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A. Proofs
A.1. Proof of Proposition 3.3

For a fixed k ∈ N, we abbreviate γ = γk. Using Assump-
tion 2, we have

f(xk+1)−f(xk) ≤ fxk
(xk+1)−fxk

(xk)+ω(‖xk+1−xk‖) .

From ‖xk+1 − xk‖ = γ‖yk − xk‖ and the definition of a
growth function it follows that ω(‖xk+1 − xk‖) = o(γ).
The convexity of the model function fxk

gives us

fxk
(xk+1)− fxk

(xk) ≤ γ(fxk
(yk)− fxk

(xk)) .

Now, we argue by contradiction. Suppose that for any γ̃ > 0
there exists γ ∈ (0, γ̃) such that (ALS) does not hold, which
yields the following calculation

−γρ∆(xk, yk) < f(xk+1)− f(xk)

≤ γ(fxk
(yk)− fxk

(xk)) + o(γ)

= − γ∆(xk, yk) + o(γ) .

Dividing the inequality by γ, we obtain

0 < (1− ρ)∆(xk, yk) < o(γ)/γ ,

which is a contradiction for sufficiently small γ̃.

A.2. Proof of Proposition 3.4

The result is shown by Fermat’s rule in the following lemma.

Lemma A.1. Let x̃ ∈ C. Then,

∂̂f(x̃) = ∂fx̃(x̃) ,

and

0 ∈ ∂fx̃(x̃) ⇔ ∆(x̃, x) ≤ 0 ∀x ∈ C .

Proof. Let v ∈ ∂̂f(x̃), then

f(x) ≥ f(x̃) + 〈v, x− x̃〉+ o(‖x− x̃‖) ∀x ∈ C

and, this implies, by the model assumption for all x ∈ C:

fx̃(x) + ω(‖x− x̃‖) ≥ fx̃(x̃) + 〈v, x− x̃〉+ o(‖x− x̃‖) .

Since ω(t) = o(t), we conclude that

fx̃(x) ≥ fx̃(x̃) + 〈v, x− x̃〉+ o(‖x− x̃‖) , ∀x ∈ C .

Now, we fix a point x̄ ∈ C and consider x = x̃+ τ(x̄− x̃)
for τ ∈ (0, 1]. Then, by convexity of C and the model
function fx̃, we obtain

fx̃(x̃)+τ(fx̃(x̄)−fx̃(x̃)) ≥ fx̃(x̃)+τ〈v, x̄−x̃〉+o(τ‖x̄−x̃‖).

Subtracting fx̃(x̃), dividing by τ , and considering τ ↘ 0,
and, using the fact that this consideration was independent
of the choice of x̄, we conclude that v ∈ ∂fx̃(x̃). The
converse direction follows easily.

The second part of the statement is Fermat’s rule (Theorem
16.2 in (Bauschke & Combettes, 2011)) for convex functions.

A.3. Proof of Theorem 3.6

We prove the result in three steps.

Convergence of objective values. The monotonicity and
convergence of (f(xk))k∈N follows directly from (ALS)
and the boundedness of f from below.

Vanishing model improvement. From (ALS) and con-
vergence of (f(xk))k∈N, we infer that γk∆(xk, yk) → 0,
since

0 ≤ ργk∆(xk, yk) ≤ f(xk)− f(xk+1)→ 0 .

We deduce boundedness of (∆(xk, yk))k∈N by

0 ≤ ∆(xk, yk)

= fxk
(xk)− fxk

(yk) ≤ f(xk)− fxk
(ŷk)

≤ f(x0)− f(ŷk) + ω(‖ŷk − xk‖)
≤ f(x0)− inf

x∈C
f(x) + ω(diam(C)) < +∞ .

Let ∆∗ be an arbitrary limit point of (∆(xk, yk))k∈N, that
is ∆(xk, yk) → ∆∗ as k K→ ∞ for some K ⊂ N, where
k
K→∞ abbreviates k →∞ with k ∈ K.

Suppose ∆∗ > 0. Then γk → 0 as k K→∞. For sufficiently
large k, the line search procedure in Algorithm 2 reduces
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γk/δ to γk, i.e., (ALS) is violated before multiplying with
δ:

−γk
δ
ρ∆(xk, yk) < f(xk + γk

δ (yk − xk))− f(xk) .

Analogously to the proof of Proposition 3.3, we conclude

−γk
δ
ρ∆(xk, yk) <

γk
δ

(fxk
(yk)− fxk

(xk)) + o(γk/δ)

= − γk
δ

∆(xk, yk) + o(γk/δ) .

Dividing both sides by γk
δ results in (1 − ρ)∆(xk, yk) <

o(γk)/γk and considering γk → 0 for k K→ ∞ yields a
contradiction, since ρ ∈ (0, 1). Therefore ∆(xk, yk) → 0
for k →∞.

Convergence to a stationary point. The following rela-
tion holds for all x ∈ C:

∆(xk, yk) = ∆(xk, ŷk) + fxk
(ŷ)− fxk

(yk)

≥ fxk
(xk)− fxk

(x)− εk
≥ f(xk)− f(x)− ω(‖xk − x‖)− εk ,

(1)

where the first inequality follows from Assumption 3 and
the second from Assumption 2. Taking the limit k K→ ∞
on both sides, using ∆(xk, yk) → 0 for k → ∞, lower
semi-continuity of f and continuity of ω, we arrive at

f(x) ≥ f(x̃)− ω(‖x̃− x‖) , ∀x ∈ C ,

where x̃ ∈ C due to compactness of C. As x̃ ∈ C and
ω(t) = o(t), we deduce that

lim inf
x→x̃
x 6=x̃

f(x)− f(x̃)− 〈0, x− x̃〉
‖x− x̃‖

≥ 0 .

which by definition means that 0 ∈ ∂̂f(x̃).

Moreover, using x = x̃ in (1), taking the limit k K→∞ and
using lower semi-continuity of f , we deduce

f(x̃) ≥ lim sup
k

K→∞

f(xk) ≥ lim inf
k

K→∞
f(xk) ≥ f(x̃) ,

hence f(xk) → f(x̃) as k K→ ∞. By convergence of
(f(xk))k∈N, we also have f(xk)→ f(x̃) for k →∞.
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