Lossless or Quantized Boosting with Integer Arithmetic - Supplementary Material -

Richard Nock
Data61, The Australian National University \& The University of Sydney richard.nock@data61.csiro.au
Robert C. Williamson
The Australian National University \& Data61
bob.williamson@anu.edu.au

Abstract

This is the Supplementary Material to Paper "Lossless or Quantized Boosting with Integer Arithmetic", appearing in the proceedings of ICML 2019. Notation "main file" indicates reference to the paper.

1 Table of contents

Supplementary material on proofs	Pg 3
Proof of Theorem 5	Pg 3
\hookrightarrow Comments on properness vs the Q-loss	Pg 3
\hookrightarrow Detailed proof	Pg 4
Proof of Lemma 6	Pg 6
Proof of Theorem 7	Pg 7
Proof of Theorem 8	Pg 9
Proof of Theorem 10	Pg 10
Supplementary material on experiments	$\operatorname{Pg} 16$
Implementation	Pg 16
Domain summary Table	Pg 16
UCI fertility	Pg 18
UCI haberman	Pg 19
UCItransfusion	Pg 20
UCI banknote	Pg 21
UCI breastwisc	Pg 22
UCI ionosphere	Pg 23
UCI sonar	Pg 24
UCI yeast	Pg 25
UCI winered	Pg 26
UCI cardiotocography	Pg 27
UCI creditcardsmall	Pg 28
UCI abalone	Pg 29
UCI qsar	Pg 30
UCI winewhite	Pg 31
UCI page	Pg 32
UCI mice	Pg 33
UCI hill+noise	Pg 34
UCI hill+nonoise	Pg 35
UCI firmteacher	Pg 36
UCI magic	Pg 37
UCI eeg	Pg 38
UCI skin	Pg 39
UCI musk	Pg 40
UCI hardware	Pg 41
UCItwitter	Pg 42
Summary of Results	Pg 43

2 Proof of Theorem 5

2.1 Comments on properness vs the \mathbf{Q}-loss

We explain here why we have left open the unit interval for the definition of (2) and why parameter ε in the definition of the partial losses of the Q-loss is important for its properness, even when the actual value of ε has absolutely no influence on RatB OOST nor the decision tree induction algorithm using \underline{L}^{Q}. A large class of partial losses is defined in Buja et al. (2005, Theorem 1) ${ }^{1}$, from which the following,

$$
\begin{align*}
\ell_{1}(u) & \doteq \int_{u}^{1-\varepsilon}(1-c) w(\mathrm{~d} c), \tag{1}\\
\ell_{-1}(u) & \doteq \int_{\varepsilon}^{u} c w(\mathrm{~d} c) \tag{2}
\end{align*}
$$

defines partial losses of a proper loss, where w is a positive measure require to be finite on any interval $(\varepsilon, 1-\varepsilon)$ with $^{2} 0<\varepsilon \leq 1 / 2$. The definition of proper losses in Reid \& Williamson (2010, Theorem 6) implicitly assumes that the integrals are proper so the limits of (1), (2) exist for $\varepsilon \rightarrow 0$.

In our case, it is not hard to reconstruct the partial losses of Definition 4 from (1), (2) provided we pick

$$
\begin{equation*}
w(\mathrm{~d} c) \doteq \frac{\varrho \cdot \mathrm{d} c}{\operatorname{err}(c)^{2}}, \tag{3}
\end{equation*}
$$

which indeed meets the requirements of Buja et al. (2005, Theorem 1) (see (9) below). So, the Q-loss implicitly constrains the domain of the pointwise Bayes risk to be $(\varepsilon, 1-\varepsilon)$ for it to fit to (1), (2). While this brings the benefit to prevent infinite values for the pointwise Bayes risk $\left(\lim _{0} \underline{L}^{Q}(u)=\lim _{1} \underline{L}^{Q}(u)=-\infty\right)$, this also does not represent a restriction for learning:

- this restricts in theory the image of H_{T} in RatBoost to $[\psi(\varepsilon),-\psi(\varepsilon)]$ using the canonical link, that is:

$$
\begin{equation*}
\operatorname{Im} H_{T} \subseteq \varrho \cdot\left(\frac{1}{\varepsilon}-2\right) \cdot[-1,1] \tag{4}
\end{equation*}
$$

but all components of H_{T} have finite values in RatBoost (including the images of weak hypotheses, wlog), so we can just consider that ε is implicitly fixed as small as possible for (4) to hold (again, learning H_{T} in RatBoost does not depend on ε);

- this restricts in theory the proportion p of examples of class ± 1 at each leaf of a decision tree to be in $(\varepsilon, 1-\varepsilon)$ for the tree to be learned with \underline{L}^{Q}, but this happens not to be restrictive, for three reasons. First, all classical top-down induction algorithms use losses whose Bayes risk zeroes in 0,1 , so we can train those trees by discarding pure leaves in the computation of \underline{L} (Section 7). Second, discarding pure leaves from the computation of the loss does not endanger the weak learning assumption. Third, in practice DTs are pruned for good generalization: classical statistical methods will in general end up with trees with pure leaves removed Kearns \& Mansour (1998).

[^0]
2.2 Detailed proof

We use Shuford, Jr et al. (1966, Theorem 1), Reid \& Williamson (2010, Theorem 1) to show that the Q -loss is proper. For this to hold, we just need to show that $-u \ell_{1}^{{ }^{\prime}}(u)=(1-u) \ell_{-1}^{Q^{\prime}}(u), \forall u \in(0,1)$, where ' denotes derivative. We then check that whenever $u \leq 1 / 2$, we have $\ell_{1}^{Q^{\prime}}(u)=\varrho \cdot\left(-1 / u^{2}+\right.$ $1 / u)$ and $\ell_{-1}^{Q}(u)=\varrho \cdot(1 / u)$, so that

$$
\begin{align*}
-u \ell_{1}^{Q^{\prime}}(u) & =\varrho \cdot\left(\frac{1}{u}-1\right)=\varrho \cdot\left(\frac{1-u}{u}\right) \\
(1-u) \ell_{-1}^{Q^{\prime}}(u) & =\varrho \cdot\left(\frac{1-u}{u}\right) \tag{5}
\end{align*}
$$

so the Q -loss is proper. To show that it is strictly proper is just a matter of completing three steps: (i) computing the pointwise Bayes risk \underline{L}^{Q}, (ii) computing its weight function $w^{Q}(u)$ and showing that it is strictly positive for any $u \in[0,1]$ Reid \& Williamson (2010, Theorem 6). To achieve step (i), we remark that because ℓ^{Q} is proper Reid \& Williamson (2010),

$$
\left.\begin{array}{rl}
\frac{1}{\varrho} & \cdot \underline{L}^{Q}(u) \\
& =L^{Q}(u, u) \\
& =u \cdot \ell_{1}^{Q}(u)+(1-u) \cdot \ell_{-1}^{Q}(u) \\
& =\left\{\begin{array}{cc}
-u \log \varepsilon-2 u+1+u \log u-(1-u) \log \varepsilon+(1-u) \log u \\
-u \log \varepsilon+u \log (1-u)-(1-u) \log \varepsilon-2(1-u)+1+(1-u) \log (1-u) & \text { if } \quad u \leq 1 / 2 \\
\text { otherwise }
\end{array}\right. \\
\quad=-\log \varepsilon+\left\{\begin{array}{cc}
-2 u+1+\log u & \text { if } \quad u \leq 1 / 2 \\
-2(1-u)+1+\log (1-u) & \text { otherwise }
\end{array}\right. \\
& =-\log \varepsilon+\log \operatorname{err}(u)+1-2 \operatorname{err}(u)
\end{array}\right] \begin{aligned}
& \text { (7) } \\
& \tag{8}\\
& =\log \left(\frac{\operatorname{err}(u)}{\varepsilon}\right)+1-2 \operatorname{err}(u)
\end{aligned}
$$

and we retrieve (11). We then easily check that its weight function equals Buja et al. (2005)

$$
\begin{align*}
w^{Q}(u) & \doteq-\underline{L}^{Q^{\prime \prime}}(u) \\
& =-\varrho \cdot\left(\left\{\begin{array}{cc}
\frac{1}{u}-2 \quad \text { if } \quad u \leq 1 / 2 \\
-\frac{1}{1-u}+2 & \text { otherwise }
\end{array}\right)^{\prime}\right. \\
& =\varrho \cdot\left\{\begin{array}{cc}
\frac{1}{u^{2}} & \text { if } \quad u \leq 1 / 2 \\
\frac{1}{(1-u)^{2}} & \text { otherwise }
\end{array}\right. \\
& =\frac{\varrho}{\operatorname{err}(u)^{2}}, \tag{9}
\end{align*}
$$

which is indeed >0 for any $u \in[0,1]$, and shows that the Q -loss is strictly proper. We also remark that \underline{L}^{Q} is twice differentiable. The computation of the inverse link is then, from (5) (we recall that

$$
K=0)
$$

$$
\begin{align*}
\psi^{Q^{-1}}(z) & \doteq\left(-\underline{L}^{Q^{\prime}}\right)^{-1}(z) \\
& =\left(\varrho \cdot\left\{\begin{array}{rr}
2-\frac{1}{u} & \text { if } u \leq 1 / 2 \\
-2+\frac{1}{1-u} & \text { otherwise }
\end{array}\right)^{-1}\right. \tag{10}\\
& =\left\{\begin{array}{cc}
\frac{1}{2-\frac{z}{\varrho}} & \text { if } \\
\frac{1+\frac{e}{\varrho}}{2+\frac{z}{\varrho}} & \text { otherwise }
\end{array}\right. \\
& =\frac{\varrho+\mathrm{H}(-z)}{2 \varrho+|z|} \tag{11}
\end{align*}
$$

as claimed (link immediate from (10)). The convex surrogate for the Q -loss is obtained from (7), and we first search for $(-\underline{L})^{\star}$:

$$
\begin{align*}
& \left(-\underline{L}^{Q}\right)^{\star}(z) \\
& =\sup _{z^{\prime} \in \operatorname{dom}\left(\underline{L}^{Q}\right)}\left\{z z^{\prime}+\underline{L}^{Q}\left(z^{\prime}\right)\right\} \\
& =\sup _{u \in[0,1]}\left\{z u+\varrho \cdot\left(\log \left(\frac{\operatorname{err}(u)}{\varepsilon}\right)+1-2 \operatorname{err}(u)\right)\right\} \\
& =\varrho \cdot(1-\log \varepsilon)+\max \begin{cases}\left.\sup _{u \in[0,1 / 2]}\{(z-2 \varrho) u+\varrho \cdot \log u\},-2 \varrho+\sup _{u \in(1 / 2,1]}\{(z+2 \varrho) u+\varrho \cdot \log (1-u)\}\right\}\end{cases} \\
& =\varrho \cdot(1-\log \varepsilon)+\max \left\{\begin{array}{cc}
\varrho \log \varrho+\varrho \cdot \frac{z-2 \varrho}{2 \varrho-z}-\varrho \cdot \log (2 \varrho-z) \quad \text { for } u=\varrho \cdot \frac{1}{2 \varrho-z} \in[0,1 / 2] \\
\varrho \log \varrho-2 \varrho+\frac{(z+\varrho(z+2 \varrho)}{z+2 \varrho}-\varrho \cdot \log (2 \varrho+z) \quad \text { for } u=\frac{z+\varrho}{z+2 \varrho} \in(1 / 2,1]
\end{array}\right. \\
& =\varrho \log \varrho-\varrho \cdot \log \varepsilon+\max \left\{\begin{array}{cc}
-\varrho \cdot \log (2 \varrho-z) & \text { for } u=\varrho \cdot \frac{1}{2 \varrho-z} \in[0,1 / 2] \\
z-\varrho \cdot \log (2 \varrho+z) & \text { for } u=\frac{z+\varrho}{z+2 \varrho} \in(1 / 2,1]
\end{array}\right. \\
& =-\varrho \log \left(\frac{\varepsilon}{\varrho}\right)+\max \left\{\begin{array}{cc}
-\varrho \cdot \log (2 \varrho-z) & \text { for } z \leq 0 \\
z-\varrho \cdot \log (2 \varrho+z) & \text { for } z>0
\end{array}\right. \\
& =-\varrho \log \left(\frac{\varepsilon}{\varrho}\right)+\left\{\begin{array}{cc}
-\varrho \cdot \log (2 \varrho-z) & \text { for } z \leq 0 \\
z-\varrho \cdot \log (2 \varrho+z) & \text { for } z>0
\end{array}\right. \\
& =-\varrho \cdot \log \left(2 \varepsilon+\frac{\varepsilon|z|}{\varrho}\right)+\mathrm{H}(-z), \tag{12}
\end{align*}
$$

and we get

$$
\begin{align*}
F^{Q}(z) & \doteq\left(-\underline{L}^{Q}\right)^{\star}(-z) \tag{13}\\
& =-\varrho \cdot \log \left(2 \varepsilon+\frac{\varepsilon|z|}{\varrho}\right)+\mathrm{H}(z) \tag{14}
\end{align*}
$$

as claimed. This derivation also allows us to prove that the Q -loss is proper canonical using Nock \& Nielsen (2008, Lemma 1). That the Q-loss is symmetric is just a consequence of its definition Reid \& Williamson (2010). This ends the proof of Theorem 5 .

3 Proof of Lemma 6

Denote for short

$$
\begin{equation*}
v \doteq z+\varrho \cdot\left(\frac{1-2 u}{\operatorname{err}(u)}\right) \tag{15}
\end{equation*}
$$

It is not hard to check that indeed

$$
\begin{equation*}
z \diamond u=\frac{\varrho+H(v)}{2 \varrho+|v|} \doteq g(v) \tag{16}
\end{equation*}
$$

as well as $g(-v)=1-g(v)$. So, we focus on the second equality. Denote for short $u \doteq n_{u} / d_{u}$, $z \doteq \varrho \cdot n_{z} / d_{z}$. We remark that the definition of z makes ϱ simplify:

$$
\begin{align*}
z \diamond u & =\frac{1+H\left(\frac{n_{z}}{d_{z}}+\frac{1-2 \cdot \frac{n_{u}}{d_{u}}}{\left.\frac{n_{u}}{d_{u} \wedge \frac{d_{u}-n_{u}}{d_{u}}}\right)}\right.}{2+\left|\frac{n_{z}}{d_{z}}+\frac{1-2 \cdot \frac{n_{u}}{d_{u}}}{\frac{n_{u}}{d_{u}} \wedge \frac{d_{u}-n_{u}}{d_{u}}}\right|} \\
& =\frac{1+H\left(\frac{n_{z}}{d_{z}}+\frac{d_{u}-2 n_{u}}{n_{u} \wedge\left(d_{u}-n_{u}\right)}\right)}{2+\left|\frac{n_{z}}{d_{z}}+\frac{d_{u}-2 n_{u}}{n_{u} \wedge\left(d_{u}-n_{u}\right)}\right|} \tag{17}
\end{align*}
$$

Case 1: $v \geq 0$ and $n_{u} \leq d_{u}-n_{u}$. We have

$$
\begin{align*}
z \diamond u & =\frac{1}{2+\frac{n_{z}}{d_{z}}+\frac{d_{u}-2 n_{u}}{n_{u}}} \\
& =\frac{1}{\frac{n_{z}}{d_{z}}+\frac{d_{u}}{n_{u}}}=\frac{n_{u} d_{z}}{n_{u} n_{z}+d_{u} d_{z}} . \tag{18}
\end{align*}
$$

Case 2: $v \geq 0$ and $n_{u}>d_{u}-n_{u}$. We have

$$
\begin{align*}
z \diamond u & =\frac{1}{2+\frac{n_{z}}{d_{z}}+\frac{d_{u}-2 n_{u}}{d_{u}-n_{u}}} \\
& =\frac{1}{3+\frac{n_{z}}{d_{z}}-\frac{n_{u}}{d_{u}-n_{u}}} \\
& =\frac{\left(d_{u}-n_{u}\right) d_{z}}{\left(d_{u}-n_{u}\right)\left(3 d_{z}+n_{z}\right)-n_{u} d_{z}} \\
& =\frac{\left(d_{u}-n_{u}\right) d_{z}}{\left(d_{u}-n_{u}\right) n_{z}+d_{u} d_{z}+2\left(d_{u}-2 n_{u}\right) d_{z}} \tag{19}
\end{align*}
$$

Folding both cases 1 and 2, we get

$$
\begin{equation*}
z \diamond u=\frac{\left(n_{u} \wedge\left(d_{u}-n_{u}\right)\right) d_{z}}{\left(n_{u} \wedge\left(d_{u}-n_{u}\right)\right) n_{z}+d_{u} d_{z}-2 \mathrm{H}\left(d_{u}-2 n_{u}\right) d_{z}} . \tag{20}
\end{equation*}
$$

Note that this holds when $v \geq 0$, equivalent to

$$
\begin{equation*}
\frac{n_{z}}{d_{z}}+\frac{d_{u}-2 n_{u}}{n_{u} \wedge\left(d_{u}-n_{u}\right)}>0 \tag{21}
\end{equation*}
$$

that is, assuming wlog $d_{z}>0$,

$$
\begin{equation*}
\left(n_{u} \wedge\left(d_{u}-n_{u}\right)\right) n_{z}>-\left(d_{u}-2 n_{u}\right) d_{z} \tag{22}
\end{equation*}
$$

So, let us denote $a \doteq\left(n_{u} \wedge\left(d_{u}-n_{u}\right)\right) d_{z}, b \doteq\left(n_{u} \wedge\left(d_{u}-n_{u}\right)\right) n_{z}, c \doteq d_{u} d_{z}, d \doteq 2\left(d_{u}-2 n_{u}\right) d_{z}$. We get that if $b+(d / 2) \geq 0$, then

$$
\begin{equation*}
z \diamond u=\frac{a}{b+c-\mathrm{H}(d)}, \tag{23}
\end{equation*}
$$

and if $b+(d / 2)<0$, then we remark that $-b-(d / 2)>0$, so

$$
\begin{equation*}
z \diamond u=1-\frac{a}{-b+c-\mathrm{H}(-d)}=\frac{-b-a+c-\mathrm{H}(-d)}{-b+c-\mathrm{H}(-d)}, \tag{24}
\end{equation*}
$$

as claimed.

4 Proof of Theorem 7

The proof revolves on two simple facts about F^{Q} : (i) since F^{Q} is convex and differentiable, we have $F^{Q}(y)-F^{Q}(x)-(y-x) F^{Q^{\prime}}(x) \geq 0$ (the left hand side is just the Bregman divergence with generator F^{Q}). Also, (ii) F^{Q} being twice differentiable, Taylor Theorem says that for any x, y we can expand the derivative as $F^{Q^{\prime}}(y)=F^{Q^{\prime}}(x)+(y-x) F^{Q^{\prime \prime}}(z)$ for some $z \in[x, y]$. Using (i) and (ii) in this order, we get that fo for any $i \in\{1,2, \ldots, m\}$, there exists $\alpha_{i} \in[0,1]$ and

$$
\begin{equation*}
\beta_{i}=y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)+\alpha_{i} \delta_{t} y_{i} h_{t}\left(\boldsymbol{x}_{i}\right) \in\left[y_{i} H_{t}\left(\boldsymbol{x}_{i}\right), y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right] \tag{25}
\end{equation*}
$$

such that:

$$
\begin{align*}
& \mathbb{E}_{i \sim D} {\left[F^{Q}\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)\right)\right]-\mathbb{E}_{i \sim D}\left[F^{Q}\left(y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right)\right] } \\
& \geq \mathbb{E}_{i \sim D}\left[\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)-y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right) F^{Q^{\prime}}\left(y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right)\right] \tag{26}\\
&=\underbrace{\mathbb{E}_{i \sim D}\left[\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)-y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right) F^{Q^{\prime}}\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)\right)\right]}_{\dot{=}}-\underbrace{\mathbb{E}_{i \sim D}\left[\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)-y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right)^{2} F^{Q^{\prime \prime}}(\beta(\boldsymbol{2} \boldsymbol{\psi}]\right.}_{\dot{=Y}})
\end{align*}
$$

Because F^{Q} is convex, $Y \geq 0$. We want to show that not just $X \geq 0$ but in fact the difference $X-Y$ is sufficiently large for the bound of the Theorem to hold. We first remark

$$
\begin{align*}
X & \doteq \mathbb{E}_{i \sim D}\left[\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)-y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right) F^{Q^{\prime}}\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)\right)\right] \\
& =-\delta_{t} \mathbb{E}_{i \sim D}\left[y_{i} h_{t}\left(\boldsymbol{x}_{i}\right) \cdot-\psi^{Q^{-1}}\left(-y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)\right)\right] \\
& =\delta_{t} \mathbb{E}_{i \sim D}\left[w_{t i} y_{i} h_{t}\left(\boldsymbol{x}_{i}\right)\right] \\
& =\delta_{t} \cdot \frac{\sum_{i} w_{t i} y_{i} h_{t}\left(\boldsymbol{x}_{i}\right)}{m} \\
& =a \cdot \eta_{t}^{2} \tag{28}
\end{align*}
$$

We also have $F^{Q^{\prime \prime}}(z)=\varrho /(2 \varrho+|z|)^{2}$, so

$$
\begin{align*}
Y & =\mathbb{E}_{i \sim D}\left[\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)-y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right)^{2} F^{Q^{\prime \prime}}\left(\beta_{i}\right)\right] \\
& =\varrho \cdot \mathbb{E}_{i \sim D}\left[\frac{\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)-y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right)^{2}}{\left(2+\left|\beta_{i}\right|\right)^{2}}\right] \\
& =\varrho \delta_{t}^{2} \cdot \mathbb{E}_{i \sim D}\left[\frac{h_{t}^{2}\left(\boldsymbol{x}_{i}\right)}{\left(2 \varrho+\left|\beta_{i}\right|\right)^{2}}\right] . \tag{29}
\end{align*}
$$

Now we get because of assumption (M):

$$
\begin{align*}
\mathbb{E}_{i \sim D}\left[\frac{h_{t}^{2}\left(\boldsymbol{x}_{i}\right)}{\left(2 \varrho+\left|\beta_{i}\right|\right)^{2}}\right] & \leq \frac{1}{4 \varrho^{2}} \cdot \mathbb{E}_{i \sim D}\left[h_{t}^{2}\left(\boldsymbol{x}_{i}\right)\right] \\
& \leq \frac{M^{2}}{4 \varrho^{2}} \tag{30}
\end{align*}
$$

So,

$$
\begin{align*}
Y \leq & \frac{\delta_{t}^{2} M^{2}}{4 \varrho} \\
& =\frac{a^{2} \cdot \eta_{t}^{2} M^{2}}{4 \varrho} . \tag{31}
\end{align*}
$$

We finally get

$$
\begin{align*}
\mathbb{E}_{i \sim D}\left[F^{Q}\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)\right)\right]-\mathbb{E}_{i \sim D}\left[F^{Q}\left(y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right)\right] & \geq X-Y \\
& \geq \underbrace{\left(1-\frac{a M^{2}}{4 \varrho}\right) \cdot a \cdot \eta_{t}^{2}}_{=Z(a)} \tag{32}
\end{align*}
$$

Suppose now that we fix any $\pi \in[0,1]$ and then choose any

$$
\begin{equation*}
a \in \frac{2 \varrho}{M^{2}} \cdot[1-\pi, 1+\pi] . \tag{33}
\end{equation*}
$$

It is not hard to check that $Z(a)$ satisfies

$$
\begin{equation*}
Z(a) \geq\left(1-\pi^{2}\right) \cdot \frac{\varrho}{M^{2}} \cdot \eta_{t}^{2} \tag{34}
\end{equation*}
$$

so we get

$$
\begin{equation*}
\mathbb{E}_{i \sim D}\left[F^{Q}\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)\right)\right]-\mathbb{E}_{i \sim D}\left[F^{Q}\left(y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right)\right] \geq \frac{\left(1-\pi^{2}\right) \varrho \eta_{t}^{2}}{M^{2}}, \forall t \tag{35}
\end{equation*}
$$

and so the final classifier H_{T} satisfies

$$
\begin{equation*}
\mathbb{E}_{i \sim D}\left[F^{Q}\left(y_{i} H_{T}\left(\boldsymbol{x}_{i}\right)\right)\right] \leq F^{Q}(0)-\frac{\left(1-\pi^{2}\right) \varrho \cdot \sum_{t=1}^{T} \eta_{t}^{2}}{M^{2}} \tag{36}
\end{equation*}
$$

Remark that this holds regardless of the sequence $\left\{\eta_{t}\right\}_{t}$. If we want to guarantee that $\mathbb{E}_{i \sim D}\left[F^{Q}\left(y_{i} H_{T}\left(\boldsymbol{x}_{i}\right)\right)\right] \leq$ $F^{Q}\left(z^{*}\right)$ for some $z^{*} \geq 0$, then it suffices to iterate until

$$
\begin{equation*}
\sum_{t=1}^{T} \eta_{t}^{2} \geq \frac{F^{Q}(0)-F^{Q}\left(z^{*}\right)}{\left(1-\pi^{2}\right) \varrho} \cdot M^{2} \tag{37}
\end{equation*}
$$

and we get the statement of the Theorem.

5 Proof of Theorem 8

The proof uses the same basic steps as the proof of Theorem 7. Denote for short

$$
\begin{equation*}
\tilde{w}_{t i} \doteq w_{t i}+\kappa_{t i} \tag{38}
\end{equation*}
$$

where $w_{t i} \doteq-\psi^{Q^{-1}}\left(-y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)\right)$ is the non-quantized weights and $\kappa_{t i}$ is the quantization shift in weights. Note that we do not have access to $w_{t i}$. We indicate with a tilda quantities that depend on \tilde{w}.

This time, we have for X the expression:

$$
\begin{align*}
X & =-\tilde{\delta}_{t} \mathbb{E}_{i \sim D}\left[y_{i} h_{t}\left(\boldsymbol{x}_{i}\right) \cdot-\psi^{Q^{-1}}\left(-y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)\right)\right] \\
& =\tilde{\delta}_{t} \mathbb{E}_{i \sim D}\left[w_{t i} y_{i} h_{t}\left(\boldsymbol{x}_{i}\right)\right] \\
& =\tilde{\delta}_{t} \cdot\left(\frac{\sum_{i} \tilde{w}_{t i} y_{i} h_{t}\left(\boldsymbol{x}_{i}\right)}{m}-\frac{\sum_{i} \kappa_{t i} y_{i} h_{t}\left(\boldsymbol{x}_{i}\right)}{m}\right) \\
& =a \cdot \tilde{\eta}_{t}^{2}-a \cdot \tilde{\eta}_{t} \cdot \frac{\sum_{i} \kappa_{t i} y_{i} h_{t}\left(\boldsymbol{x}_{i}\right)}{m}, \tag{39}
\end{align*}
$$

while the expression of Y does not change (yet including "tilda" parameters affected by the quantization of weights). Denote for short

$$
\begin{equation*}
\Delta_{t} \doteq \frac{\sum_{i} \kappa_{t i} y_{i} h_{t}\left(\boldsymbol{x}_{i}\right)}{m} \tag{40}
\end{equation*}
$$

We get in lieu of (32),

$$
\begin{align*}
\mathbb{E}_{i \sim D}\left[F^{Q}\left(y_{i} H_{t}\left(\boldsymbol{x}_{i}\right)\right)\right]-\mathbb{E}_{i \sim D}\left[F^{Q}\left(y_{i} H_{t+1}\left(\boldsymbol{x}_{i}\right)\right)\right] \geq & \geq-Y \\
\geq & \left(1-\frac{\Delta_{t}}{\tilde{\eta}_{t}}-\frac{a M^{2}}{4 \varrho}\right) \cdot a \tilde{\eta}_{t}^{2} \\
& =\underbrace{\left(\frac{4 \varrho}{M^{2}} \cdot \frac{\tilde{\eta}_{t}-\Delta_{t}}{\tilde{\eta}_{t}}-a\right) \cdot a \cdot \frac{M^{2} \tilde{\eta}_{t}^{2}}{4 \varrho}(4)}_{\doteq Z(a)} \tag{.41}
\end{align*}
$$

Choose

$$
\begin{equation*}
a \in \frac{2 \varrho}{M^{2}} \cdot\left[\frac{\tilde{\eta}_{t}-\Delta_{t}}{\tilde{\eta}_{t}}-\pi, \frac{\tilde{\eta}_{t}-\Delta_{t}}{\tilde{\eta}_{t}}+\pi\right], \tag{42}
\end{equation*}
$$

for any $0 \leq \pi \leq\left|\tilde{\eta}_{t}-\Delta_{t}\right| / \tilde{\eta}_{t}$. It follows

$$
\begin{equation*}
Z(a) \geq\left(\left(\frac{\tilde{\eta}_{t}-\Delta_{t}}{\tilde{\eta}_{t}}\right)^{2}-\pi^{2}\right) \cdot \frac{\varrho}{M^{2}} \cdot \tilde{\eta}_{t}^{2} \tag{43}
\end{equation*}
$$

Suppose that the quantisation shift satisfies $\left|\tilde{\eta}_{t}-\Delta_{t}\right| \geq \zeta \cdot\left|\tilde{\eta}_{t}\right|$ (which holds if $\left|\Delta_{t}\right| \leq(1-\zeta) \cdot\left|\tilde{\eta}_{t}\right|$) for some $\zeta>0$. We obtain that for any $0 \leq \pi<\zeta$,

$$
\begin{equation*}
Z(a) \geq\left(\zeta^{2}-\pi^{2}\right) \cdot \frac{\varrho}{M^{2}} \cdot \tilde{\eta}_{t}^{2}>0 \tag{44}
\end{equation*}
$$

which leads to the statement of the Theorem after posing $\kappa_{t} \doteq\left|\Delta_{t}\right|$.
Remark: assumption (Q) is in fact stronger than what would really be needed to get the Theorem. Under some conditions, we could indeed accept $\left|\Delta_{t}\right|>(1-\zeta) \cdot\left|\tilde{\eta}_{t}\right|$, but in the derivations above, the shift in weights due to quantisation would result in a disguised way to strenghten weak learning. Clearly, such an assumption where quantisation compensates for the weakness of the weak classifiers is unfit in a boosting setting.

6 Proof of Theorem 10

We assume basic knowledge of the proofs of Kearns \& Mansour (1996). We shall briefly present the proof scheme as well as the notations, that we keep identical to Kearns \& Mansour (1996) for readability.

The basic of the proof is to show that each time a leaf is replaced by a split under the weak learning assumption, there is a sufficient decrease of $\underline{L}(H)$. Denote H^{+}tree H in which a leaf λ has been replaced by a split indexed with some $g: \mathbb{R} \rightarrow\{0,1\}$ satisfying the weak learning assumption. The decrease in $\underline{L}(),. \Delta \doteq \underline{L}(H)-\underline{L}\left(H^{+}\right)$, is lowerbounded as a function of γ and then used to lowerbound the number of iterations (each of which is the replacement of a leaf by a binary subtree) to get to a given value of $\underline{L}($.

It turns out that Δ can be abstracted by a better quantity to analyze, $\Delta \doteq \omega(\lambda) \cdot \Delta_{\underline{L}^{Q}}(q, \tau, \delta)$ with

$$
\begin{equation*}
\Delta_{\underline{L}^{Q}}(q, \tau, \delta) \doteq \underline{L}^{Q}(q)-(1-\tau) \underline{L}^{Q}(q-\tau \delta)-\tau \underline{L}^{Q}(q+(1-\tau) \delta) \tag{45}
\end{equation*}
$$

with $q \doteq q(\lambda)$ and $\delta=\gamma q(1-q) /(\tau(1-\tau))$ with τ denoting the relative proportion of examples for which $g=+1$ in leaf λ, following Kearns \& Mansour (1996). The following Lemma is the key to the proof of Theorem 10 .

Lemma 1 Suppose the weak hypothesis assumption is satisfied for the current split, for some constant $\gamma>0$. For any $q, \tau \in[0,1]$, using $\delta=\gamma q(1-q) /(\tau(1-\tau))$ yields:

$$
\begin{equation*}
\Delta_{\underline{L}^{a}}(q, \tau, \delta) \geq \frac{\gamma^{2}}{2} \tag{46}
\end{equation*}
$$

Proof Our proof follows the proof of Kearns \& Mansour (1996).
Lemma 2 Suppose $\tau \leq 1 / 2, q>1 / 2$ or $\tau \geq 1 / 2, q<1 / 2$. If $\gamma \leq 1 / 25, \Delta_{\underline{L}^{Q}}(q, \tau, \delta)$ is minimized by some $\tau \in[0.4,0.6]$.

Proof To prove the Lemma we use the trick of Kearns \& Mansour (1996, Lemma 4), which consists of studying function

$$
\begin{align*}
U(q, X) & \doteq \underline{L}^{Q}(q-X)+X \underline{L}^{Q^{\prime}}(q-X) \\
& =\left\{\begin{array}{rlr}
\log (q-X)+\frac{X}{q-X}+1-2 q & \text { if } & q-X \leq \frac{1}{2} \\
\log (1-q+X)-\frac{X}{1-q+X}-1+2 q & \text { if } & q-X>\frac{1}{2}
\end{array}\right. \tag{47}
\end{align*}
$$

and show

$$
\begin{align*}
U(q, \tau \delta) & \leq U(q,-(1-\tau) \delta), \forall \tau \leq 0.4 \tag{48}\\
U(q, \tau \delta) & \geq U(q,-(1-\tau) \delta), \forall \tau \geq 0.6 \tag{49}
\end{align*}
$$

Case 1: $\tau \leq 0.4$ (and therefore $q<1 / 2$). We have two subcases to show (48).
Case 1.1: $q+(1-\tau) \delta<1 / 2$. In this case, $q-X<1 / 2$ for both instantiations of X in (48). We then have

$$
\begin{align*}
U(q, \tau \delta) & =\log \left(1-\frac{\gamma(1-q)}{1-\tau}\right)+\frac{\frac{\gamma(1-q)}{1-\tau}}{1-\frac{\gamma(1-q)}{1-\tau}}+1-2 q+\log q \tag{50}\\
& =\log \left(\frac{\tau-1+\gamma(1-q)}{\tau-1}\right)-\frac{\gamma(1-q)}{\tau-1+\gamma(1-q)}+1-2 q+\log q \tag{51}\\
U(q,-(1-\tau) \delta) & =\log \left(1+\frac{\gamma(1-q)}{\tau}\right)-\frac{\frac{\gamma(1-q)}{\tau}}{1+\frac{\gamma(1-q)}{\tau}}+1-2 q+\log q \tag{52}\\
& =\log \left(\frac{\tau+\gamma(1-q)}{\tau}\right)-\frac{\gamma(1-q)}{\tau+\gamma(1-q)}+1-2 q+\log q \tag{53}
\end{align*}
$$

so (48) is equivalent to showing

$$
\begin{equation*}
\log \left(\frac{\tau-1+\gamma(1-q)}{\tau-1}\right)-\frac{\gamma(1-q)}{\tau-1+\gamma(1-q)} \leq \log \left(\frac{\tau+\gamma(1-q)}{\tau}\right)-\frac{\gamma(1-q)}{\tau+\gamma(1-q)} \tag{54}
\end{equation*}
$$

which after reorganising and simplification amounts to showing

$$
\begin{equation*}
\log \left(1-\frac{\gamma(1-q)}{(\tau+\gamma(1-q))(1-\tau)}\right) \leq-\frac{\gamma(1-q)}{(\tau+\gamma(1-q))(1-\tau-\gamma(1-q))} \tag{55}
\end{equation*}
$$

We remark that for the log to be defined in (51), we must have $\tau<1-\gamma(1-q)$, which implies that the RHS of (55) is negative. To show (55), we use the fact that $\log (1-X) \leq-X-X^{2} / 2$ when $X \geq 0$, so fixing $X \doteq \gamma(1-q) /((\tau+\gamma(1-q))(1-\tau))$ we obtain $\log \left(1-\frac{\gamma(1-q)}{(\tau+\gamma(1-q))(1-\tau)}\right) \leq-\frac{\gamma(1-q)}{\tau+\gamma(1-q)} \cdot\left(\frac{1}{1-\tau}+\frac{\gamma(1-q)}{2(\tau+\gamma(1-q))(1-\tau)^{2}}(5)\right.$.
To show (55), we can then show

$$
\begin{equation*}
\frac{1}{1-\tau-\gamma(1-q)} \leq \frac{1}{1-\tau}+\frac{\gamma(1-q)}{2(\tau+\gamma(1-q))(1-\tau)^{2}}, \tag{57}
\end{equation*}
$$

which, after simplification, is equivalent to

$$
\begin{equation*}
\frac{1-\tau-\gamma(1-q)}{2(\tau+\gamma(1-q))(1-\tau)} \geq 1 \tag{58}
\end{equation*}
$$

or equivalently $3 \tau-2 \tau^{2}+3 \gamma(1-q)-2 \tau \gamma(1-q) \leq 1$. Since $\tau \leq 2 / 5,3 \tau-2 \tau^{2} \leq 22 / 25$. If we pick $\gamma \leq 1 / 25$, then $3 \gamma(1-q)-2 \tau \gamma(1-q) \leq 3 \gamma(1-q) \leq 3 \gamma=3 / 25$, so that
$3 \tau-2 \tau^{2}+3 \gamma(1-q)-2 \tau \gamma(1-q) \leq 1$, as claimed (end of Case 1.1).
Case 1.2: $q+(1-\tau) \delta>1 / 2$. In this case,

$$
\begin{align*}
U(q,-(1-\tau) \delta) & =\log \left(1-\frac{\gamma q}{\tau}\right)+\frac{\frac{\gamma q}{\tau}}{1-\frac{\gamma q}{\tau}}+1-2(1-q)+\log (1-q) \tag{59}\\
& =\log \left(\frac{\tau-\gamma q}{\tau}\right)+\frac{\gamma q}{\tau-\gamma q}+2 q-1+\log (1-q) \tag{60}
\end{align*}
$$

We also remark that $1-2 q+\log q \leq 2 q-1+\log (1-q)$ for $q<1 / 2$, so to prove (48), it is sufficient to show

$$
\begin{equation*}
\log \left(\frac{\tau-1+\gamma(1-q)}{\tau-1}\right)-\frac{\gamma(1-q)}{\tau-1+\gamma(1-q)} \leq \log \left(\frac{\tau-\gamma q}{\tau}\right)+\frac{\gamma q}{\tau-\gamma q} \tag{61}
\end{equation*}
$$

which reduces after simplification to showing that

$$
\begin{equation*}
\log \left(1+\frac{\gamma(q-\tau)}{(\tau-\gamma q)(1-\tau)}\right) \leq \frac{\gamma(q-\tau)}{(\tau-\gamma q)(1-\tau-\gamma(1-q))} \tag{62}
\end{equation*}
$$

Because $q+(1-\tau) \delta>1 / 2$, if $\tau \geq 10 \gamma q(1-q)$, then $q>0.4$ and therefore $q>\tau$. If, on the other hand $\tau \leq 10 \gamma q(1-q)$, then if $\gamma \leq 1 / 10$, it follows also $\tau \leq q$. To summarize, $q+(1-\tau) \delta>1 / 2$ and $\gamma \leq 1 / 10$ imply $q \geq \tau$.

Using the fact that $\log (1+X) \leq X$ and $\gamma(1-q) \geq 0$, we easily obtain the proof of (62) via the chain of inequalities

$$
\begin{equation*}
\log \left(1+\frac{\gamma(q-\tau)}{(\tau-\gamma q)(1-\tau)}\right) \leq \frac{\gamma(q-\tau)}{(\tau-\gamma q)(1-\tau)} \leq \frac{\gamma(q-\tau)}{(\tau-\gamma q)(1-\tau-\gamma(1-q))} \tag{63}
\end{equation*}
$$

This ends up the proof for Case 1.
Case 2: $\tau \geq 0.6$ (and therefore $q>1 / 2$). We have two cases again, this time to show (49).
Case 2.1: $q-\tau \delta>1 / 2$. In this case, $q-X>1 / 2$ for both instantiations of X in (49). We then have

$$
\begin{align*}
U(q, \tau \delta) & =\log \left(1+\frac{\gamma q}{1-\tau}\right)-\frac{\gamma q}{1-\tau+\gamma q}-1+2 q+\log (1-q) \tag{64}\\
U(q,-(1-\tau) \delta) & =\log \left(1-\frac{\gamma q}{\tau}\right)+\frac{\gamma q}{\tau-\gamma q}-1+2 q+\log (1-q) \tag{65}
\end{align*}
$$

To show (49), it is thus sufficient to show that

$$
\begin{equation*}
\log \left(1+\frac{\gamma q}{1-\tau}\right)-\frac{\gamma q}{1-\tau+\gamma q} \geq \log \left(1-\frac{\gamma q}{\tau}\right)+\frac{\gamma q}{\tau-\gamma q} \tag{66}
\end{equation*}
$$

or equivalently, after reordering and simplifying,

$$
\begin{equation*}
\log \left(1-\frac{\gamma q}{\tau(1-\tau+\gamma q)}\right) \leq-\frac{\gamma q}{(\tau-\gamma q)(1-\tau+\gamma q)} \tag{67}
\end{equation*}
$$

which is (55) with the substitution $\tau \mapsto 1-\tau$ and $q \mapsto 1-q$. Since then $1-\tau \leq 0.4$, we can directly apply the proof of (55), which ends the proof of Case 2.1.

Case 2.2: $q-\tau \delta<1 / 2$. In this case,

$$
\begin{equation*}
U(q, \tau \delta)=\log \left(1-\frac{\gamma(1-q)}{1-\tau}\right)+\frac{\gamma(1-q)}{1-\tau-\gamma(1-q)}+1-2 q+\log q \tag{68}
\end{equation*}
$$

while we still have

$$
\begin{equation*}
U(q,-(1-\tau) \delta)=\log \left(1-\frac{\gamma q}{\tau}\right)+\frac{\gamma q}{\tau-\gamma q}-1+2 q+\log (1-q) \tag{69}
\end{equation*}
$$

and so we want to show

$$
\begin{align*}
& \log \left(1-\frac{\gamma q}{\tau}\right)+\frac{\gamma q}{\tau-\gamma q}-1+2 q+\log (1-q) \\
& \quad \leq \log \left(1-\frac{\gamma(1-q)}{1-\tau}\right)+\frac{\gamma(1-q)}{1-\tau-\gamma(1-q)}+1-2 q+\log q \tag{70}
\end{align*}
$$

We also remark that $-1+2 q+\log (1-q) \leq 1-2 q+\log q$ for $q>1 / 2$, so to prove 70), it is sufficient to show

$$
\begin{equation*}
\log \left(1-\frac{\gamma q}{\tau}\right)+\frac{\gamma q}{\tau-\gamma q} \leq \log \left(1-\frac{\gamma(1-q)}{1-\tau}\right)+\frac{\gamma(1-q)}{1-\tau-\gamma(1-q)} \tag{71}
\end{equation*}
$$

which reduces after simplification to showing that

$$
\begin{equation*}
\log \left(1+\frac{\gamma(\tau-q)}{(1-\tau-\gamma(1-q)) \tau}\right) \leq \frac{\gamma(\tau-q)}{(\tau-\gamma q)(1-\tau-\gamma(1-q))} \tag{72}
\end{equation*}
$$

wich turns out to be (62) with the substitution $\tau \mapsto 1-\tau$ and $q \mapsto 1-q$. Since then $1-\tau \leq 0.4$, we can directly apply the proof of (62), which ends the proof of Case 2.2, and the proof of Lemma 2 as well. (end of the proof of Lemma 2)

Following Kearns \& Mansour (1996), we define

$$
\begin{equation*}
F_{\underline{L}^{Q}}(q, \tau, \delta) \doteq-\frac{\tau(1-\tau) \delta^{2}}{2} \underline{L}^{Q^{\prime \prime}}(q)-\frac{\tau(1-\tau)(1-2 \tau) \delta^{3}}{6} \underline{L}^{Q^{(3)}}(q) \tag{73}
\end{equation*}
$$

We now state and prove the equivalent of (Kearns \& Mansour, 1996, Lemma 3).
Lemma 3 For any $q, \tau, \delta \in[0,1]$,

$$
\begin{equation*}
\Delta_{\underline{L}^{Q}}(q, \tau, \delta) \geq F_{\underline{L}^{Q}}(q, \tau, \delta) . \tag{74}
\end{equation*}
$$

Proof We have

$$
\underline{L}^{Q^{(k)}}(q)=\varrho \cdot\left\{\begin{array}{ccc}
\frac{(-1)^{k-1}(k-1)!}{q^{k}}-2 \cdot \llbracket k=1 \rrbracket & \text { if } & q<1 / 2 \tag{75}\\
-\frac{(k-1)!}{(1-q)^{k}}+2 \cdot \llbracket k=1 \rrbracket & \text { if } & q>1 / 2
\end{array},\right.
$$

and we check that only the first and second order derivatives are defined in $q=1 / 2$. Since \underline{L}^{Q} is symmetric around $1 / 2, \Delta_{\underline{L}^{a}}$ satisfies

$$
\begin{aligned}
\Delta_{\underline{L}^{Q}}\left(\frac{1}{2}-q, 1-\tau, \delta\right) & =\underline{L}^{Q}\left(\frac{1}{2}-q\right)-\tau \underline{L}^{Q}\left(\frac{1}{2}-q-(1-\tau) \delta\right)-(1-\tau) \underline{L}^{Q}\left(\frac{1}{2}-q+\tau \delta\right) \\
& =\underline{L}^{Q}(q)-\tau \underline{L}^{Q}\left(\frac{1}{2}-(q+(1-\tau) \delta)\right)-(1-\tau) \underline{L}^{Q}\left(\frac{1}{2}-(q-\tau \delta)\right) \\
& =\underline{L}^{Q}(q)-\tau \underline{L}^{Q}(q+(1-\tau) \delta)-(1-\tau) \underline{L}^{Q}(q-\tau \delta)=\Delta_{\underline{L}^{Q}}(q, \tau, \delta),(76)
\end{aligned}
$$

so we study $\Delta_{\underline{L}^{Q}}$ for $q>1 / 2$ without loss of generality. In this case, all derivatives \underline{L}^{Q} at order $k \geq 4$ are all negative, which from (Kearns \& Mansour, 1996, Lemma 3) guarantees that

$$
\begin{equation*}
\Delta_{\underline{L}^{Q}}(q, \tau, \delta) \geq F_{\underline{L}^{Q}}(q, \tau, \delta) \tag{77}
\end{equation*}
$$

as claimed.
(end of the proof of Lemma 3)
We now lowerbound $F_{L^{Q}}(q, \tau, \delta)$, which, from Lemma 3 , will also provide a lowerbound for the decrease in $\Delta_{\underline{L}^{Q}}(q, \tau, \delta)$ and in fact will show Lemma $\overline{1}$. From now on, let us fix $\delta=\gamma q(1-$ $q) /(\tau(1-\tau))$, if we denote $V(\tau, q) \doteq(1-2 \tau)(q-\llbracket q<1 / 2 \rrbracket)$, then

$$
\begin{equation*}
F_{\underline{L}^{Q}}(q, \tau, \delta)=\max \{q, 1-q\}^{2} \gamma^{2} \cdot\left(\frac{1}{2 \tau(1-\tau)}+\frac{\gamma}{3 \tau^{2}(1-\tau)^{2}} \cdot V(\tau, q)\right) \tag{78}
\end{equation*}
$$

We immediately obtain
Lemma 4 Let $\delta=\gamma q(1-q) /(\tau(1-\tau))$. Then for any τ, q such that $V(\tau, q) \geq 0$,

$$
\begin{equation*}
F_{\underline{L}^{a}}(q, \tau, \delta) \geq \frac{\gamma^{2}}{2} \tag{79}
\end{equation*}
$$

Proof For any τ, q such that $V(\tau, q) \geq 0$, we have

$$
\begin{equation*}
F_{\underline{L}^{a}}(q, \tau, \delta) \geq \max \{q, 1-q\}^{2} \gamma^{2} \cdot \frac{1}{2 \tau(1-\tau)} \geq \frac{1}{4} \cdot \gamma^{2} \cdot 2=\frac{\gamma^{2}}{2} \tag{80}
\end{equation*}
$$

as claimed (end of the proof of Lemma 4).
Lemma 4 means that when $\tau \leq 1 / 2, q<1 / 2$ or $\tau \geq 1 / 2, q>1 / 2$, the drop $\Delta_{\underline{L}^{Q}}(q, \tau, \delta)$ is guaranteed to be "big". If this does not happen, we make use of Lemma2. In this case, if we pick wlog $\tau \leq 1 / 2, q>1 / 2$ and get:

$$
\begin{aligned}
F_{\underline{L}^{Q}}(q, \tau, \delta) & =\max \{q, 1-q\}^{2} \gamma^{2} \cdot\left(\frac{1}{2 \tau(1-\tau)}-\frac{\gamma(1-2 \tau)(1-q)}{3 \tau^{2}(1-\tau)^{2}}\right) \\
& \geq \frac{\gamma^{2}}{2} \cdot\left(2-\frac{\gamma(1-2 \cdot 0.4)}{3 \cdot 0.4^{2}(1-0.4)^{2}}\right)=\gamma^{2} \cdot\left(1-\frac{625 \gamma}{216}\right) \geq \gamma^{2} \cdot\left(1-\frac{25}{216}\right) \geq \frac{\gamma^{2}}{2}
\end{aligned}
$$

which therefore implies that $F_{L^{q}}(q, \tau, \delta) \geq \gamma^{2} / 2$ in all cases. We just have to use Lemma 3 to finish the proof of Lemma 1 (end of the proof of Lemma 1).

We can now finish the proof of Theorem 10. Suppose the current tree H has t leaves. There must be a leaf with $\omega(\lambda) \geq 1 / t$, so

$$
\begin{align*}
\Delta & \doteq \underline{L}^{Q}(H)-\underline{L}^{Q}\left(H^{+}\right) \\
& =\omega(\lambda) \Delta_{\underline{L}^{Q}}(q, \tau, \delta) \geq \frac{\gamma^{2}}{2 t} \\
& \geq \frac{\gamma^{2}}{2 t} \cdot \frac{\underline{L}^{Q}(H)}{\underline{L}^{Q}\left(H_{0}\right)} \tag{81}
\end{align*}
$$

where the last inequality follows from the concavity of \underline{L}^{Q}, letting H_{0} the single-root node tree for which $\underline{L}^{Q}\left(H_{0}\right)=\underline{L}^{Q}(q(\mathcal{S}))$, and more generally H_{t} a tree with $t+1$ leaves (thus we have made t iterations of the boosting procedure). It therefore comes the recurrence relationship

$$
\begin{equation*}
\underline{L}^{Q}\left(H_{t+1}\right) \leq\left(1-\frac{\gamma^{2}}{2 \underline{L}^{Q}(q(\mathcal{S})) \cdot t}\right) \cdot \underline{L}^{Q}\left(H_{t}\right) \tag{82}
\end{equation*}
$$

and we get (see Kearns \& Mansour, 1996, proof of Theorem 10))

$$
\begin{equation*}
\underline{L}^{Q}\left(H_{t}\right) \leq \exp \left(-\frac{\gamma^{2} \log t}{4 \underline{L}^{Q}(q(\mathcal{S}))}\right) \cdot \underline{L}^{Q}(q(\mathcal{S})) \tag{83}
\end{equation*}
$$

to obtain $\underline{L}^{Q}\left(H_{t}\right) \leq \rho \cdot \underline{L}^{Q}(q(\mathcal{S}))$ for $\rho \in(0,1]$, it therefore suffices that

$$
\begin{equation*}
t \geq\left(\frac{1}{\rho}\right)^{\frac{4 \cdot L}{} \frac{L^{Q}(q(s))}{\gamma^{2}}} \tag{84}
\end{equation*}
$$

We finally remark that $\underline{L}^{Q}(q(\mathcal{S})) \leq \varrho \cdot \log 1 /(2 \varepsilon)$ and conclude that (84) holds when

$$
\begin{equation*}
t \geq\left(\frac{1}{\rho}\right)^{\frac{4 \rho}{\gamma^{2} \log \frac{1}{2 \varepsilon}}} \tag{85}
\end{equation*}
$$

as claimed.
Remark: we can compare at this stage our guarantees to those of Kearns \& Mansour (1996). The knowledge of their proofs immediately sheds light on the fact that our lowerbound on $\Delta_{\underline{L}^{Q}}(q, \tau, \delta)$ in Lemma 10 does not depend on q whereas all of theirs do (Kearns \& Mansour, 1996, Lemmata 5, 6,7), and in fact vanish as $q \rightarrow 0,1$. A closer look at the weak learning assumption shows that it in fact precludes this extreme regime for q as it enforces $q \in[\tau \delta, 1-(1-\tau) \delta]$ when $\delta \leq 1$; as a consequence their bounds can also be reformulated to exclude q and their convergence rate for their best splitting criterion is within the same order as ours.

7 Experiments in extenso

7.1 Implementation

We give here a few details on the implementation. The Java implementation of the algorithms, available separately, implements the version of Nock \& Nielsen (2006); Schapire \& Singer (1999) respectively for $\operatorname{ADABOOST}_{\mathbb{R}}$ and AdaBoost.

The implementation of RatBoostE uses methods from class Math that allow to throw an ArithmeticException when a long overflow happens - in which case we catch the exception and redo the corresponding method after quantization. To make the code faster, we have also included the possibility to trigger quantization when the longs encoding length exceeds a userfixed threshold.

The implementation of RatBoosta ${ }_{b}$ uses a regular k-means with Forgy initialization. If you want to optimize this with your best hard clustering algorithm, you just have to rewrite a few methods from class KMeans_R in file Misc. java. Note that the implementation also allows to use stochastic weight assignation with adaptive quantization (a combination of RATBoostA ${ }_{b}$ and RatBoostQ ${ }_{b}$), but it is not reported (see README).

Domain summary Table

Table 1 details the UCI domains we have used Blake et al. (1998). We now detail the per-domain training curves when there is no stopping criterion (other than to boost for 10000 iterations). In the results reported in Tables 1 (main file) and 2 (this), we keep the classifier which minimizes the empirical risk among all iterations, which amounts to a cutoff point for boosting around the minimal values of each curve (because of the statistical uncertainty, we are not guarantee that this may be minimal on testing). Results of $\mathrm{ADABOOST}_{\mathbb{R}}$ are omitted to not clutter the plots but they are included in the full Table 2 .

Domain	m	d
Fertility	100	9
Haberman	306	3
Transfusion	748	4
Banknote	1372	4
Breast wisc	699	9
Ionosphere	351	33
Sonar	208	60
Yeast	1484	7
Wine-red	1599	11
Cardiotocography $\left(^{*}\right)$	2126	9
CreditCardSmall $(* *)$	1000	23
Abalone	4177	8
Qsar	1055	41
Wine-white	4898	11
Page	5473	10
Mice	1080	77
Hill+noise	1212	100
Hill+nonoise	1212	100
Firmteacher	10800	16
Magic	19020	10
EEG	14980	14
Skin	245057	3
Musk	6598	166
Hardware	28179	95
Twitter $(* * *)$	583250	77

Table 1: UCI domains considered in our experiments ($m=$ total number of examples, $d=$ number of features), ordered in increasing $m \times d .(*)$ we used features 13-21 as descriptors; (${ }^{* *}$) we used the first 1000 examples of the UCI domain; $\left({ }^{* * *)}\right.$ due to the size of the domain, only AdaBoost and ADABoost ${ }_{\mathbb{R}}$ were run for $T=5000$ iterations, the other algorithms were rum for a smaller $T^{\prime}=1000$ iterations.

UCI fertility

Figure 1: UCI domain fertility. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 2: UCI domain fertility. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / $\mathrm{RatBoostQ}_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI haberman

Figure 3: UCI domain haberman. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 4: UCI domain haberman. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / $\mathrm{RatBoostQ}_{b}$ (thin orange) / $\mathrm{RatBoostS}_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI transfusion

Figure 5: UCI domain transfusion. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 6: UCI domain transfusion. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is $n o$ other stopping criterion apart from running for $T=10000$ iterations.

UCI banknote

Figure 7: UCI domain banknote. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 8: UCI domain banknote. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / $\mathrm{RatBoostQ}_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI breastwisc

Figure 9: UCI domain breastwisc. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 10: UCI domain breastwisc. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is $n o$ other stopping criterion apart from running for $T=10000$ iterations.

UCI ionosphere

Figure 11: UCI domain ionosphere. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 12: UCI domain ionosphere. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions RatBoosta (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI sonar

Figure 13: UCI domain sonar. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 14: UCI domain sonar. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions RatBoosta ${ }_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI yeast

Figure 15: UCI domain yeast. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 16: UCI domain yeast. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions RatBoosta ${ }_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI winered

Figure 17: UCI domain winered. Results comparing AdaBoost (blue), RATBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 18: UCI domain winered. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / $\mathrm{RatBoostQ}_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI cardiotocography

Figure 19: UCI domain cardiotocography. Results comparing AdaBoost (blue), RATBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 20: UCI domain cardiotocography. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoostA}_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS $_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI CreditCardSmall

Figure 21: UCI domain creditcardsmall. Results comparing AdaBoost (blue), RATBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 22: UCI domain creditcardsmall. Results comparing AdaBoost (blue), RATBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / $\mathrm{RATBOostQ}_{b}$ (thin orange) / RatBoostS $_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI abalone

Figure 23: UCI domain abalone. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 24: UCI domain abalone. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / $\mathrm{RatBoostQ}_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI qsar

Figure 25: UCI domain qsar. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 26: UCI domain qsar. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions RatBoosta ${ }_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS $_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI winewhite

Figure 27: UCI domain winewhite. Results comparing AdaBoost (blue), RatBoost (green) and RatBooste (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 28: UCI domain winewhite. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI page

Figure 29: UCI domain page. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 30: UCI domain page. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions RatBoosta ${ }_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI mice

Figure 31: UCI domain mice. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 32: UCI domain mice. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions RatBoosta ${ }_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI hill+noise

Figure 33: UCI domain hill+noise. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 34: UCI domain hill+noise. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / RatBoostQ (thin orange) / RatBoostS $_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI hill+nonoise

Figure 35: UCI domain hill+nonoise. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 36: UCI domain hill+nonoise. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI firmteacher

Figure 37: UCI domain firmteacher. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 38: UCI domain firmteacher. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI magic

Figure 39: UCI domain magic. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 40: UCI domain magic. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions RatBoosta ${ }_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI eeg

Figure 41: UCI domain eeg. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 42: UCI domain eeg. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions RatBoosta ${ }_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / $\mathrm{RatBoostS}_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI skin

Figure 43: UCI domain skin. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 44: UCI domain skin. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions RatBoosta ${ }_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI musk

Figure 45: UCI domain musk. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 46: UCI domain musk. Results comparing AdaBoost (blue), RatB oost (green) and the quantized versions RatBoosta ${ }_{b}$ (black) / RatBoostQ ${ }_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI hardware

Figure 47: UCI domain hardware. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

Figure 48: UCI domain hardware. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / $\mathrm{RatBoostQ}_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=10000$ iterations.

UCI twitter

Figure 49: UCI domain twitter. Results comparing AdaBoost (blue), RatBoost (green) and RatBoostE (purple). Note: there is no other stopping criterion apart from running for $T=5000$ iterations (AdaBoost) and $T^{\prime}=1000$ iterations (RatBoost, RatBoostE).

Figure 50: UCI domain twitter. Results comparing AdaBoost (blue), RatBoost (green) and the quantized versions $\mathrm{RatBoosta}_{b}$ (black) / $\mathrm{RatBoostQ}_{b}$ (thin orange) / RatBoostS ${ }_{b}$ (red), for various values of the quantization index bit-size b. Note: there is no other stopping criterion apart from running for $T=5000$ iterations (AdaBoost) and $T^{\prime}=1000$ iterations (RATBoost, RatBoosta $_{b}$, RatBoostQ ${ }_{b}$, RatBoostS R $_{b}$).

Summary of Results

References

Blake, C. L., Keogh, E., and Merz, C. UCI repository of machine learning databases, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.

Buja, A., Stuetzle, W., and Shen, Y. Loss functions for binary class probability estimation and classification: structure and applications, 2005. Technical Report, University of Pennsylvania.

Kearns, M. and Mansour, Y. On the boosting ability of top-down decision tree learning algorithms. In Proc. of the $28^{\text {th }}$ ACM STOC, pp. 459-468, 1996.

Kearns, M. J. and Mansour, Y. A Fast, Bottom-up Decision Tree Pruning algorithm with NearOptimal generalization. In Proc. of the $15^{\text {th }}$ International Conference on Machine Learning, pp. 269-277, 1998.

Nock, R. and Nielsen, F. A $\mathbb{R e a l}$ Generalization of discrete AdaBoost. In Proc. of the $17^{\text {th }}$ European Conference on Artificial Intelligence, pp. 509-515, 2006.

Nock, R. and Nielsen, F. On the efficient minimization of classification-calibrated surrogates. In NIPS*21, pp. 1201-1208, 2008.

Reid, M.-D. and Williamson, R.-C. Composite binary losses. JMLR, 11:2387-2422, 2010.
Schapire, R. E. and Singer, Y. Improved boosting algorithms using confidence-rated predictions. MLJ, 37:297-336, 1999.

Schervish, M.-J. A general method for comparing probability assessors. Ann. of Stat., 17(4): 1856-1879, 1989.

Shuford, Jr, E.-H., Albert, A., and Massengil, H.-E. Admissible probability measurement procedures. Psychometrika, 31:125-145, 1966.

Table 2: Complete results for Table 1 (in main file). Domains ordered following Table 1 (in this SM). Each result is the average + stddev
of the classifiers retained at each CV fold. The classifier retained at each fold is the one minimizing the empirical risk among the T, T^{\prime} boosting iterations.

[^0]: ${ }^{1}$ And an even larger class is defined in Schervish (1989, Theorem 4.2).
 ${ }^{2}$ Buja et al. (2005, Theorem 1) is slightly more general as the integrals bounds depending on ε are replaced by variables in $(\varepsilon, 1-\varepsilon)$.

