
+

γq

τ − γq
+ 2q − 1 + log(1− q). (60)

We also remark that 1 − 2q + log q ≤ 2q − 1 + log(1 − q) for q < 1/2, so to prove (48), it is
sufficient to show

log

(
τ − 1 + γ(1− q)

τ − 1

)
− γ(1− q)
τ − 1 + γ(1− q)

≤ log

(
τ − γq

τ

)
+

γq

τ − γq
, (61)

which reduces after simplification to showing that

log

(
1 +

γ(q − τ)

(τ − γq)(1− τ)

)
≤ γ(q − τ)

(τ − γq)(1− τ − γ(1− q))
. (62)

Because q+ (1− τ)δ > 1/2, if τ ≥ 10γq(1− q), then q > 0.4 and therefore q > τ . If, on the other
hand τ ≤ 10γq(1− q), then if γ ≤ 1/10, it follows also τ ≤ q. To summarize, q + (1− τ)δ > 1/2
and γ ≤ 1/10 imply q ≥ τ .

Using the fact that log(1 +X) ≤ X and γ(1− q) ≥ 0, we easily obtain the proof of (62) via
the chain of inequalities

log

(
1 +

γ(q − τ)

(τ − γq)(1− τ)

)
≤ γ(q − τ)

(τ − γq)(1− τ)
≤ γ(q − τ)

(τ − γq)(1− τ − γ(1− q))
. (63)

This ends up the proof for Case 1.

Case 2: τ ≥ 0.6 (and therefore q > 1/2). We have two cases again, this time to show (49).

Case 2.1: q − τδ > 1/2. In this case, q −X > 1/2 for both instantiations of X in (49). We then
have

U(q, τδ) = log

(
1 +

γq

1− τ

)
− γq

1− τ + γq
− 1 + 2q + log(1− q) (64)

U(q,−(1− τ)δ) = log
(

1− γq

τ

)
+

γq

τ − γq
− 1 + 2q + log(1− q), (65)

To show (49), it is thus sufficient to show that

log

(
1 +

γq

1− τ

)
− γq

1− τ + γq
≥ log

(
1− γq

τ

)
+

γq

τ − γq
, (66)

or equivalently, after reordering and simplifying,

log

(
1− γq

τ(1− τ + γq)

)
≤ − γq

(τ − γq)(1− τ + γq)
, (67)
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which is (55) with the substitution τ 7→ 1 − τ and q 7→ 1 − q. Since then 1 − τ ≤ 0.4, we can
directly apply the proof of (55), which ends the proof of Case 2.1.

Case 2.2: q − τδ < 1/2. In this case,

U(q, τδ) = log

(
1− γ(1− q)

1− τ

)
+

γ(1− q)
1− τ − γ(1− q)

+ 1− 2q + log q, (68)

while we still have

U(q,−(1− τ)δ) = log
(

1− γq

τ

)
+

γq

τ − γq
− 1 + 2q + log(1− q), (69)

and so we want to show

log
(

1− γq

τ

)
+

γq

τ − γq
− 1 + 2q + log(1− q)

≤ log

(
1− γ(1− q)

1− τ

)
+

γ(1− q)
1− τ − γ(1− q)

+ 1− 2q + log q, (70)

We also remark that −1 + 2q + log(1 − q) ≤ 1 − 2q + log q for q > 1/2, so to prove (70), it is
sufficient to show

log
(

1− γq

τ

)
+

γq

τ − γq
≤ log

(
1− γ(1− q)

1− τ

)
+

γ(1− q)
1− τ − γ(1− q)

, (71)

which reduces after simplification to showing that

log

(
1 +

γ(τ − q)
(1− τ − γ(1− q))τ

)
≤ γ(τ − q)

(τ − γq)(1− τ − γ(1− q))
, (72)

wich turns out to be (62) with the substitution τ 7→ 1− τ and q 7→ 1− q. Since then 1− τ ≤ 0.4,
we can directly apply the proof of (62), which ends the proof of Case 2.2, and the proof of Lemma
2 as well. (end of the proof of Lemma 2)

Following Kearns & Mansour (1996), we define

FLQ(q, τ, δ)
.

= −τ(1− τ)δ2

2
LQ
′′
(q)− τ(1− τ)(1− 2τ)δ3

6
LQ

(3)
(q). (73)

We now state and prove the equivalent of (Kearns & Mansour, 1996, Lemma 3).

Lemma 3 For any q, τ, δ ∈ [0, 1],

∆LQ(q, τ, δ) ≥ FLQ(q, τ, δ). (74)

Proof We have

LQ
(k)

(q) = % ·

{
(−1)k−1(k−1)!

qk
− 2 · Jk = 1K if q < 1/2

− (k−1)!
(1−q)k + 2 · Jk = 1K if q > 1/2

, (75)
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and we check that only the first and second order derivatives are defined in q = 1/2. Since LQ is
symmetric around 1/2, ∆LQ satisfies

∆LQ

(
1

2
− q, 1− τ, δ

)
= LQ

(
1

2
− q
)
− τLQ

(
1

2
− q − (1− τ)δ

)
− (1− τ)LQ

(
1

2
− q + τδ

)
= LQ (q)− τLQ

(
1

2
− (q + (1− τ)δ)

)
− (1− τ)LQ

(
1

2
− (q − τδ)

)
= LQ (q)− τLQ (q + (1− τ)δ)− (1− τ)LQ (q − τδ) = ∆LQ(q, τ, δ),(76)

so we study ∆LQ for q > 1/2 without loss of generality. In this case, all derivatives LQ at order
k ≥ 4 are all negative, which from (Kearns & Mansour, 1996, Lemma 3) guarantees that

∆LQ(q, τ, δ) ≥ FLQ(q, τ, δ), (77)

as claimed. (end of the proof of Lemma 3)

We now lowerbound FLQ(q, τ, δ), which, from Lemma 3, will also provide a lowerbound for the
decrease in ∆LQ(q, τ, δ) and in fact will show Lemma 1. From now on, let us fix δ = γq(1 −
q)/(τ(1− τ)), if we denote V (τ, q)

.
= (1− 2τ) (q − Jq < 1/2K), then

FLQ(q, τ, δ) = max{q, 1− q}2γ2 ·
(

1

2τ(1− τ)
+

γ

3τ 2(1− τ)2
· V (τ, q)

)
. (78)

We immediately obtain

Lemma 4 Let δ = γq(1− q)/(τ(1− τ)). Then for any τ, q such that V (τ, q) ≥ 0,

FLQ(q, τ, δ) ≥ γ2

2
. (79)

Proof For any τ, q such that V (τ, q) ≥ 0, we have

FLQ(q, τ, δ) ≥ max{q, 1− q}2γ2 · 1

2τ(1− τ)
≥ 1

4
· γ2 · 2 =

γ2

2
, (80)

as claimed (end of the proof of Lemma 4).

Lemma 4 means that when τ ≤ 1/2, q < 1/2 or τ ≥ 1/2, q > 1/2, the drop ∆LQ(q, τ, δ) is
guaranteed to be ”big”. If this does not happen, we make use of Lemma 2. In this case, if we pick
wlog τ ≤ 1/2, q > 1/2 and get:

FLQ(q, τ, δ) = max{q, 1− q}2γ2 ·
(

1

2τ(1− τ)
− γ(1− 2τ)(1− q)

3τ 2(1− τ)2

)
≥ γ2

2
·
(

2− γ(1− 2 · 0.4)

3 · 0.42(1− 0.4)2

)
= γ2 ·

(
1− 625γ

216

)
≥ γ2 ·

(
1− 25

216

)
≥ γ2

2
,

which therefore implies that FLQ(q, τ, δ) ≥ γ2/2 in all cases. We just have to use Lemma 3 to finish
the proof of Lemma 1 (end of the proof of Lemma 1).
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We can now finish the proof of Theorem 10. Suppose the current tree H has t leaves. There must be
a leaf with ω(λ) ≥ 1/t, so

∆
.

= LQ(H)− LQ(H+)

= ω(λ)∆LQ(q, τ, δ) ≥ γ2

2t

≥ γ2

2t
· L

Q(H)

LQ(H0)
, (81)

where the last inequality follows from the concavity of LQ, letting H0 the single-root node tree for
which LQ(H0) = LQ(q(S)), and more generally Ht a tree with t+ 1 leaves (thus we have made t
iterations of the boosting procedure). It therefore comes the recurrence relationship

LQ(Ht+1) ≤
(

1− γ2

2LQ(q(S)) · t

)
· LQ(Ht), (82)

and we get (see (Kearns & Mansour, 1996, proof of Theorem 10))

LQ(Ht) ≤ exp

(
− γ2 log t

4LQ(q(S))

)
· LQ(q(S)), (83)

to obtain LQ(Ht) ≤ ρ · LQ(q(S)) for ρ ∈ (0, 1], it therefore suffices that

t ≥
(

1

ρ

) 4·LQ(q(S))

γ2

. (84)

We finally remark that LQ(q(S)) ≤ % · log 1/(2ε) and conclude that (84) holds when

t ≥
(

1

ρ

) 4%

γ2 log 1
2ε
, (85)

as claimed.
Remark: we can compare at this stage our guarantees to those of Kearns & Mansour (1996). The
knowledge of their proofs immediately sheds light on the fact that our lowerbound on ∆LQ(q, τ, δ)
in Lemma 10 does not depend on q whereas all of theirs do (Kearns & Mansour, 1996, Lemmata 5,
6, 7), and in fact vanish as q → 0, 1. A closer look at the weak learning assumption shows that it
in fact precludes this extreme regime for q as it enforces q ∈ [τδ, 1− (1− τ)δ] when δ ≤ 1; as a
consequence their bounds can also be reformulated to exclude q and their convergence rate for their
best splitting criterion is within the same order as ours.
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7 Experiments in extenso

7.1 Implementation
We give here a few details on the implementation. The Java implementation of the algorithms,
available separately, implements the version of Nock & Nielsen (2006); Schapire & Singer (1999)
respectively for ADABOOSTR and AdaBoost.

The implementation of RATBOOSTE uses methods from class Math that allow to throw an
ArithmeticExceptionwhen a long overflow happens – in which case we catch the exception
and redo the corresponding method after quantization. To make the code faster, we have also
included the possibility to trigger quantization when the longs encoding length exceeds a user-
fixed threshold.

The implementation of RATBOOSTAb uses a regular k-means with Forgy initialization. If
you want to optimize this with your best hard clustering algorithm, you just have to rewrite a few
methods from class KMeans R in file Misc.java. Note that the implementation also allows to
use stochastic weight assignation with adaptive quantization (a combination of RATBOOSTAb and
RATBOOSTQb), but it is not reported (see README).

Domain summary Table
Table 1 details the UCI domains we have used Blake et al. (1998). We now detail the per-domain
training curves when there is no stopping criterion (other than to boost for 10 000 iterations). In
the results reported in Tables 1 (main file) and 2 (this), we keep the classifier which minimizes
the empirical risk among all iterations, which amounts to a cutoff point for boosting around the
minimal values of each curve (because of the statistical uncertainty, we are not guarantee that this
may be minimal on testing). Results of ADABOOSTR are omitted to not clutter the plots but they
are included in the full Table 2.
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Domain m d
Fertility 100 9

Haberman 306 3
Transfusion 748 4
Banknote 1 372 4

Breast wisc 699 9
Ionosphere 351 33

Sonar 208 60
Yeast 1 484 7

Wine-red 1 599 11
Cardiotocography (*) 2 126 9
CreditCardSmall (**) 1 000 23

Abalone 4 177 8
Qsar 1 055 41

Wine-white 4 898 11
Page 5 473 10
Mice 1 080 77

Hill+noise 1 212 100
Hill+nonoise 1 212 100
Firmteacher 10 800 16

Magic 19 020 10
EEG 14 980 14
Skin 245 057 3
Musk 6 598 166

Hardware 28 179 95
Twitter (***) 583 250 77

Table 1: UCI domains considered in our experiments (m = total number of examples, d = number
of features), ordered in increasing m× d. (*) we used features 13-21 as descriptors; (**) we used
the first 1 000 examples of the UCI domain; (***) due to the size of the domain, only AdaBoost
and ADABOOSTRwere run for T = 5000 iterations, the other algorithms were rum for a smaller
T ′ = 1000 iterations.
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UCI fertility

Figure 1: UCI domain fertility. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 2: UCI domain fertility. Results comparing AdaBoost (blue), RATBOOST (green) and
the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red),
for various values of the quantization index bit-size b. Note: there is no other stopping criterion
apart from running for T = 10000 iterations.
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UCI haberman

Figure 3: UCI domain haberman. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 4: UCI domain haberman. Results comparing AdaBoost (blue), RATBOOST (green) and
the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red),
for various values of the quantization index bit-size b. Note: there is no other stopping criterion
apart from running for T = 10000 iterations.
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UCI transfusion

Figure 5: UCI domain transfusion. Results comparing AdaBoost (blue), RATBOOST (green)
and RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for
T = 10000 iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 6: UCI domain transfusion. Results comparing AdaBoost (blue), RATBOOST (green)
and the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb
(red), for various values of the quantization index bit-size b. Note: there is no other stopping
criterion apart from running for T = 10000 iterations.
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UCI banknote

Figure 7: UCI domain banknote. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 8: UCI domain banknote. Results comparing AdaBoost (blue), RATBOOST (green) and
the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red),
for various values of the quantization index bit-size b. Note: there is no other stopping criterion
apart from running for T = 10000 iterations.
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UCI breastwisc

Figure 9: UCI domain breastwisc. Results comparing AdaBoost (blue), RATBOOST (green)
and RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for
T = 10000 iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 10: UCI domain breastwisc. Results comparing AdaBoost (blue), RATBOOST (green)
and the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb
(red), for various values of the quantization index bit-size b. Note: there is no other stopping
criterion apart from running for T = 10000 iterations.
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UCI ionosphere

Figure 11: UCI domain ionosphere. Results comparing AdaBoost (blue), RATBOOST (green)
and RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for
T = 10000 iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 12: UCI domain ionosphere. Results comparing AdaBoost (blue), RATBOOST (green)
and the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb
(red), for various values of the quantization index bit-size b. Note: there is no other stopping
criterion apart from running for T = 10000 iterations.

23



UCI sonar

Figure 13: UCI domain sonar. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 14: UCI domain sonar. Results comparing AdaBoost (blue), RATBOOST (green) and the
quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red), for
various values of the quantization index bit-size b. Note: there is no other stopping criterion apart
from running for T = 10000 iterations.
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UCI yeast

Figure 15: UCI domain yeast. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 16: UCI domain yeast. Results comparing AdaBoost (blue), RATBOOST (green) and the
quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red), for
various values of the quantization index bit-size b. Note: there is no other stopping criterion apart
from running for T = 10000 iterations.
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UCI winered

Figure 17: UCI domain winered. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 18: UCI domain winered. Results comparing AdaBoost (blue), RATBOOST (green) and
the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red),
for various values of the quantization index bit-size b. Note: there is no other stopping criterion
apart from running for T = 10000 iterations.

26



UCI cardiotocography

Figure 19: UCI domain cardiotocography. Results comparing AdaBoost (blue), RAT-
BOOST (green) and RATBOOSTE (purple). Note: there is no other stopping criterion apart from
running for T = 10000 iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 20: UCI domain cardiotocography. Results comparing AdaBoost (blue), RAT-
BOOST (green) and the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) /
RATBOOSTSb (red), for various values of the quantization index bit-size b. Note: there is no other
stopping criterion apart from running for T = 10000 iterations.
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UCI CreditCardSmall

Figure 21: UCI domain creditcardsmall. Results comparing AdaBoost (blue), RAT-
BOOST (green) and RATBOOSTE (purple). Note: there is no other stopping criterion apart from
running for T = 10000 iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 22: UCI domain creditcardsmall. Results comparing AdaBoost (blue), RAT-
BOOST (green) and the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) /
RATBOOSTSb (red), for various values of the quantization index bit-size b. Note: there is no other
stopping criterion apart from running for T = 10000 iterations.

28



UCI abalone

Figure 23: UCI domain abalone. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 24: UCI domain abalone. Results comparing AdaBoost (blue), RATBOOST (green) and
the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red),
for various values of the quantization index bit-size b. Note: there is no other stopping criterion
apart from running for T = 10000 iterations.
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UCI qsar

Figure 25: UCI domain qsar. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 26: UCI domain qsar. Results comparing AdaBoost (blue), RATBOOST (green) and the
quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red), for
various values of the quantization index bit-size b. Note: there is no other stopping criterion apart
from running for T = 10000 iterations.
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UCI winewhite

Figure 27: UCI domain winewhite. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 28: UCI domain winewhite. Results comparing AdaBoost (blue), RATBOOST (green) and
the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red),
for various values of the quantization index bit-size b. Note: there is no other stopping criterion
apart from running for T = 10000 iterations.
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UCI page

Figure 29: UCI domain page. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 30: UCI domain page. Results comparing AdaBoost (blue), RATBOOST (green) and the
quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red), for
various values of the quantization index bit-size b. Note: there is no other stopping criterion apart
from running for T = 10000 iterations.
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UCI mice

Figure 31: UCI domain mice. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 32: UCI domain mice. Results comparing AdaBoost (blue), RATBOOST (green) and the
quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red), for
various values of the quantization index bit-size b. Note: there is no other stopping criterion apart
from running for T = 10000 iterations.
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UCI hill+noise

Figure 33: UCI domain hill+noise. Results comparing AdaBoost (blue), RATBOOST (green)
and RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for
T = 10000 iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 34: UCI domain hill+noise. Results comparing AdaBoost (blue), RATBOOST (green)
and the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb
(red), for various values of the quantization index bit-size b. Note: there is no other stopping
criterion apart from running for T = 10000 iterations.

34



UCI hill+nonoise

Figure 35: UCI domain hill+nonoise. Results comparing AdaBoost (blue), RATBOOST (green)
and RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for
T = 10000 iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 36: UCI domain hill+nonoise. Results comparing AdaBoost (blue), RATBOOST (green)
and the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb
(red), for various values of the quantization index bit-size b. Note: there is no other stopping
criterion apart from running for T = 10000 iterations.

35



UCI firmteacher

Figure 37: UCI domain firmteacher. Results comparing AdaBoost (blue), RATBOOST (green)
and RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for
T = 10000 iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 38: UCI domain firmteacher. Results comparing AdaBoost (blue), RATBOOST (green)
and the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb
(red), for various values of the quantization index bit-size b. Note: there is no other stopping
criterion apart from running for T = 10000 iterations.
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UCI magic

Figure 39: UCI domain magic. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 40: UCI domain magic. Results comparing AdaBoost (blue), RATBOOST (green) and the
quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red), for
various values of the quantization index bit-size b. Note: there is no other stopping criterion apart
from running for T = 10000 iterations.
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UCI eeg

Figure 41: UCI domain eeg. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 42: UCI domain eeg. Results comparing AdaBoost (blue), RATBOOST (green) and the
quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red), for
various values of the quantization index bit-size b. Note: there is no other stopping criterion apart
from running for T = 10000 iterations.
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UCI skin

Figure 43: UCI domain skin. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 44: UCI domain skin. Results comparing AdaBoost (blue), RATBOOST (green) and the
quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red), for
various values of the quantization index bit-size b. Note: there is no other stopping criterion apart
from running for T = 10000 iterations.
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UCI musk

Figure 45: UCI domain musk. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 46: UCI domain musk. Results comparing AdaBoost (blue), RATBOOST (green) and the
quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red), for
various values of the quantization index bit-size b. Note: there is no other stopping criterion apart
from running for T = 10000 iterations.
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UCI hardware

Figure 47: UCI domain hardware. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 10000
iterations.

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 48: UCI domain hardware. Results comparing AdaBoost (blue), RATBOOST (green) and
the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red),
for various values of the quantization index bit-size b. Note: there is no other stopping criterion
apart from running for T = 10000 iterations.
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UCI twitter

Figure 49: UCI domain twitter. Results comparing AdaBoost (blue), RATBOOST (green) and
RATBOOSTE (purple). Note: there is no other stopping criterion apart from running for T = 5000
iterations (AdaBoost) and T ′ = 1000 iterations (RATBOOST, RATBOOSTE).

b = 2 b = 3 b = 4 b = 5 b = 6

Figure 50: UCI domain twitter. Results comparing AdaBoost (blue), RATBOOST (green) and
the quantized versions RATBOOSTAb (black) / RATBOOSTQb (thin orange) / RATBOOSTSb (red),
for various values of the quantization index bit-size b. Note: there is no other stopping criterion
apart from running for T = 5000 iterations (AdaBoost) and T ′ = 1000 iterations (RATBOOST,
RATBOOSTAb, RATBOOSTQb, RATBOOSTSb).
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Summary of Results
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