
Supplement for: Learning to Infer Program Sketches

1. Architecture Details
Generator:

Our Generator neural network architecture is nearly iden-
tical to the Attn-A RobustFill model (Devlin et al., 2017).
This is a sequence-to-sequence model which attends over
multiple input-output pairs. Our model differs from the Attn-
A RobustFill model by adding a learned grammar mask. As
in Bunel et al. (2018), we learn a separate LSTM language
model over the program syntax. The output probabilities
of this LSTM are used to mask the output probabilities of
the Generator model, encouraging the model to put less
probability mass on grammatically invalid sequences.

For the Algolisp experiments, we did not condition the
Generator on input-output examples, instead encoding the
natural language descriptions for each program. In these ex-
periments, the Generator is simply a sequence-to-sequence
LSTM model with attention, coupled with a learned gram-
mar mask, as above.

For the Generator model, HOLE is simple an additional
token added to the program DSL. During training, sketches
are sampled via Equation 6 in the main text, and are con-
verted to a list of tokens to be processed by the Generator,
as is typical with RNN models.

Recognizer:

The recognizer model consists of an LSTM encoder fol-
lowed by a feed-forward MLP. To encode a specification,
each input-output example is separately tokenized (a special
EndOfInput token is used to separate input from output),
and fed into the LSTM encoder. The resulting vectors for
each input-output example are averaged. The result is fed
into the feed-forward MLP, which terminates in a softmax
layer, predicting a distribution over output production prob-
abilities.

This architecture differs slightly from the DeepCoder model
(Balog et al., 2016), which encodes inputs and outputs via
a feedforward deep network without recurrence. However,
the models are similar in functionality; both models en-
code input-output specs, average the hidden vectors for
each example, and decode a distribution over production
probabilities. Both models use the resulting distribution to
guide a symbolic enumerative search over programs. Our
enumeration scheme is equivalent to the depth first search

experiments in Balog et al. (2016).

For the Algolisp experiments, we did not condition the
Recognizer on input-output examples, instead encoding the
natural language descriptions for each program. In these
experiments, the LSTM encoder simply encodes the single
natural language specification and feeds it to the MLP. As
in the other domains, the examples are still used by the
synthesizer to determine if enumerated candidate programs
satisfy the input-output specification.

2. Experimental details
All code was written in Python, and neural network models
were implemented in PyTorch and trained on NVIDIA Tesla-
x GPUs. All networks were trained with the Adam optimizer
(Kingma & Ba, 2014), with a learning rate of 0.001. Our
sketch generator LSTMs used embedding sizes of 128 and
hidden sizes of 512. Our recognizer networks used LSTMs
with embedding sizes of 128, hidden sizes of 128, and MLPs
had a single hidden layer of size 128. For all domains,
we trained using a timeout parameter t sampled from t ∼
Exp(α), where α = 0.25.

2.1. List Processing

Data: We use the test and training programs from Balog
et al. (2016). The test programs are simply all of the length
N programs, pruned for redundant or invalid behavior, for
which there does not exist a smaller program with identical
behavior. We converted these programs into a λ-calculus
form to use with our synthesizer.

As in Balog et al. (2016), input-output example pairs were
constructed by randomly sampling an input example and
running the program on it to determine the corresponding
output example. We used simple heuristic constraint prop-
agation code, provided to us by the authors of Balog et al.
(2016), to ensure that sampled inputs did not cause errors or
out-of-range values when the programs were run on them.

Training: For the sketch generator, we used a batch size
of 200. We pretrained all sketch generators on the full
programs for 10 epochs, and then trained on our sketch
objective for 10 additional epochs. We also note that, we
trained the RNN baseline for twice as long, 20 epochs, and
observed no difference in performance from the baseline
trained for 10 epochs. The Deepcoder-style recognizer net-

Supplement for: Learning to Infer Program Sketches

work was trained for 50 epochs.

The sketch Generator models had approximately 7 million
parameters, and the Recognizer model had about 230,000
parameters.

2.2. String Transformations

Data: As our DSL, we use a modified version of the string
transformation language in Devlin et al. (2017). Because
our enumerator uses a strongly typed λ-calculus, additional
tokens, such as concat list, concat1, expr n and
delimiter to regexwere added to the DSL to express
lists and union types.

Training: Our Generator and Recognizer networks were
each trained on 250,000 programs randomly sampled from
the DSL. The sketch Generator used a batch size of 50.

2.3. AlgoLisp

Data: We implemented SKETCHADAPT and our baselines
for the AlgoLisp DSL in Polosukhin & Skidanov (2018).
As in Bednarek et al. (2018), we filter out evaluation tasks
for which the reference program does not satisfy the input-
output examples.

Training: For the AlgoLisp domain, we used a batch size
of 32, and trained our Generator and Recognizer networks
until loss values stopped decreasing on the ‘dev’ dataset, but
for no fewer than 1250 training iterations.

3. Additional Experimental Analysis
Training and testing with noisy specification: For the
string editing domain—where real-world user input can
often be noisy—we conducted an experiment to examine our
system’s performance when specifications have errors. we
injected random noise (insertion, deletion, or substitution)
into the training and testing data. We assume that only one
of the test examples is corrupted, and measure the number
of specs for which we can satisfy at least three out of four
test examples. We report accuracy of 53% for SketchAdapt,
52% for “Generator only”, and 52% for “Synthesizer only”.
These results indicate that our system is affected by noise,
but can still often recover the desired program from noisy
inputs.

Algolisp results using only IO specification: To deter-
mine the utility of the natural language descriptions in the
Algolisp experiments, we report an additional ablation, in
which the description is not used. In these experiments, the
Generator and Recognizer networks are conditioned on the
input-output examples instead of the program descriptions.
Table 1 reports our results for this “IO only” ablation. We
observe that without the natural language descriptions, nei-
ther SKETCHADAPT or the lesioned baselines are able to

Table 1. Algolisp results using only input-output specification

Model Full dataset Filtered1

(Dev) Test (Dev) Test
SKETCHADAPT, IO only (4.9) 8.3 (5.6) 8.8
Generator, IO only (5.8) 2.4 (6.4) 2.7
Synthesizer, IO only (8.7) 7.1 (9.3) 7.8

synthesize many of the test programs.

Evaluation runtime for Algolisp dataset: We report solve
time for the Algolisp test data in Table 2. We report 25th
percentile, median, and 75th percentile solve times. We note
that, despite using both neural beam search and enumerative
search, SKETCHADAPT does not find programs significantly
slower than the RNN “Generator only” baseline. We also
note that the “Synthesizer only” solve times are significantly
faster because only a small proportion of the programs were
solved.

Breakdown of results: In order to gain further insight
into how our system compares to baselines, for each test
domain, we examine to what extent problems solved by
SKETCHADAPT are not solved by baselines, and visa versa.
Figures 3, 4 and 5 report the degree of overlap between prob-
lems solved by SKETCHADAPT and the strongest baseline.

For all domains, a large proportion of problems are solved
by SKETCHADAPT and not solved by the baseline, while
a much smaller proportion of problems are solved by the
baseline but not solved by SKETCHADAPT.

We additionally provide samples of programs which were
solved by SKETCHADAPT and not solved by the strongest
baseline (Figures 1, 2, and 3).

Table 3. Breakdown of results in the list processing domain (train
on length 3 programs, test on length 4 programs). We examine
the proportion of programs solved after evaluating fewer than 104

candidates. We compare SKETCHADAPT to the “Synthesizer only”
model, which is the best performing baseline in this domain.

Synthesizer Only

S
K

E
T

C
H

A
D

A
P

T solved failed sum
solved 19% 24% 43%
failed 2% 55% 57%
sum 21% 79%

1As in Bednarek et al. (2018), we filter the test and dev datasets
for only those tasks for which reference programs satisfy the given
specs.

Supplement for: Learning to Infer Program Sketches

Table 2. Solve times for Algolisp test programs, in seconds

Number of training programs used
2000 4000 6000 8000 Full dataset

SKETCHADAPT
25th percentile 25.3 30.5 24.8 23.0 34.7

median 37.3 46.8 38.5 36.6 55.2
75th percentile 62.7 71.0 55.3 56.1 85.8

Generator only
25th percentile 51.1 31.8 21.8 26.4 28.2

median 57.8 41.2 33.7 39.2 41.8
75th percentile 100.6 60.8 49.3 59.2 63.5

Synthesizer only
25th percentile 0.4 0.5 0.6 0.5 0.4

median 0.8 0.9 1.0 0.9 0.9
75th percentile 1.3 1.5 2.2 1.6 3.6

Table 4. Breakdown of results in the text editing domain. We
compare SKETCHADAPT to the “Generator only” model, which is
the best performing baseline in this domain.

Generator Only

S
K

E
T

C
H

A
D

A
P

T solved failed sum
solved 55.2% 7.8% 63.0%
failed 2.0% 35.0% 37.0%
sum 57.2% 42.8%

Table 5. Breakdown of results on Algolisp test data (trained on
6000 programs). We compare SKETCHADAPT to the “Generator
only” model, which is the best performing baseline in this domain.

Generator Only

S
K

E
T

C
H

A
D

A
P

T solved failed sum
solved 45.3% 20.8% 66.1%
failed 7.2% 26.7% 33.9%
sum 52.5% 47.5%

Supplement for: Learning to Infer Program Sketches

Figure 1. Sketches and programs found by SKETCHADAPT in list processing domain
Spec:
[123, -105, 60, 122, 7, -54, 15, 2, 44, 7], [-50, 82, 88, -37, 111, 115, 108, -44, 96, 107]→ [-50, -105, 8, -37, 7],
[115, -75, -36, 98, -114, -91, 22, 28, -35, -7], [22, -123, -101, -17, 118, 86, 2, -106, 88, -75]→ [22, -123, -101, -34, -114],
. . .
Sketch:
(ZIPWITH MIN input1 (ZIPWITH MIN (FILTER <HOLE1> <HOLE2>) input0))
where
<HOLE0>→ isEVEN
<HOLE1>→ (MAP INC input0)

Spec:
[4, -7, -6, 2, -5, -7, 4, -4, 1, -5], [-4, 1, 7, -3, -2, -7, 1, 5, -2, 7]→ [0, 1, -26, -2],
[3, -6, -6, 4, 2, -7, -4, 2, -4, -1], [-5, -6, 4, -7, 0, 7, -7, -5, 4, 3]→ [-3, 52, -16, -20],
. . .
Sketch:
(ZIPWITH + (FILTER <HOLE0> <HOLE1>) (ZIPWITH * input1 input0))
where
<HOLE0>→ isPOS
<HOLE1>→ (MAP MUL4 input0)

Spec:
[-1, 5, -6, 1, -4, -7, -3, 6, 4, -1], [-6, -4, 3, 4, 3, -3, 0, 3, 5, -3]→ [2, 50, 45, 17, 25, 58, 9, 72, 41, 2],
[-4, 0, -4, 1, 2, -2, 7, 2, -2, -4], [-5, 6, -1, -7, -5, -6, -3, -4, 7, -5]→ [32, 36, 17, 2, 8, 8, 98, 8, 53, 32],
. . .
Sketch:
(ZIPWITH <HOLE0> (MAP SQR <HOLE1>) (MAP SQR input0))
where
<HOLE0>→ +
<HOLE1>→ (ZIPWITH MAX input1 input0)

Spec:
[69, -49, 117, 7, -13, 84, -48, -125, 6, -68], [112, -44, 77, -58, -126, -45, 112, 23, -92, 42]→ [-9, -21, -7, -15],
[0, -76, -85, 75, 62, -64, 95, -77, -78, -114], [-111, 92, -121, 108, 5, -22, -126, -40, 9, -115]→ [-21, -39, -57],
. . .
Sketch:
(FILTER <HOLE0> (MAP DIV2 (ZIPWITH MIN input0 <HOLE1>)))
where
<HOLE0>→ isODD
<HOLE1>→ (MAP DIV3 input1)

Supplement for: Learning to Infer Program Sketches

Figure 2. Sketches and programs found by SKETCHADAPT in text editing domain. Programs edited for readability.
Spec:
((’Lashanda’→ ’Las’), (’Pennsylvania’→ ’Pennsyl’), (’California’→ ’Calif’), (’Urbana’→ ’U’))
Sketch:
(apply fn <HOLE1> (SubStr <HOLE2> <HOLE3>))
where
<HOLE1>→ GetTokenWord-1
<HOLE2>→ Position0
<HOLE3>→ Position-5

Spec:
((’Olague(California’ → ’California’), (’621(Seamons’ → ’Seamons’), (’Mackenzie(Dr(5(Park’ → ’Park’),
(’+174(077(Storrs’→ ’Storrs’))
Sketch:
(apply fn GetFirst PropCase3 (GetSpan right paren index-1 <HOLE> Alphanum <HOLE>
End))
where
<HOLE1>→ End
<HOLE2>→ Index-1

Spec:
((’Karrie’→ ’Karri’), (’Jeanice’→ ’Jeani’), (’Brescia’→ ’Bresc’), (’Lango’→ ’Lango’))
Sketch:
(concat list <HOLE> GetFirst Lower4)
where
<HOLE>→ GetTokenAlphanum0

Supplement for: Learning to Infer Program Sketches

Figure 3. Sketches and programs found by SKETCHADAPT in AlgoLisp dataset
Description:
given numbers a and b , let c be the maximum of a and b , reverse digits in c , compute c
Sketch:
(reduce (reverse (digits (max a <HOLE>))) 0 (lambda2 (+ (* arg1 10) arg2)))
where
<HOLE>→ b

Description:
you are given arrays of numbers a and c and a number b , your task is to compute number of values in a that are less than
values on the same index in reverse of values in c bigger than b
Sketch:
(reduce (map (range 0 (min (len a) (len (reverse (<HOLE> c (partial1 b >))))))
(lambda1 (if (< (deref a arg1) (deref (reverse (filter c (partial1 b >))) arg1))
1 0))) 0 +)
where
<HOLE>→ filter

Description:
consider arrays of numbers a and b and a number c , only keep values in the second half of a , compute sum of first c values
among values of a that are also present in b after sorting in ascending order
Sketch:
(reduce (slice (sort (filter (slice a (/ (len a) 2) (len a)) (lambda1 (reduce
(map b (partial0 arg1 ==)) false ||)))) 0 c) 0 +)
where
<HOLE>→ reduce

Description:
consider a number a and an array of numbers b , your task is to find the length of the longest subsequence of odd digits of a
that is a prefix of b
Sketch:
(reduce (<HOLE> a) 0 (lambda2 (if (== arg2 (if (< arg1 (len b)) (deref b arg1)
0)) (+ arg1 1) arg1)))
where
<HOLE>→ digits

Supplement for: Learning to Infer Program Sketches

References
Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,

and Tarlow, D. Deepcoder: Learning to write programs.
arXiv preprint arXiv:1611.01989, 2016.

Bednarek, J., Piaskowski, K., and Krawiec, K. Ain’t nobody
got time for coding: Structure-aware program synthesis
from natural language. arXiv preprint arXiv:1810.09717,
2018.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and
Kohli, P. Leveraging grammar and reinforcement
learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. Robustfill: Neural program learning
under noisy i/o. arXiv preprint arXiv:1703.07469, 2017.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Polosukhin, I. and Skidanov, A. Neural program search:
Solving programming tasks from description and exam-
ples. arXiv preprint arXiv:1802.04335, 2018.

