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Abstract
A wide class of machine learning algorithms
can be reduced to variable elimination on factor
graphs. While factor graphs provide a unifying
notation for these algorithms, they do not provide
a compact way to express repeated structure when
compared to plate diagrams for directed graph-
ical models. To exploit efficient tensor algebra
in graphs with plates of variables, we generalize
undirected factor graphs to plated factor graphs
and variable elimination to a tensor variable elim-
ination algorithm that operates directly on plated
factor graphs. Moreover, we generalize complex-
ity bounds based on treewidth and characterize the
class of plated factor graphs for which inference
is tractable. As an application, we integrate tensor
variable elimination into the Pyro probabilistic
programming language to enable exact inference
in discrete latent variable models with repeated
structure. We validate our methods with experi-
ments on both directed and undirected graphical
models, including applications to polyphonic mu-
sic modeling, animal movement modeling, and
latent sentiment analysis.

1. Introduction
Factor graphs (Kschischang et al., 2001) provide a unifying
representation for a wide class of machine learning algo-
rithms as undirected bipartite graphs between variables and
factors. Factor graphs can be used with both directed and
undirected graphical models to represent probabilistic infer-
ence algorithms performed by variable elimination (Pearl,
1986; Lauritzen & Spiegelhalter, 1988). In the most com-
mon case, variable elimination is performed by sum-product
inference, but other variable elimination algorithms can be
derived through alternative semirings and adjoints.
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In recent years researchers have exploited the equivalence
of sum-product on discrete factor graphs and tensor contrac-
tion (Hirata, 2003; Smith & Gray, 2018). Standard tensor
contraction can provide efficient implementations of sum-
product inference and the tensor contraction operations can
be generalized to alternate semirings (Kohlas & Wilson,
2008; Belle & De Raedt, 2016; Khamis et al., 2016).

Yet, a major downside of factor graphs as an intermediary
representation is that they discard useful information from
higher-level representations, in particular, repeated struc-
ture. Directed graphical models explicitly denote repeated
structure through plate notation (Buntine, 1994). Plates have
not seen widespread use in factor graphs or their inference
algorithms ((Dietz, 2010) being an exception for directed
factor graphs). Nor have plates been exploited by tensor
contraction, despite the highly parallel nature of variable
elimination algorithms. This gap can result in suboptimal
algorithms, since repeated structure can provide information
that can be directly exploited for inference optimizations.

In this work we consider the class of plated factor graphs
and the corresponding tensor variable elimination algo-
rithms. We propose a natural definition for plated factor
graphs and lift a number of classic results and algorithms
from factor graphs to the plated setting. In particular, we
generalize treewidth-based bounds on computational com-
plexity for factor graphs to bounds depending on plate sizes,
and characterize the boundary between plated factor graphs
leading to computational complexity either polynomial or
exponential in the sizes of plates in the factor graph.

We consider several different applications of these tech-
niques. First we describe how plated factor graphs can pro-
vide an efficient intermediate representation for generative
models with discrete variables, and incorporate a tensor-
based contraction into the Pyro probabilistic programming
language. Next, we develop models for three real-world
problems: polyphonic music modeling, animal movement
modeling, and latent sentiment analysis. These models
combine directed networks (Bayesian networks), undirected
networks (conditional random fields), and deep neural net-
works. We show how plated factor graphs can be used to
concisely represent structure and provide efficient general-
purpose inference through tensor variable elimination.
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2. Related Work
Dense sum-product problems have been studied by the
HPC community under the name tensor contraction. Hi-
rata (2003) implemented a Tensor Contraction Engine for
performing optimized parallel tensor contractions, an in-
stance of dense sum-product message passing. Solomonik
et al. (2014) implement a similar framework for large-
scale distributed computation of tensor contractions. Wiebe
(2011. URL https://mail.python.org/pipermail/numpy-
discussion/2011-January/054586.html) implemented a pop-
ular interface np.einsum for performing tensor contrac-
tions in NumPy. Smith & Gray (2018) implement a divide-
and-conquer optimizer for einsum operations; we extended
their implementation and use it as a primitive for non-plated
variable elimination throughout this paper. Abseher et al.
(2017) also address the problem of finding efficient junction
tree decompositions.

Sparse sum-product problems have a long history in
database query optimization, as they can be seen as a
specific type of a join-groupby-aggregate query. Kohlas
& Wilson (2008) define an abstract framework for vari-
able elimination over valuations and semirings. Khamis
et al. (2016) formulate an abstract variable elimination al-
gorithm, prove complexity bounds, and connect these al-
gorithms to database query optimization. Lifted inference
algorithms (Taghipour et al., 2013) developed for probabilis-
tic databases are also concerned with extending classical
methods for sum-product problems to exploit repeated struc-
ture or symmetry in graphical models.

In the context of probabilistic inference, Bilmes (2010) lever-
ages repeated (typically dynamic) structure in graphical
models to quickly compute a variable elimination schedule
that is then executed sequentially. By contrast our algo-
rithm addresses the narrower class of models which exclude
dependencies between plate instances, and can thereby com-
pute a schedule for parallel variable elimination. Infer.Net
(Minka et al., 2018) introduces a ForEach construct that en-
ables parallelization; our pyro.plate construct similarly
enables parallism but also declares statistical independence.

3. Model: Plated Factor Graphs
Definition 1. A factor graph is a bipartite graph (V, F,E)
whose vertices are either variables v 2 V or factors f 2 F ,
and whose edges E ✓ V ⇥ F are pairs of vertices. We say
factor f involves variable v iff (v, f) 2 E. Each variable v
has domain dom(v), and each factor f involving variables
{v1, . . . , vK} maps values x 2 dom(v1)⇥ ···⇥ dom(vK)
to scalars.

In this work we are interested in discrete factor graphs where
variable domains are finite and factors f are tensors with
one dimension per neighboring variable. The key quantity

of interest is defined through the sum-product contraction,

SUMPRODUCT(F, {v1, . . . , vK}) =
X

x12dom(v1)

···

X

xK2dom(vK)

Y

f2F

f [v1=x1, . . . , vK=xK ]

where we use named tensor dimensions and assume that
tensors broadcast by ignoring uninvolved variables, i.e. if
(v, f) /2 E then f [v = x, v0 = x0] = f [v0 = x0].

Definition 2. A plated factor graph is a labeled bipartite
graph (V, F,E, P ) whose vertices are labeled by the plates
on which they are replicated P : V [ F ! P(B), where B
is a set of plates. We require that each factor is in each of
the plates of its variables: 8(v, f) 2 E, P (v) ✓ P (f).1

To instantiate a plated factor graph, we assume a map M that
specifies the number of times M(b) to replicate each plate
b. Under this definition each plated factor is represented by
a tensor with dimensions for both its plates and its involved
variables. Using the same partial tensor notation above, we
can access a specific grounded factor by indexing its plate
dimensions, i.e. f [b1 = i1, . . . , bL = iL], where for each
dimension il 2 {1, . . . ,M(bl)} and f [b = i, b0 = i0] =
f [b = i] if b0 62 P (f).

The key operation for plated factor graphs will be “un-
rolling” to standard factor graphs.2 First define the fol-
lowing plate notation for either a factor or variable z:
Mz(b) = {1, . . . ,M(b)} if b 2 P (z) and {1} otherwise.
This is the set of indices that index into the replicated vari-
able or factor. Now define a function to unroll a plate,

(V 0, F 0, E0, P 0) = unroll((V, F,E, P ),M, b)

where vi indicates an unrolled index of v and,

V 0 = {vi | v 2 V, i 2Mv(b)}

F 0 = {fi | f 2 F, i 2Mf (b)}

E0 = {(vi, fj) | (v, f) 2 E, i 2Mv(b), j 2Mf (b),

(i = j) _ b 62 (P (v) \ P (f))}

P 0(z) = P (z) \ {b}

Sum-product contraction naturally generalizes to plated fac-
tor graphs via unrolling. We define:

PLATEDSUMPRODUCT(G,M) ⌘ SUMPRODUCT(F 0, V 0)

where F 0 and V 0 are constructed by unrolling each plate b
in the original plated factor graph G.

1While the final requirement P (f) ◆ P (v) could perhaps be
relaxed, it is required if factors f are to be represented as multi-
dimensional tensors.

2This operation is conceptual: it is used in our definitions and
proofs, but none of our algorithms explicitly unroll factor graphs.
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Example 3.1. Consider a plated factor graph with two vari-
ables X,Y , three factors F,G,H , and two nested plates:

F X H Y G

J I

Assuming sizes I = 2 and J = 3, this plated factor graph
unrolls to a factor graph:

F X

H11

H12

H13

H21

H22

H23

Y1 G1

Y2 G2

Example 3.2. Consider a plated factor graph with two vari-
ables, one factor, and two overlapping non-nested plates,
denoting a Restricted Boltzmann Machine (RBM) (Smolen-
sky, 1986):

X F Y

I

J

Assuming sizes I = 2 and J = 2, this plated factor graph
unrolls to a factor graph:

X1

X2

F11 F12

F21 F22

Y1

Y2

4. Inference: Tensor Variable Elimination
We now describe an algorithm—tensor variable
elimination—for computing PLATEDSUMPRODUCT
on a tractable subset of plated factor graphs. We show
that variable elimination cannot be generalized to run in
polynomial time on all plated factor graphs and that the
algorithm succeeds for exactly those plated factor graphs
that can be run in polynomial time. Finally, we briefly
discuss extensions of the algorithm, including a plated
analog of the Viterbi algorithm on factor graphs.

4.1. An algorithm for tensor variable elimination

The main algorithm is formulated in terms of several stan-
dard functions: SUMPRODUCT(F, V ), introduced above,
computes sum-product contraction of a set of tensors F
along a subset V of their dimensions (here always variable

dimensions) via variable elimination3; PRODUCT(f, b,M)
product-reduces a single tensor f along a subset b of its
dimensions (here always plate dimensions)

PRODUCT(f, {b1, . . . , bL},M) =

M(b1)Y

i1=1

···

M(bL)Y

iL=1

f [b1= i1, . . . , bL= iL]

and PARTITION(V, F,E) separates a bipartite graph into its
connected components. SUMPRODUCT and PRODUCT each
return a tensor, with dimensions corresponding to remaining
plates and variables, unless all dimensions get reduced, in
which case they return a scalar. Intuitively, SUMPRODUCT
eliminates variables and PRODUCT eliminates plates.

At a high level, the strategy of the algorithm is to greedily
eliminate variables and plates along a tree of factors. At
each stage it picks the most deeply nested plate set, which
we call a leaf plate. It eliminates all variables in exactly that
plate set via standard variable elimination, producing a set
of reduced factors. Each reduced factor is then replaced by a
product factor that eliminates one or more plates. Repeating
this procedure until no variables or plates remain, all scalar
factors are finally combined with a product operation.

Algorithm 1 specifies the full algorithm. Elimination of
variables and plates proceeds by modifying the input plated
factor graph (V, F,E, P ) and a partial result S containing
scalars. Both loops preserve the invariant that (V, F,E, P )
is a valid plated factor graph and preserve the quantity

PLATEDSUMPRODUCT((V, F,E, P ),M)

⇥ SUMPRODUCT(S, {}).

At each leaf plate set L ✓ B, the algorithm decomposes that
plate set’s factor graph into connected components. Each
connected component is SUMPRODUCT-contracted to a sin-
gle factor f with no variables remaining in the leaf plate set
L. If the resulting factor f has no more variables, it is PROD-
UCT-reduced to a single scalar. Otherwise the algorithm
seeks a plate set L0 ( L where other variables of f can
be eliminated; f is partially PRODUCT-reduced to a factor
f 0 that is added back to the plated factor graph, including
edges from Vf ⇥ Fc that had been removed. Finally, when
no more variables or plates remain, all scalar factors are
product-combined by a trivial SUMPRODUCT(S, {}). The
algorithm can fail with error if the search for a next plate
set L0 fails.

To help characterize when Algorithm 1 succeeds, we now
introduce the concept of a graph minor.
Definition 3. A plated graph4 H is a minor of the plated
graph G if it can be obtained from G by a sequence of edits

3Available in many machine learning libraries as einsum.
4When considering graph minors, we view factor graphs

(V, F,E) as undirected graphs (V [ F,E).
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Algorithm 1 TENSORVARIABLEELIMINATION

input variables V , factors F , edges E ✓ V ⇥ F ,
plate sets P :V [ F ! P(B),
plate sizes M :B ! N.

output PLATEDSUMPRODUCT((V,F,E,P ),M) or error.
Initialize an empty list of scalars S  [].
while F is not empty do

Choose a leaf plate set L 2 {P (f) | f 2 F}

with a maximal number of plates.
Let VL  {v 2 V | P (v) = L} be the variables in L.
Let FL  {f 2 F | P (f) = L} be the factors in L.
Let EL  E \ (VL ⇥ FL) be the edges in L.
for (Vc, Fc) in PARTITION(VL, FL, EL) do

Let f  SUMPRODUCT(Fc, Vc).
Let Vf  {v | (v, f) 2 E \ ((V \ Vc)⇥ Fc)}

be the set of f ’s remaining variables.
Remove component (Vc, Fc) from V, F,E, P .
if Vf is empty then

Add PRODUCT(f, L,M) to scalars S.
else

Let L0
 

S
{P (v) | v 2 Vf} be the next

plate set where f has variables.
if L0 = L then error(“Intractable!”);
Let f 0

 PRODUCT(f, L \ L0,M).
Add f 0 to F,E, P appropriately.

return SUMPRODUCT(S, {})

of the form: deleting a vertex, deleting an edge, deleting a
plate, or merging two vertices u, v connected by an edge
and in identical plates P (u) = P (v).

Theorem 1. Algorithm 1 succeeds iff G has no plated graph
minor ({u, v, w}, {(u, v), (v, w)} , P ) where P (u) = {a},
P (v) = {a, b}, P (w) = {b}, a 6= b, and u,w both include
variables.

Proof. See Appendix A.1.

This plated graph minor exclusion property essentially ex-
cludes the RBM Example 3.2 above, which is a minimal
example of an intractable input.5 If Algorithm 1 fails, one
could fall back to unrolling a plate and continuing (at cost
exponential in plate size); we leave this for future research.

4.2. Complexity of tensor variable elimination

It is well known that message passing algorithms have com-
putational complexity exponential in the treewidth of the
input factor graph but only linear in the number of variables
(Chandrasekaran et al., 2012; Kwisthout et al., 2010). In
this section we generalize this result to the complexity of
plated message passing on tensor factors. We show that for

5See Appendix C.1 for a detailed walk-through of Algorithm 1
on this model, leading to error.

an easily identifiable class of plated factor graphs, serial
complexity is polynomial in the tensor sizes of the factors,
and parallel complexity is sublinear in the size of each plate.
Essentially this characterizes when the tensor size of one
factor of a plated factor graph determines the treewidth of
the unrolled non-plated factor graph: in the polynomial case,
treewidth is independent of tensor size.
Example 4.1. Consider the plated factor graph of Exam-
ple 3.1 with nested plates. We wish to compute,

X

x

X

y1

···

X

yI

Fx

hY

i

Gi,yi

ihY

i,j

Hi,j,x,yi

i

=
X

x

Fx

Y

i

X

yi

Gi,yi

Y

j

Hi,j,x,yi

where we are able to commute the sums over yi inside
the product over i, thereby reducing an algorithm of cost
exponential in I to a polynomial-cost algorithm.
Example 4.2. Consider the plated factor graph of Exam-
ple 3.2 with overlapping, non-nested plates. Although the
plated factor graph is a tree of tensors, the unrolled factor
graph has treewidth O(I + J); hence complexity will be
exponential in the tensor sizes I, J of dimensions i, j.

We can reach the same conclusion from sum-product,
X

x1

···

X

xI

X

y1

···

X

yJ

Y

i,j

Fi,j,xi,yj

=
X

x1

···

X

xI

Y

i,j

X

yj

Fi,j,xi,yj

Here we cannot commute both Cartesian product summa-
tions inside the product and so the computation is necessar-
ily exponential in I, J .

We now show Algorithm 1 accepts the largest class of plated
factor graphs for which a polynomial time strategy exists.
Theorem 2. Let G = (V, F, E, P : V [ F ! P(B))
be a plated factor graph. Assume variable domains have
nontrivial sizes |dom(v)| � 2, 8v 2 V . Then Algorithm 1
succeeds on G iff PLATEDSUMPRODUCT(G,M) can be
computed with complexity polynomial in plate sizes M :
B ! N.

Proof sketch. (see Appendix A.2 for full proof).

()) Algorithm 1 has complexity polynomial in M .

(() Appeal to (Kwisthout et al., 2010) (which assumes the
Exponential Time Hypothesis) to show that the unrolled
factor graph must have uniformly bounded treewidth. Apply
Ramsey theory arguments to show there is a single “plated
junction tree” with certain properties. Show this tree can
only exist if F excludes the minor of Thm. 1, hence Algo-
rithm 1 succeeds.
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When a plated factor graph is asymptotically tractable ac-
cording to Thm. 2, it is also tractable on a parallel machine.

Theorem 3. If Algorithm 1 runs in sequential time T when
M(b) = 1, 8b, then it runs in time T + O (⌃b logM(b))
on a parallel machine with ⇧bM(b) processors and perfect
efficiency.

Proof. Algorithm 1 depends on M only through calls to
SUMPRODUCT and PRODUCT. SUMPRODUCT operates
independently over plates, and hence parallelizes with per-
fect efficiency. PRODUCT reductions over each plate b incur
only O(logM(b)) time on a parallel machine.

This result suggests that (tractable) plated factor graphs are
a practical model class for modern hardware. See Sec. 6.4
for empirical verification of the computational complexity
described in Thm. 3.

While tensor variable elimination enables parallelism with-
out increasing arithmetic operation count, it also reduces
overhead involved in graph manipulation. A significant por-
tion of runtime in SUMPRODUCT is spent on constructing
a junction tree. By exploiting repeated structure, tensor
variable elimination can restrict its junction tree problems
to much smaller factor graphs (constructed locally for each
connected component of each plate set), leading to lower
overhead and the opportunity to apply better heuristics.6

4.3. Generic tensor variable elimination

Because Algorithm 1 is generic7 in its two operations (plus
and multiply), it can immediately be repurposed to yield
other algorithms on plated factor graphs, for example a
polynomial-time PLATEDMAXPRODUCT algorithm that
generalizes the MAXPRODUCT algorithm on factor graphs.

Further extensions can be efficiently formulated as adjoint
algorithms, which proceed by recording an adjoint compute
graph alongside the forward computation and then travers-
ing the adjoint graph backwards starting from the final result
of the forward computation (Darwiche, 2003; Eisner, 2016;
Azuma et al., 2017; Belle & De Raedt, 2016). These ex-
tensions include: computing marginal distributions of all
variables (generalizing the forward-backward algorithm);
maximum a posteriori estimation (generalizing Viterbi-like
algorithms); and drawing joint samples of variables (gener-
alizing the forward-filter backward-sample algorithm). Note
that while most message passing algorithms need only as-
sume that the sum and product operations have semiring
structure (Kohlas & Wilson, 2008; Khamis et al., 2016),
marginal computations additionally require division.

6E.g. opt einsum uses an optimal strategy for factor graphs
with up to four variables.

7In the sense of generic programming (Musser & Stepanov,
1988)

X Z Y

J
I

X Z Y

I

J

Figure 1. The tractable and intractable plated factor graphs in Ex-
amples 3.1 and 3.2 arise from the plated graphical model on the
left and right, respectively. Here the two random variables X,Y
are unobserved and the random variable Z is observed.

5. Application to Probabilistic Programming
Plated factor graphs provide a general-purpose intermediate
representation for many applications in probabilistic model-
ing requiring efficient inference and easy parallelization. To
make tensor variable elimination broadly usable for these
applications, we integrate it into two frameworks8 and use
both frameworks in our experiments.

5.1. Plated probabilistic programs in Pyro

First we integrate our implementation into the Pyro proba-
bilistic programming language (Bingham et al., 2018). This
allows us to specify discrete latent variable models easily,
programmatically constructing complex distributions and
explicitly indicating repeated structure. The syntax relies
on a plate context manager.9 Inside these plates, sample
statements are batched and assumed to be conditionally
independent along the plate dimension.

Example 5.1. The directed graphical model in Fig. 1 (left)
can be specified by the Pyro program (see Appendix D)

def model(z):

I, J = z.shape

x = pyro.sample("x", Bernoulli(Px))

with pyro.plate("I", I, dim=-2):

y = pyro.sample("y", Bernoulli(Py))

with pyro.plate("J", J, dim=-1):

pyro.sample("z", Bernoulli(Pz[x,y]),

obs=z)

To extract plated factor graphs from such programs without
using static analysis, we use a nonstandard interpretation of
Pyro sample statements (Wingate et al., 2011) as vector-
ized enumeration over each distribution’s support. That is,
when running a program forward we create a tensor at each
sample site that lists all possible values of each distribution
rather than draw random samples. To avoid conflict among
multiple enumerated variables, we dynamically assign each
variable a distinct tensor dimension along which its values
are enumerated, relying on array broadcasting (Walt et al.,
2011) to correctly combine results of multiple nonstandard

8Open-source implementations are available; see
http://docs.pyro.ai/en/dev/ops.html

9We also introduce a markov context manager to deal with
markov structure.
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sample values (as in Pz[x,y] above).

5.2. Undirected graphical models using einsum

A standard interface for expressing inference in undirected
graphical models is einsum notation. Basic einsum com-
putes the product of a collection of tensors, with some di-
mensions preserved in the final result and remaining dimen-
sions summed out. This operation behaves analogously to
SUMPRODUCT, with the inputs to einsum given as: a string
denoting the tensor dimensions of all input and output ten-
sors, and a list of tensors. The former gives the factor graph
topology and the latter the factors themselves. For exam-
ple, einsum("xy,yz->xz",F,G) corresponds to matrix
multiplication for matrices F,G. This einsum expression
also corresponds to reducing the y variable in a factor graph
with three nodes and two factors.

Plated einsum generalizes einsum notation, e.g.
einsum("xy,iyz->xz",F,G,plates="i") ==

einsum("xy,yz,yz,yz->xz",F,G[0],G[1],G[2])

where dimension x,z are preserved, variable y is sum-
reduced, and plate i is product-reduced. More generally,
factors can include plated variables, e.g. Example 3.1 can
be written as
einsum("x,iy,ijxy->",F,G,H,plates="ij") ==

einsum("x,y,z,xy,xy,xy,xz,xz,xz->",

F,G[0],G[1],H[0,0],H[0,1],

H[0,2],H[1,0],H[1,1],H[1,2])

where the rightmost dimension of G and H denotes a distinct
variable for each slice i (y and z in the unrolled version).
Thus the effective number of variables grows with the size
of plate i, but the plated notation requires only a constant
number of symbols. Formally we infer each variable’s plate
set P (v) as the largest set consistent with the input string. In
addition, this version of einsum implements generic tensor
variable elimination, and so it can also be used to compute
marginals and draw samples with the same syntax.

6. Experiments
We experiment with plated factor graphs as a modeling lan-
guage for three tasks: polyphonic music prediction, animal
movement modeling and latent sentiment analysis.10 Exper-
iments consider different variants of discrete probabilistic
models and their combination with neural neworks.

6.1. Hidden Markov Models with Autoregressive
Likelihoods

In our first experiment we train variants of a hidden Markov
model11 (HMM) on a polyphonic music modeling task

10See the supplementary materials for plate diagrams for the
models in Sec. 6.1 and Sec. 6.2.

11For an introduction see e.g. reference (Ghahramani, 2001).

Dataset
Model JSB Piano Nottingham
HMM 8.28 9.41 4.49
FHMM 8.40 9.55 4.72
PFHMM 8.30 9.49 4.76
2HMM 8.70 9.57 4.96
arHMM 8.00 7.30 3.29
arFHMM 8.22 7.36 3.57
arPFHMM 8.39 9.57 4.82
ar2HMM 8.19 7.11 3.34
nnHMM 6.73 7.32 2.67
nnFHMM 6.86 7.41 2.82
nnPFHMM 7.07 7.47 2.81
nn2HMM 6.78 7.29 2.81

Table 1. Negative log likelihoods for HMM variants on three poly-
phonic music test datasets; lower is better. See Sec. 6.1 for details.

(Boulanger-Lewandowski et al., 2012). The data consist
of sequences {y1, ...,yT }, where each yt 2 {0, 1}88 de-
notes the presence or absence of 88 distinct notes. This task
is a common challenge for latent variable models such as
continuous state-space models (SSMs), where one of the dif-
ficulties of inference is that training is typically stochastic,
i.e. the latent variables need to be sampled.12 In contrast,
the discrete latent variable models explored here—each de-
fined through a plated factor graph—admit efficient tensor
variable elimination, obviating the need for sampling.

We consider 12 different latent variable models, where the
emission likelihood for each note is replicated on a plate of
size 88, so that notes at each time step are conditionally in-
dependent. Writing these models as probabilistic programs
allows us to easily experiment with dependency structure
and parameterization, with variation along two dimensions:

1. the dependency structure of the discrete latent variables
2. whether the likelihood p(yt|·) is autoregressive,

i.e. whether it depends on yt�1, and if so whether
p(yt|·) is parameterized by a neural network

Dependency structures include a vanilla HMM (HMM); two
variants of a Factorial HMM (FHMM & PFHMM) (Ghahra-
mani & Jordan, 1996); and a second-order HMM (2HMM).13

The models denoted by arXXX and nnXXX include an au-
toregressive likelihood: the former are explicitly parameter-
ized with a conditional probability table, while the latter use
a neural network to parameterize the likelihood. (See the
supplementary materials for detailed descriptions.)

We report our results in Table 1. We find that our abil-
ity to iterate over a large class of models14—in particular

12This is true for all five reference models in this section, apart
from the RTRBM.

13For the second-order HMM we use a parsimonious Raftery
parameterization of the transition probabilities (Raftery, 1985).

14See https://git.io/fjc82 for a reference implemen-
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different latent dependency structures, each of which re-
quires a different message passing algorithm—proved use-
ful, since different datasets preferred different classes of
models. Autoregressive models yield the best results, and
factorial HMMs perform worse across most models.

We note that these classic HMM variants (upgraded with
neural network likelihoods) are competitive with baseline
state space models, outperforming STORN (Bayer & Os-
endorfer, 2014) on 3 of 3 datasets, LV-RNN (Gu et al., 2015)
on 2 of 3 datasets, Deep Markov Model (Krishnan et al.,
2017) on 2 of 3 datasets, RTRBM (Sutskever et al., 2009;
Boulanger-Lewandowski et al., 2012) on 1 of 3 datasets,
and TSBN (Gan et al., 2015) on 3 of 3 datasets.

6.2. Hierarchical Mixed-Effect Hidden Markov Models

In our second set of experiments, we consider models for
describing the movement of populations of wild animals.
Recent advances in sensor technology have made it pos-
sible to capture the movements of multiple animals in a
population at high spatiotemporal resolution (McClintock
et al., 2013). Time-inhomogeneous discrete SSMs, where
the latent state encodes an individual’s behavior state (like
“foraging” or “resting”) and the state transition matrix at
each timestep is computed with a hierarchical discrete gen-
eralized linear mixed model, have become popular tools for
data analysis thanks to their interpretability and tractability
(Zucchini et al., 2016; McClintock & Michelot, 2018).

Rapidly iterating over different variants of such models,
with nested plates and hierarchies of latent variables that
couple large groups of individuals within a population, is
difficult to do by hand but can be substantially simplified
by expressing models as plated probabilistic programs and
performing inference with tensor variable elimination.15

To illustrate this, we implement a version of the model
selection process for movement data from a colony of
harbour seals in the United Kingdom described in (Mc-
Clintock et al., 2013), fitting three-state hierarchical dis-
crete SSMs with no random effects (No RE, a vanilla
HMM), sex-level discrete random effects (Group RE),
individual-level discrete random effects (Individual
RE), and both sex- and individual-level discrete random
effects (Individual+Group RE). See the supplement
for details on the dataset, models and training procedure.

We report AIC scores for all models in Table 2. Although
our models do not exactly match those in the original analy-
sis,16 our results support theirs in suggesting that including
individual-level random effects is essential because there is
tation for a selection of HMM variants.

15See https://git.io/fjc8a for a reference implemen-
tation.

16See supplement for a discussion of differences.

Model AIC
No RE (HMM) 353⇥ 103

Individual RE 341⇥ 103

Group RE 342⇥ 103

Individual+Group RE 341⇥ 103

Table 2. Akaike Information Criterion (AIC) scores for hierarchi-
cal mixed effect HMM variants fit with maximum likelihood on
animal movement data. Lower is better. See Sec. 6.2.

y F z G

T

x

a

l

|A|

|L|

Figure 2. The graphical model for the sentiment analysis CRF in
Sec. 6.3. The aspect a and location l are observed, while the word-
level sentiments zt and sentence-level sentiment y for the particular
aspect and location pair must be inferred. See the supplementary
material for the exact parameterization of the factors.

significant behavioral variation across individuals and sexes
that is unexplained by the available covariates.

6.3. Latent Variable Classification

We next experiment with model flexibility by designing a
conditional random field (Lafferty et al., 2001) model for
latent variable classification on a sentiment classification
task. Experiments use the Sentihood dataset (Saeidi et al.,
2016), which consists of sentences containing named loca-
tion entities with sentiment labels along different aspects.
For a sentence x = hx1, . . . , xT i labels are tuples (a, l, y)
that contain an aspect a 2 A = {general, safety, . . .}, a
location l 2 L = {Location1,Location2}, and a sen-
timent y 2 {positive, negative, none}. The task is to predict
the sentiment of a sentence given a location and aspect, for
example p(y | x, a = price, l = Location1).

Standard approaches to this sentence-level classification task
use neural network models to directly make sentence-level
predictions. We instead propose a latent variable approach
that explicitly models the sentiment of each word with re-
spect to all locations and aspects. This approach can provide
clearer insight into the specific reasoning of the model and
also permits conditional inference.

Our conditional random field model is represented as a
plated factor graph in Figure 2. Here z = hz1, . . . , zT i
is the latent word-level sentiment for fixed l and a. The
two plated factors G and F represent the word aspect-
location-sentiment potentials and the word-sentence po-
tentials, respectively. We parameterize these factors with
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Metric
Model Acc F1

LSTM-Final 0.821 0.780
CRF-LSTM-Diag 0.805 0.764
CRF-LSTM-LSTM 0.843 0.799
CRF-Emb-LSTM 0.833 0.779

Table 3. Test sentiment accuracies and aspect F1 scores for senti-
ment classification models on Sentihood. Higher is better for both
metrics. Both metrics are calculated by ignoring examples with
gold labelled ‘none’ sentiments; see Sec. 6.3 for details.

y Loc1 . . . but not too convenient
0 1 .89 .98 .84 0
0 0 0 0 0 .31
1 0 .11 .02 .16 .69

Figure 3. The inferred word-level sentiment zt for aspect transit-
location and location Loc1 conditioned on a negative sentence-
level sentiment. The ellipsis contains the elided words ‘is a great
place to live’, all of which get none sentiment. The model as-
signs the none sentiment to most words, preventing them from
influencing the polarity of the sentence-level sentiment.

a bidirectional LSTM (BLSTM) over word embeddings
of x whose initial state is given by an embedding of the
location l and aspect a. We experiment with three vari-
ants:17 1) CRF-LSTM-Diag parameterizes G with the
output of the BLSTM and F with a diagonal matrix; 2)
CRF-LSTM-LSTM parameterizes both G and F with the
output of the BLSTM; and 3) CRF-Emb-LSTM parameter-
izes G with word embeddings and F with the output of the
BLSTM. As a baseline we reimplement the direct BLSTM
model LSTM-Final model from Saeidi et al. (2016). See
the supplementary material for full details.

The accuracy of our models is given in Table 3.18 The
CRF models all achieve similar performance to the baseline
LSTM-Final model. However, as a result of the factor
graph representation, we demonstrate the ability to infer
word-level sentiment conditioned on a sentence-level sen-
timent as well as sparsity of the conditional word-level
sentiments for the CRF-Emb-LSTM model. We provide an
example sentence and the inferred conditional word senti-
ments for the CRF-Emb-LSTM model in Fig. 3.

6.4. Performance Evaluation

To measure the performance of our implementation we use
the benchmark plated model19 of Fig. 4. We compute PLAT-

17See https://github.com/justinchiu/sentclass
for a reference implementation.

18The results of previous work can be found summarized suc-
cinctly in Liu et al. (2018). Note that our goal is not to improve
upon previous results (other models have higher accuracy); rather
we aim to capitalize on the plated representation to infer latent
word-level sentiment.

19See Appendix C.2 for a detailed walkthrough of Algorithm 1
on this model.

EDSUMPRODUCT and four different adjoint operations: gra-
dient, marginal, sample, and MAP. Figure 5 shows results
obtained on an Nvidia Quadro P6000 GPU. We find that
runtime is approximately constant until the GPU is saturated
(at I ⇥ J ⇡ 104), and runtime is approximately linear in
I ⇥ J for larger plate sizes, empirically validating Thm 3.

X Y

W V Z
I

J

Figure 4. The tractable model used in our performance benchmark.
Note that this model would be intractable if there were a factor
directly connecting variables V and Z.

Figure 5. Runtime of Algorithm 1 as we vary plate size (where
I = J) and fix domain size |dom(v)| = 32 for all variables.

7. Conclusion
This work argues for plated factor graphs as an intermediate
representation that preserves shared structure for calcula-
tions with discrete random variables, and develops a tensor
variable elimination algorithm for efficiently computing
plated sum-product and related factor graph queries for a
subset of plated models. We show how this approach can
be used to compute key quantities for directed and undi-
rected graphical models and demonstrate its implementa-
tion as a general purpose intermediary representation for
probabilistic programming with discrete random variables.
Applications further demonstrate that this provides a simple,
flexible, and efficient framework for working with discrete
graphical models, and that these models can often outper-
form more complicated counterparts, while providing inter-
pretable latent representations. The work itself is integrated
into a widely used probabilistic programming system, and
we hope it provides a framework for experiments incorpo-
rating discrete variable models into large-scale systems.
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