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Abstract
We provide the first mathematically complete
derivation of the Nyström method for low-rank ap-
proximation of indefinite kernels and propose an
efficient method for finding an approximate eigen-
decomposition of such kernel matrices. Building
on this result, we devise highly scalable methods
for learning in reproducing kernel Kreı̆n spaces.
The devised approaches provide a principled and
theoretically well-founded means to tackle large
scale learning problems with indefinite kernels.
The main motivation for our work comes from
problems with structured representations (e.g.,
graphs, strings, time-series), where it is relatively
easy to devise a pairwise (dis)similarity function
based on intuition and/or knowledge of domain
experts. Such functions are typically not positive
definite and it is often well beyond the expertise
of practitioners to verify this condition. The ef-
fectiveness of the devised approaches is evaluated
empirically using indefinite kernels defined on
structured and vectorial data representations.

1. Introduction
In learning problems with structured data it is relatively easy
to devise a pairwise similarity/dissimilarity function based
on intuition/knowledge of domain experts. Such functions
are typically not positive definite and it is often the case
that verifying this condition is well beyond the expertise of
practitioners. The learning problems with indefinite similar-
ity/dissimilarity functions are typically modeled via Kreı̆n
spaces (e.g., see Ong et al., 2004; Loosli et al., 2016; Oglic
and Gärtner, 2018), which are vector spaces with an indefi-
nite bilinear form (Azizov and Iokhvidov, 1981; Iokhvidov
et al., 1982). The computational and space complexities of
these approaches are similar to those of the standard kernel
methods that work with positive definite kernels (Schölkopf

1Department of Informatics, King’s College London, UK
2School of Computer Science, University of Nottingham, UK.
Correspondence to: Dino Oglic <dino.oglic@uni-bonn.de>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

and Smola, 2001). The Nyström method (Nyström, 1930;
Smola and Schölkopf, 2000; Williams and Seeger, 2001) is
an effective approach for low-rank approximation of positive
definite kernels that can scale kernel methods to problems
with millions of instances (Schölkopf and Smola, 2001). We
provide the first mathematically complete derivation that
extends the Nyström method to low-rank approximation
of indefinite kernels and propose an efficient method for
finding an approximate eigendecomposition of such kernel
matrices. To tackle the computational issues arising in large
scale problems with indefinite kernels, we also devise sev-
eral novel Nyström-based low-rank approaches tailored for
scalable learning in reproducing kernel Kreı̆n spaces.

We start by showing that the Nyström method can be used
for low-rank approximations of indefinite kernel matrices
and provide means for finding their approximate eigende-
compositions (Section 2.2). We then devise two landmark
sampling strategies based on state-of-the-art techniques (Git-
tens and Mahoney, 2016; Oglic and Gärtner, 2017) used in
Nyström approximations of positive definite kernels (Sec-
tion 2.3). Having described means for finding low-rank fac-
torizations of indefinite kernel matrices, we formulate low-
rank variants of two least squares methods (Tikhonov and
Arsenin, 1977; Rifkin, 2002; Oglic and Gärtner, 2018) for
learning in reproducing kernel Kreı̆n spaces (Section 2.4).
We also derive a novel low-rank variant of the support vector
machine for scalable learning in reproducing kernel Kreı̆n
spaces (Section 2.5), inspired by Oglic and Gärtner (2018).
Having introduced means for scalable learning in reproduc-
ing kernel Kreı̆n spaces, we evaluate the effectiveness of
these approaches and the Nyström low-rank approximations
on datasets from standard machine learning repositories
(Section 3). The empirical results demonstrate the effective-
ness of the proposed approaches in: i) classification tasks
and ii) problems of finding a low-rank approximation of an
indefinite kernel matrix. The experiments are performed
using 15 representative datasets and a variety of indefinite
kernels. The paper concludes with a discussion where we
contrast ours and other relevant approaches (Section 4).

2. Scalable Learning in Kreı̆n Spaces
In this section, we first provide a novel derivation of the
Nyström method that allows us to extend the approach to
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low-rank approximation of indefinite kernel matrices. Build-
ing on this result, we then provide means to scale Kreı̆n ker-
nel methods to datasets with millions of instances/pairwise
(dis)similarities. More specifically, we devise low-rank vari-
ants of kernel ridge regression and support vector machines
in reproducing kernel Kreı̆n spaces, as well as a low-rank
variant of the variance constrained ridge regression pro-
posed in Oglic and Gärtner (2018). As the effectiveness of
low-rank approximations based on the Nyström method crit-
ically depends on the selected landmarks, we also adapt two
state-of-the-art landmark sampling strategies proposed for
the approximation of positive definite kernels. In addition
to this, we make a theoretical contribution (Proposition 3)
relating the Kreı̆n support vector machines (Loosli et al.,
2016) to previous work on learning with the flip-spectrum
kernel matrices (Graepel et al., 1998; Chen et al., 2009).

2.1. Reproducing Kernel Kreı̆n Spaces

Let K be a vector space defined on the scalar field R. A
bilinear form on K is a function 〈·, ·〉K : K × K → R
such that, for all f, g, h ∈ K and scalars α, β ∈ R, it
holds: i) 〈αf + βg, h〉K = α 〈f, h〉K + β 〈g, h〉K and ii)
〈f, αg + βh〉K = α 〈f, g〉K + β 〈f, h〉K. The bilinear form
is called non-degenerate if

(∀f ∈ K) :
(

(∀g ∈ K) 〈f, g〉K = 0
)

=⇒ f = 0.

The bilinear form 〈·, ·〉K is symmetric if, for all f, g ∈ K,
we have 〈f, g〉K = 〈g, f〉K. The form is called indefinite if
there exists f, g ∈ K such that 〈f, f〉K > 0 and 〈g, g〉K < 0.
On the other hand, if 〈f, f〉K ≥ 0 for all f ∈ K, then the
form is called positive. A non-degenerate, symmetric, and
positive bilinear form on K is called inner product. Any
two elements f, g ∈ K that satisfy 〈f, g〉K = 0 are 〈·, ·〉K-
orthogonal. Similarly, any two subspaces K1,K2 ⊂ K that
satisfy 〈f1, f2〉K = 0 for all f1 ∈ K1 and f2 ∈ K2 are
called 〈·, ·〉K-orthogonal. Having reviewed bilinear forms,
we are now ready to introduce the notion of a Kreı̆n space.

Definition 1. (Bognár, 1974; Azizov and Iokhvidov, 1981)
The vector space K with a bilinear form 〈·, ·〉K is called
Kreı̆n space if it admits a decomposition into a direct sum
K = H+ ⊕ H− of 〈·, ·〉K-orthogonal Hilbert spaces H±
such that the bilinear form can be written as

〈f, g〉K = 〈f+, g+〉H+
− 〈f−, g−〉H− ,

where H± are endowed with inner products 〈·, ·〉H± , f =
f+ ⊕ f−, g = g+ ⊕ g−, and f±, g± ∈ H±.

For a fixed decompositionK = H+⊕H−, the Hilbert space
HK = H+ ⊕H− endowed with inner product

〈f, g〉HK = 〈f+, g+〉H+
+ 〈f−, g−〉H− (f±, g± ∈ H±)

can be associated with K. For a Kreı̆n space K, the de-
composition K = H+ ⊕ H− is not necessarily unique.
Thus, a Kreı̆n space can, in general, be associated with
infinitely many Hilbert spaces. However, for any such
Hilbert space HK the topology introduced on K via the
norm ‖f‖HK =

√
〈f, f〉HK is independent of the decom-

position and the associated Hilbert space. More specifically,
all norms ‖·‖HK generated by different decompositions ofK
into direct sums of Hilbert spaces are topologically equiva-
lent (Langer, 1962). The topology onK defined by the norm
of an associated Hilbert space is called the strong topology.
Having reviewed basic properties of Kreı̆n spaces, we are
now ready to introduce a notion of reproducing kernel Kreı̆n
space. For that, let X be an instance space and denote with
RX the set of functions from X to R. For a fixed element
x ∈ X , the map Tx : RX → R that assigns a real number
to each function f ∈ RX is called the evaluation functional
at x, i.e., Tx (f) = f (x) for all f ∈ RX .
Definition 2. (Alpay, 1991; Ong et al., 2004) A Kreı̆n
space (K, 〈·, ·〉K) is a reproducing kernel Kreı̆n space if
K ⊂ RX and the evaluation functional is continuous on K
with respect to the strong topology.

The following theorem provides a characterization of repro-
ducing kernel Kreı̆n spaces.
Theorem 1. (Schwartz, 1964; Alpay, 1991) Let k : X ×
X → R be a real-valued symmetric function. Then, there is
an associated reproducing kernel Kreı̆n space if and only if
k = k+−k−, where k+ and k− are positive definite kernels.
When the function k admits such a decomposition, one can
choose k+ and k− such that the corresponding reproducing
kernel Hilbert spaces are disjoint.

2.2. Nyström Method for Reproducing Kreı̆n Kernels

Let X be an instance space and X = {x1, . . . , xn} an inde-
pendent sample from a Borel probability measure defined
on X . For a positive definite kernel h and a set of landmarks
Z = {z1, . . . , zm} ⊂ X , the Nyström method (Nyström,
1930; Smola and Schölkopf, 2000; Williams and Seeger,
2001) first projects the evaluation functionals h (xi, ·) onto
span ({h (z1, ·) , . . . , h (zm, ·)}) and then approximates the
kernel matrix H with entries {Hij = h (xi, xj)}ni,j=1 by
inner products between the projections of the corresponding
evaluation functionals. The projections of the evaluation
functionals h (xi, ·) are linear combinations of the land-
marks and these coefficients are given by the following
convex optimization problem

α∗ = arg min
α∈Rm×n

n∑
i=1

∥∥∥∥∥∥h (xi, ·)−
m∑
j=1

αj,ih (zj , ·)

∥∥∥∥∥∥
2

H

. (1)

While this approach works for positive definite kernels, it
cannot be directly applied to reproducing Kreı̆n kernels. In
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particular, let K be a reproducing kernel Kreı̆n space with
an indefinite kernel k : X ×X → R. The reproducing Kreı̆n
kernel k is defined by an indefinite bilinear form 〈·, ·〉K
which does not induce a norm on K and for all a, b ∈ K
the value of 〈a− b, a− b〉K does not capture the distance.
More specifically, as the bilinear form is indefinite then
there exists an element c ∈ K such that 〈c, c〉K < 0.

For an evaluation functional k (x, ·) ∈ K and a linear sub-
space LZ ⊂ K spanned by a set of evaluation functionals
{k (z1, ·) , . . . , k (zm, ·)}, we define k̃ (x, ·) to be the or-
thogonal projection of k (x, ·) onto the subspace LZ if the
evaluation functional admits a decomposition (Azizov and
Iokhvidov, 1981; Iokhvidov et al., 1982)

k (x, ·) = k̃ (x, ·) + k⊥ (x, ·) ,

where k̃ (x, ·) =
∑m
i=1 αi,xk (zi, ·) with αx ∈ Rm, and〈

k⊥ (x, ·),LZ
〉
K = 0. For a landmark z ∈ Z, the inner

product between the corresponding evaluation functional
k (z, ·) and k (x, ·) then gives

k (x, z) = 〈k (x, ·), k (z, ·)〉K =

m∑
i=1

αi,xk̃ (zi, z) . (2)

Denote with KZ×Z the block in the kernel matrix
K corresponding to landmarks Z and let kx =
vec (k (x, z1) , . . . , k (x, zm)). From Eq. (2) it then follows
that kx = KZ×Zαx. Thus, in Kreı̆n spaces an orthogonal
projection exists if the matrix KZ×Z is non-singular. If this
condition is satisfied, then the projection is given by

k̃ (x, ·) =

m∑
i=1

α∗i,xk (zi, ·) with α∗x = K−1Z×Zkx ∈ Rm .

Having computed the projection of a point onto the span of
the landmarks in a Kreı̆n space, we now proceed to define
the Nyström approximation of the corresponding indefinite
kernel matrix. In this, we follow the approach for positive
definite kernels (Schölkopf and Smola, 2001; Smola and
Schölkopf, 2000) and approximate the Kreı̆n kernel matrix
K using the bilinear form on the span of the landmarks.
More specifically, we have that

k̃ (xi, xj) =

〈
m∑
p=1

α∗p,ik (zp, ·),
m∑
q=1

α∗q,jk (zq, ·)

〉
K

=

k>xiK
−1
Z×Zkxj .

Thus, the low-rank approximation of the Kreı̆n kernel matrix
K is given by

K̃X|Z = KX×ZK
−1
Z×ZKZ×ZK

−1
Z×ZKZ×X =

KX×ZK
−1
Z×ZKZ×X .

(3)

This approach for low-rank approximation of Kreı̆n kernel
matrices also provides a direct way for an out-of-sample
extension in the non-transductive setting. In particular, for
an out-of-sample instance x ∈ X we have that if holds

k̃x×X = vec(k̃ (x, x1) , . . . , k̃ (x, xn)) = KX×ZK
−1
Z×Zkx.

In applications to estimation problems (see Sections 2.4
and 2.5) an approximate low-rank eigendecomposition of
the kernel matrix, also known as the one-shot variant of
the Nyström method (Fowlkes et al., 2004), is sometimes
preferred over the plain Nyström approximation described
above. To derive such a factorization, we first observe that
the low-rank approximation of the indefinite kernel matrix
can be written as

K̃X|Z = LSL> with L = KX×ZUZ×Z |DZ×Z |−
1
2 ,

and where KZ×Z = UZ×ZDZ×ZU
>
Z×Z is an eigendecom-

position of the block in the kernel matrix corresponding to
landmarks and S = sign (DZ×Z). Substituting a singular
value decomposition of L = AΣB> into the latter equation
(with orthonormal matrices A ∈ Rn×m and B ∈ Rm×m),
we deduce the following low-rank factorization

K̃X|Z = A ΣB>SBΣ A> = AMA> ,

where M = ΣB>SBΣ is a symmetric matrix with an
eigendecomposition M = PΛP>. Hence,

K̃X|Z = (AP ) Λ (AP )
> with (AP )

>
AP = Im .

As the matrix Ũ = AP ∈ Rn×m contains m orthonormal
column vectors and Λ is a diagonal matrix, we have then
derived an approximate low-rank eigendecomposition of K.

2.3. Landmark Selection for the Nyström Method with
Indefinite Kernels

The effectiveness of a low-rank approximation based on
the Nyström method depends crucially on the choice of
landmarks and an optimal choice is a difficult discrete opti-
mization problem. The landmark selection for the Nyström
method has been studied extensively in the context of ap-
proximation of positive definite matrices (e.g., see Drineas
and Mahoney, 2005; Kumar et al., 2012; Gittens and Ma-
honey, 2016; Alaoui and Mahoney, 2015; Oglic and Gärt-
ner, 2017). We follow this line of research and present two
landmark selection strategies for indefinite Kreı̆n kernels
inspired by the state-of-the-art sampling schemes: (approx-
imate) kernel K-means++ sampling (Oglic and Gärtner,
2017) and statistical leverage scores (Alaoui and Mahoney,
2015; Drineas et al., 2006; Drineas and Mahoney, 2005).

In both cases, we propose to first sample a small number
of instances uniformly at random and create a sketch ma-
trix K̃ = ŨΛŨ> using the procedure described in Sec-
tion 2.2. Then, using this sketch matrix we propose to
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approximate: i) statistical leverage scores for all instances,
and/or ii) squared distances between instances in the feature
space of the factorization H̃ = L̃L̃> with L̃ = Ũ |Λ|1/2. An
approximate leverage score assigned to the i-th instance is
given as the squared norm of the i-th row in the matrix Ũ ,
that is ` (xi) = ‖Ũ(i)‖2 with 1 ≤ i ≤ n. As the two matri-
ces H̃ and K̃ have identical eigenvectors, the approximate
leverage scores obtained using the positive definite matrix
H̃ capture the informative part of the eigenspace of the
indefinite matrix K̃. This follows from the Eckart–Young–
Mirsky theorem (Eckart and Young, 1936; Mirsky, 1960)
which implies that the optimal low-rank approximation of an
indefinite kernel matrix is given by a set of landmarks span-
ning the same subspace as that spanned by the eigenvectors
corresponding to the top eigenvalues, sorted in descending
order with respect to their absolute values. The landmark
selection strategy based on the approximate leverage scores
then works by taking a set of independent samples from

p` (x) = `(x)/
∑n
i=1 `(xi) .

For approximate kernel K-means++ landmark selection,
we propose to perform K-means++ clustering (Arthur and
Vassilvitskii, 2007) in the feature space defined by the fac-
torization matrix L̃, that is each instance is represented with
a row from this matrix. The approach works by first sam-
pling an instance uniformly at random and setting it as the
first landmark (i.e., the first cluster centroid). Following
this, the next landmark/centroid is selected by sampling an
instance with the probability proportional to its clustering
contribution. More formally, assuming that the landmarks
{z1, z2, . . . , zs} have already been selected the (s + 1)-st
one is selected by taking a sample from the distribution

p++
s+1 (x) = min1≤i≤s‖x−zi‖2/

∑n
i=1 min1≤j≤s‖xi−zj‖2 .

2.4. Scaling Least Squares Methods for Indefinite
Kernels using the Nyström Method

We present two regularized risk minimization problems with
squared error loss function for scalable learning in reproduc-
ing kernel Kreı̆n spaces. Our choice of the regularization
term is motivated by the considerations in Oglic and Gärtner
(2018), where the authors regularize with respect to a de-
composition of the Kreı̆n kernel into a direct sum of Hilbert
spaces. We start with a Kreı̆n least squares method (KREĬN
LSM) which is a variant of kernel ridge regression, i.e.,

f∗ = arg min
f∈K

1

n

n∑
i=1

(
f (xi)− yi

)2
+

λ+ ‖f+‖2+ + λ− ‖f−‖2− ,

where f = f+ ⊕ f− ∈ K, K = H+ ⊕ H− with disjoint
H±, f± ∈ H±, and hyperparameters λ± ∈ R+. This is
a convex optimization problem for which the representer

theorem holds (Oglic and Gärtner, 2018, Appendix A) and
the optimal solution f∗ =

∑n
i=1 α

∗
i k (xi, ·) with α∗ ∈ Rn.

Applying the reproducing property of the Kreı̆n kernel and
setting the gradient of the objective to zero, we derive

α∗ =
(
H + nΛ±

)−1
Py ,

where K = UDU>, S = sign (D), H = UDSU>, P =
USU>, and Λ± = λ+S+ + λ− |S−| with S± = (S±I)/2.

An important difference compared to stabilization ap-
proaches (e.g., see Loosli et al., 2016) is that we are solv-
ing a regularized risk minimization problem for which a
globally optimal solution can be found in polynomial time.
Another difference is that stabilization approaches perform
subspace descent while we are optimizing jointly over de-
composition components of a Krein space. In the special
case with λ+ = λ−, the approach outputs a hypothesis
equivalent to that of a stabilization approach along the lines
of Loosli et al. (2016). In particular, the matrix H is called
the flip-spectrum transformation ofK and k>x×XP is the cor-
responding out-of-sample transformation. Learning with the
flip-spectrum transformation of an indefinite kernel matrix
was first considered in Graepel et al. (1998) and the corre-
sponding out-of-sample transformation was first proposed
in Chen et al. (2009). The following proposition (a proof
is provided in Appendix A) establishes the equivalence be-
tween the least squares method with the flip-spectrum matrix
in place of an indefinite kernel matrix and Kreı̆n kernel ridge
regression regularized with a single hyperparameter.
Proposition 2. If the Kreı̆n kernel ridge regression problem
is regularized via the norm ‖·‖HK with λ = λ+ = λ−, then
the optimal hypothesis is equivalent to that obtained with
kernel ridge regression and the flip-spectrum matrix in place
of an indefinite Kreı̆n kernel matrix.

Having established this, we now proceed to formulate a
Kreı̆n regression problem with a low-rank approximation
K̃X|Z in place of the indefinite kernel matrix K. More
formally, after substituting the low-rank approximation into
Kreı̆n kernel ridge regression problem we transform it by

z = |DZ×Z |−
1/2
U>Z×ZKZ×Xα = L>X|Zα ,

Φ = KX×ZUZ×Z |DZ×Z |−
1/2
SZ×Z = LX|ZSZ×Z ,

K̃X|Zα = LX|ZSZ×Zz = Φz and α>H±α = z>±z± ,

whereH± = LX|Z |SZ×Z,±|L>X|Z , z± = |SZ×Z,±| z, and
SZ×Z,± = (SZ×Z±I)/2. Hence, we can write a low-rank
variant of the Kreı̆n kernel ridge regression problem as

z∗ = arg min
z∈Rm

‖Φz − y‖22 + nλ+ ‖z+‖22 + nλ− ‖z−‖22 .

The problem is convex in z and the optimal solution satisfies

z∗ =
(
Φ>Φ + nΛ±

)−1
Φ>y .
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An out-of-sample extension for this learning problem is

f̃∗ (x) = k>x UZ×Z |DZ×Z |−
1/2
SZ×Zz

∗ .

Having introduced a low-rank variant of Kreı̆n kernel ridge
regression, we proceed to define a scalable variance con-
strained least squares method (KREĬN VC-LSM). This risk
minimization problem is given by (Oglic and Gärtner, 2018)

min
f∈K

1

n

n∑
i=1

(f (xi)− yi)2 + λ+ ‖f+‖2+ + λ− ‖f−‖2−

s.t.

n∑
i=1

f (xi)
2

= r2 ,

with hyperparameters r ∈ R and λ± ∈ R+. To simplify our
derivations (just as in Oglic and Gärtner, 2018), we have
without loss of generality assumed that the kernel matrix
K is centered. Then, the hard constraint fixes the variance
of the predictor over training instances. Similar to Kreı̆n
kernel ridge regression, we can transform this problem into

z∗ = arg min
z∈Rm

nλ+ ‖z+‖2 + nλ− ‖z−‖2 − 2z>Φ>y

s.t. z>Φ>Φz = r2 .

Now, performing a singular value decomposition of Φ =
A∆B> and taking γ = ∆B>z we obtain

γ∗ = arg min
γ∈Rm

nγ>∆−1B>Λ±B∆−1γ − 2(A>y)>γ

s.t. γ>γ = r2 .

A globally optimal solution to this non-convex problem can
be computed by following the procedures outlined in Gander
et al. (1989) and Oglic and Gärtner (2018). The cost of
computing the solution is O

(
m3
)

and the cost for the low-
rank transformation of the problem is O

(
m3 +m2n

)
. An

out-of-sample extension can also be obtained by following
the derivation for Kreı̆n kernel ridge regression.

2.5. Scaling Support Vector Machines for Indefinite
Kernels using the Nyström Method

In this section, we propose a low-rank support vector ma-
chine for scalable classification with indefinite kernels. Our
regularization term is again motivated by the considerations
in Oglic and Gärtner (2018) and that is one of the two main
differences compared to Kreı̆n support vector machine pro-
posed in Loosli et al. (2016). The latter approach outputs
a hypothesis which can equivalently be obtained using the
standard support vector machine with the flip-spectrum ker-
nel matrix combined with the corresponding out-of-sample
transformation (introduced in Section 2.4). The second dif-
ference of our approach compared to Loosli et al. (2016)

stems from the fact that in low-rank formulations one opti-
mizes the primal of the problem, defined with the squared
hinge loss instead of the plain hinge loss. In particular, the
latter loss function is not differentiable and that can com-
plicate the hyperparameter optimization. We note that the
identical choice of loss function was used in other works for
primal-based optimization of support vector machines (e.g.,
see Mangasarian, 2002; Keerthi and DeCoste, 2005).

We propose the following optimization problem as the Kreı̆n
squared hinge support vector machine (KREĬN SH-SVM)

f∗ = arg min
f∈K

1

n

n∑
i=1

max {1− yif (xi) , 0}2 +

λ+ ‖f+‖2+ + λ− ‖f−‖2− .

Similar to Section 2.4, the representer theorem holds for
this problem and applying the reproducing property of the
Kreı̆n kernel we can transform it to a matrix form. If we
again substitute a low-rank approximation K̃X|Z in place
of the Kreı̆n kernel matrix K, we observe that

f (xi) = k̃>xiα = k>xiK
−1
Z×ZKZ×Xα =

k>xiUZ×Z |DZ×Z |−
1/2
SZ×Zz = Φiz ,

where Φi denotes the i-th row in the matrix Φ. The low-rank
variant of the approach can then be written as

z∗ = arg min
z∈Rm

n∑
i=1

max {1− yiΦiz, 0}2 +

nλ+ ‖z+‖22 + nλ− ‖z−‖22 .

The derivation of the solution follows that for the standard
primal-based training of support vector machines with the
only difference being that the diagonal matrix Λ± is used
instead of the scalar hyperparameter controlling the hypoth-
esis complexity (e.g., see Mangasarian, 2002; Keerthi and
DeCoste, 2005). To automatically tune the hyperparameters,
one can follow the procedure described in Chapelle et al.
(2002) and use implicit derivation to compute the gradient
of the optimal solution with respect to the hyperparameters.

We conclude with a discussion of a potential shortcoming
inherent to the Kreı̆n support vector machine (Loosli et al.,
2016). As the following proposition shows (a proof can
be found in Appendix A), that approach is equivalent to
the standard support vector machine with the flip-spectrum
matrix in place of an indefinite Kreı̆n kernel matrix (Grae-
pel et al., 1998), combined with the corresponding out-of-
sample transformation (Chen et al., 2009).
Proposition 3. The Kreı̆n support vector machine (Loosli
et al., 2016) is equivalent to the standard support vector ma-
chine with the flip-spectrum matrix in place of an indefinite
Kreı̆n kernel matrix (Graepel et al., 1998), combined with
the out-of-sample transformation from Chen et al. (2009).
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Figure 1: The figure shows the reduction in the approximation error for an indefinite kernel matrix defined as the difference between two
Gaussian kernels, which comes as a result of the increase in the approximation rank. In the figure legend, we use (k | l) to express the fact
that a rank k approximation of the kernel matrix is computed using a set of l landmarks.
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Figure 2: The figure shows the approximation errors of Nyström low-rank approximations (with different approximation ranks) as a
function of time required to compute these approximations. In the figure legend, we again use (k | l) to express the fact that a rank k
approximation of the kernel matrix is computed using a set of l landmarks.

While at the first glance this result seems incremental, it
makes an important contribution towards understanding the
Kreı̆n support vector machines (Loosli et al., 2016). In par-
ticular, the discussion of experiments in Loosli et al. (2016)
differentiates between the Kreı̆n support vector machines
and the flip-spectrum approach. This happens despite the
illustration indicating that they produce identical hypotheses
in synthetic experiments (e.g., see Figures 3 and 4 in Loosli
et al., 2016, and the discussion therein).

3. Experiments
In this section, we report the results of experiments aimed at
demonstrating the effectiveness of: i) the Nyström method in
low-rank approximations of indefinite kernel matrices, and
ii) the described scalable Kreı̆n approaches in classification
tasks with pairwise (dis)similarity matrices.

In the first set of experiments, we take several datasets
from UCI and LIACC repositories and define kernel ma-
trices on them using the same indefinite kernels as previous

work (Oglic and Gärtner, 2018, Appendix D). We use

0 ≤ ι =
∑
{i : λi<0}|λi|/

∑
i|λi| ≤ 1

to quantify the level of indefiniteness of a kernel matrix.
Prior to computation of kernel matrices, all the data matri-
ces were normalized to have mean zero and unit variance
across features. Following this, we have applied the Nys-
tröm method with landmark selection strategies presented
in Section 2.3 to derive approximations with different ranks.
We measure the effectiveness of a low-rank approximation
with its error in the Frobenius norm. To quantify the ef-
fectiveness of the approximate eigendecomposition of the
kernel matrix (i.e., the one-shot Nyström method) derived
in Section 2.2, we have performed rank k approximations
using sets of k log n landmarks. Figures 1 and 2 summa-
rize the results obtained with an indefinite kernel defined by
the difference between two Gaussian kernels. The reported
error/time is the median error/time over 10 repetitions of
the experiment. Figure 1 indicates a sharp (approximately
exponential) decay in the approximation error as the rank
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Figure 3: The figure shows the reduction in the classification error as the approximation rank of a Nyström low-rank approximation
increases. The reported error is the median classification error obtained using 10-fold stratified cross-validation.

of the approximation increases. The devised approximate
kernel K-means++ sampling strategy performs the best
in terms of the accuracy in the experiments where rank k
approximations are generated using k landmarks. The ap-
proximate leverage score strategy is quite competitive and
in rank k approximations generated using k log n landmarks
it performs as good or even better than the approximate
kernel K-means++ sampling scheme. Oglic and Gärtner
(2017) have evaluated these two state-of-the-art strategies
on the low-rank approximation of positive definite kernels.
In contrast to that work, we had to resort to an approximate
kernel K-means++ sampling scheme because of the indefi-
niteness of the bilinear form defining a Kreı̆n space. As a
result of this, we can observe the lack of a gap between the
curves describing the two sampling strategies, compared to
the results reported in Oglic and Gärtner (2017) for posi-
tive definite kernels. Our hypothesis is that this is due to
sub-optimal choices of landmarks that define sketch ma-
trices. In our simulations, we have generated sketches by
sampling the corresponding landmarks uniformly at random.
In support of this hypothesis, rather large approximation
errors for uniformly selected landmarks in approximation of
other indefinite kernels can be observed (see Appendix C).
Figure 2 reports the time required to generate a Nyström
low-rank approximation and indicates that the considered
sampling strategies amount to only a small fraction of the
total time required to generate the low-rank approximation.

In the second set of experiments, we evaluate the effective-
ness of the proposed least square methods and the support
vector machine on classification tasks1 with pairwise dis-
similarity matrices (Pekalska and Duin, 2005; Duin and
Pekalska, 2009). Following the instructions in Pekalska and
Haasdonk (2009), the dissimilarity matrices are converted
to similarities by applying the transformation characteristic
to multi-dimensional scaling (e.g., see the negative double-
centering transformation in Cox and Cox, 2000). In each
simulation, we perform 10-fold stratified cross-validation

1
http://prtools.org/disdatasets/index.html

and measure the effectiveness of an approach with the av-
erage/median percentage of misclassified examples. For
multi-class problems, we only evaluate the effectiveness of
a single binary one-vs-all classifier (just as in Oglic and Gärt-
ner, 2018, Appendix C). Figure 3 shows the reduction in the
classification error as the approximation rank increases. The
reported error is the median error over 10-folds. Here, SF-
LSM represents the baseline in which similarities are used
as features and a linear ridge regression model is trained
in that instance space (Chen et al., 2009; Alabdulmohsin
et al., 2015). The figure indicates that the baseline is quite
competitive, but overall the proposed low-rank variants per-
form very well across different datasets (additional plots
are provided in Appendix C). Tables 1 provides the detailed
results over all the datasets. In Appendix C (Table 2), we
also compare the effectiveness of our low-rank approaches
with respect to the relevant state-of-the-art methods which
make no approximations and represent hypotheses via the
span of kernel functions centered at training instances. The
empirical results indicate a competitive performance of our
low-rank approaches with only 100 landmarks across all the
datasets and a variety of indefinite kernel functions.

4. Discussion
The Nyström method has recently been used for approxi-
mate eigendecomposition and low-rank approximation of
indefinite kernel matrices (Gisbrecht and Schleif, 2015;
Schleif and Tiño, 2015; Schleif et al., 2016). To circumvent
the fact that the original derivations of the approach are
restricted to positive definite Mercer kernels (Smola and
Schölkopf, 2000; Williams and Seeger, 2001), Gisbrecht
and Schleif (2015) provide a derivation of the approach
based on approximations of integral eigenfunctions arising
in an eigendecomposition of an indefinite kernel. In particu-
lar, the authors of that work introduce an integral operator
defined with an indefinite kernel and its empirical/sample-
based approximation which asymptotically converges to
the original (indefinite) integral operator. Based on this re-

http://prtools.org/disdatasets/index.html
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DATASET DISSIMILARITY TYPE
RANK 100 APPROXIMATION

KREĬN VC-LSM KREĬN LSM KREĬN SH-SVM SF-LSM

coilyork Graph matching 32.22 (±7.89) 31.21 (±5.28) 38.20 (±7.20) 35.33 (±10.09)
balls 3D Shortest distance between balls 1.00 (±2.00) 0.50 (±1.50) 0.00 (±0.00) 0.50 (±1.50)

prodom Structural alignment of proteins 0.92 (±0.46) 0.92 (±0.46) 0.54 (±0.47) 1.57 (±0.58)

chicken10 String edit distance 16.35 (±4.31) 15.69 (±4.97) 16.82 (±6.57) 14.37 (±4.02)
protein Structural alignment of proteins 4.19 (±2.47) 3.72 (±2.76) 5.23 (±2.89) 5.15 (±3.91)

zongker Deformable template matching 17.70 (±2.06) 17.75 (±2.23) 15.30 (±3.39) 17.05 (±2.36)

chicken25 String edit distance 19.29 (±4.64) 20.41 (±4.09) 25.77 (±4.68) 18.17 (±6.67)
pdish57 Hausdorff distance 3.40 (±0.39) 3.40 (±0.42) 2.73 (±0.62) 3.03 (±0.67)

pdism57 Hausdorff distance 0.38 (±0.26) 0.38 (±0.26) 0.30 (±0.29) 0.63 (±0.42)

woody50 Plant leaves’ shape dissimilarity 30.84 (±5.25) 30.47 (±5.54) 38.42 (±7.13) 26.41 (±4.42)

Table 1: The table reports the results of our experiment on benchmark datasets for learning with indefinite kernels (Pekalska and Duin,
2005). The goal of the experiment is to evaluate the effectiveness of the state-of-the-art approaches for scalable learning in reproducing
kernel Kreı̆n spaces on classification tasks with pairwise dissimilarity matrices. We measure the effectiveness of an approach using the
average classification error obtained using 10-fold stratified cross-validation (standard deviations are given in the brackets).

sult, Gisbrecht and Schleif (2015) provide a derivation of
the Nyström method for indefinite kernels that treats the
approximate equalities arising in the approximations of in-
tegral eigenfunctions as if they were exact. While such an
assumption might hold for some datasets it fails to hold
in the general case and this fact makes their extension of
the Nyström method to indefinite kernels mathematically
incomplete. Our derivation of the approach does not rely
on such an assumption and, thus, provides a stronger re-
sult. Moreover, our proof is much simpler than the one
in Gisbrecht and Schleif (2015) and provides a geometrical
intuition for the approximation.

In addition to this, Gisbrecht and Schleif (2015); Schleif
and Tiño (2015); Schleif et al. (2016) proposed a method for
finding an approximate low-rank eigendecomposition of an
indefinite kernel matrix (for the sake of completeness, we
review this approach in Appendix B). From the perspective
of the exact number of floating point operations (FLOPs), the
approach by Gisbrecht and Schleif (2015); Schleif and Tiño
(2015); Schleif et al. (2016) requires 7 matrix-to-matrix mul-
tiplications (each with the cost of m2n FLOPs) and 2 eigen-
decompositions (each with the cost of m3 FLOPs). Thus, in
total their approach requires 7m2n+ 2m3 FLOPs to find an
approximate low-rank eigendecomposition of an indefinite
kernel matrix. In contrast to this, the approach proposed in
Section 2.2 comes with a much better runtime complexity
and requires at most 3m2n+ 3m3 FLOPs. To see a practical
runtime benefit of our approach, take a problem of approx-
imating the kernel matrix defined with n = 106 instances
using m = 103 landmarks. Our method for approximate
low-rank eigendecomposition requires 3× 1012 less FLOPs
than the approach proposed by Gisbrecht and Schleif (2015);
Schleif and Tiño (2015); Schleif et al. (2016).

Beside the considered low-rank approximations, it is pos-
sible to treat indefinite similarity functions as features and
learn with linear models (Alabdulmohsin et al., 2015; Chen
et al., 2009) or squared kernel matrices (Graepel et al., 1998).

However, Balcan et al. (2008) have showed that learning
with a positive definite kernel corresponding to a feature
space where the target concept is separable by a linear hy-
pothesis yields a larger margin compared to learning with a
linear model in a feature space constructed using that kernel
function. As a result, if a kernel is used to construct a fea-
ture representation the sample complexity of a linear model
in that space might be higher compared to learning with a
kernelized variant of regularized risk minimization.

The effectiveness of a particular landmark selection strat-
egy is a problem studied separately from the derivation of
the Nyström method and we, therefore, do not focus on
that problem in this work. However, clustering and lever-
age score sampling have been proposed and validated in
earlier publications and are state-of-the-art for low-rank
approximation of positive definite kernels (Kumar et al.,
2012; Alaoui and Mahoney, 2015; Gittens and Mahoney,
2016; Oglic and Gärtner, 2017). As the flip-spectrum ma-
trix shares the eigenspace with the indefinite kernel matrix,
the convergence results on the effectiveness of landmark
selection strategies for Nyström low-rank approximation
of positive definite kernels apply to indefinite kernels (e.g.,
see Section 2.3 or Eckart and Young, 1936; Mirsky, 1960).
In particular, bounds for the leverage score sampling strat-
egy applied to the flip-spectrum matrix carry over to our
derivation of the Nyström method for indefinite kernels.

We conclude with a reference to Schleif et al. (2018)
and Loosli et al. (2016), where an issue concerning the
sparsity of a solution returned by the Kreı̆n support vector
machine has been raised. We hypothesize that our approach
can overcome this limitation by either controlling the ap-
proximation rank or penalizing the low-rank objective with
the `1-norm of the linear model. We leave the theoretical
study and evaluation of such an approach for future work.

Acknowledgment: We are grateful for access to the University of
Nottingham High Performance Computing Facility. Dino Oglic
was supported in part by EPSRC grant EP/R012067/1.



Scalable Learning in Reproducing Kernel Krein Spaces

References
Alabdulmohsin, I., Gao, X., and Zhang, X. Z. (2015). Support

vector machines with indefinite kernels. In Proceedings of the
Sixth Asian Conference on Machine Learning, Proceedings of
Machine Learning Research. PMLR.

Alaoui, A. E. and Mahoney, M. W. (2015). Fast randomized kernel
ridge regression with statistical guarantees. In Advances in
Neural Information Processing Systems 28.

Alpay, D. (1991). Some remarks on reproducing kernel Kreı̆n
spaces. Rocky Mountain Journal of Mathematics.

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The advan-
tages of careful seeding. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms.

Azizov, T. Y. and Iokhvidov, I. S. (1981). Linear operators in
spaces with indefinite metric and their applications. Journal of
Soviet Mathematics.

Balcan, M.-F., Blum, A., and Srebro, N. (2008). A theory of
learning with similarity functions. Machine Learning.

Bognár, J. (1974). Indefinite inner product spaces. Ergebnisse der
Mathematik und ihrer Grenzgebiete. Springer.

Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. (2002).
Choosing multiple parameters for support vector machines. Ma-
chine Learning, 46(1-3):131–159.

Chen, Y., Garcia, E. K., Gupta, M. R., Rahimi, A., and Cazzanti,
L. (2009). Similarity-based classification: Concepts and algo-
rithms. Journal of Machine Learning Research.

Cox, T. F. and Cox, M. A. A. (2000). Multidimensional Scaling.
Chapman and Hall/CRC, 2nd edition.

Drineas, P., Kannan, R., and Mahoney, M. W. (2006). Fast Monte
Carlo algorithms for matrices II: Computing a low-rank approx-
imation to a matrix. SIAM Journal on Computing.

Drineas, P. and Mahoney, M. W. (2005). On the Nyström method
for approximating a Gram matrix for improved kernel-based
learning. Journal of Machine Learning Research.

Duin, R. P. and Pekalska, E. (2009). Datasets and tools for dis-
similarity analysis in pattern recognition. Beyond Features:
Similarity-Based Pattern Analysis and Recognition.

Eckart, C. and Young, G. (1936). The approximation of one matrix
by another of lower rank. Psychometrika, 1(3):211–218.

Fowlkes, C., Belongie, S., Chung, F., and Malik, J. (2004). Spectral
grouping using the Nyström method. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(2):214–225.

Gander, W., Golub, G. H., and von Matt, U. (1989). A constrained
eigenvalue problem. Linear Algebra and its Applications.

Gisbrecht, A. and Schleif, F.-M. (2015). Metric and non-metric
proximity transformations at linear costs. Neurocomputing,
167:643–657.

Gittens, A. and Mahoney, M. W. (2016). Revisiting the Nyström
method for improved large-scale machine learning. Journal
Machine Learning Research.

Graepel, T., Herbrich, R., Bollmann-Sdorra, P., and Obermayer, K.
(1998). Classification on pairwise proximity data. In Advances
in Neural Information Processing Systems 11.

Iokhvidov, I. S., Kreı̆n, M. G., and Langer, H. (1982). Introduction
to the spectral theory of operators in spaces with an indefinite
metric. Berlin: Akademie-Verlag.

Keerthi, S. S. and DeCoste, D. (2005). A modified finite Newton
method for fast solution of large scale linear SVMs. Journal of
Machine Learning Research, 6:341–361.

Kumar, S., Mohri, M., and Talwalkar, A. (2012). Sampling meth-
ods for the Nyström method. Journal of Machine Learning
Research.

Langer, H. (1962). Zur Spektraltheorie J-selbstadjungierter Opera-
toren. Mathematische Annalen.

Loosli, G., Canu, S., and Ong, C. S. (2016). Learning SVM
in Kreı̆n spaces. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Mangasarian, O. L. (2002). A finite Newton method for classifica-
tion. Optimization Methods and Software, 17:913–929.

Mirsky, L. (1960). Symmetric gauge functions and unitarily invari-
ant norms. Quaterly Journal of Mathematics, Oxford II. Series,
11:50–59.

Nyström, E. J. (1930). Über die praktische Auflösung von Integral-
gleichungen mit Anwendungen auf Randwertaufgaben. Acta
Mathematica.

Oglic, D. (2018). Constructive Approximation and Learning by
Greedy Algorithms. PhD thesis, University of Bonn, Germany.

Oglic, D. and Gärtner, T. (2017). Nyström method with kernel
K-means++ samples as landmarks. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research. PMLR.

Oglic, D. and Gärtner, T. (2018). Learning in reproducing kernel
Kreı̆n spaces. In Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research. PMLR.

Ong, C. S., Mary, X., Canu, S., and Smola, A. J. (2004). Learning
with non-positive kernels. In Proceedings of the Twenty-First
International Conference on Machine Learning.

Pekalska, E. and Duin, R. P. W. (2005). The Dissimilarity Repre-
sentation for Pattern Recognition: Foundations And Applica-
tions (Machine Perception and Artificial Intelligence). World
Scientific Publishing Co., Inc.

Pekalska, E. and Haasdonk, B. (2009). Kernel discriminant analy-
sis with positive definite and indefinite kernels. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 31(6).

Rifkin, R. M. (2002). Everything Old is New Again: A Fresh Look
at Historical Approaches in Machine Learning. PhD thesis.

Schleif, F., Gisbrecht, A., and Tiño, P. (2016). Probabilistic
classifiers with low rank indefinite kernels. arXiv preprint
arXiv:1604.02264.



Scalable Learning in Reproducing Kernel Krein Spaces

Schleif, F.-M., Raab, C., and Tino, P. (2018). Sparsification of in-
definite learning models. In Structural, Syntactic, and Statistical
Pattern Recognition, pages 173–183. Springer.

Schleif, F.-M. and Tiño, P. (2015). Indefinite proximity learning:
A review. Neural Computation, 27(10):2039–2096.

Schleif, F.-M. and Tino, P. (2017). Indefinite core vector machine.
Pattern Recognition, 71:187–195.

Schölkopf, B. and Smola, A. J. (2001). Learning with kernels: Sup-
port vector machines, regularization, optimization, and beyond.
MIT Press.

Schwartz, L. (1964). Sous-espaces hilbertiens d’espaces vectoriels
toplogiques et noyaux associés (noyaux reproduisants). Journal
d’Analyse Mathematique.

Smola, A. J. and Schölkopf, B. (2000). Sparse greedy matrix
approximation for machine learning. In Proceedings of the 17th
International Conference on Machine Learning.

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of ill-posed
problems. W. H. Winston, Washington D. C.

Williams, C. K. I. and Seeger, M. (2001). Using the Nyström
method to speed up kernel machines. In Advances in Neural
Information Processing Systems 13.

A. Proofs
Proposition 2. If the Kreı̆n kernel ridge regression problem
is regularized via the norm ‖·‖HK with λ = λ+ = λ−, then
the optimal hypothesis is equivalent to that obtained with
kernel ridge regression and the flip-spectrum matrix in place
of an indefinite Kreı̆n kernel matrix.

Proof. The optimal hypothesis over training data satisfies

Kα∗ = UDU>U (DS + nλI)−1 U>USU>y =

UDS (DS + nλI)−1 U>y =

H (H + nλI)−1 y .

Thus, if we only regularize with ‖f‖HK then the Kreı̆n
kernel ridge regression problem is equivalent to that with
the flip-spectrum transformation combined with the cor-
responding out-of-sample extension. More formally, if
α∗H = (H + nλI)−1 y denotes the optimal solution of the
kernel ridge regression with the flip-spectrum matrix H in
place of the indefinite kernel matrix K then the predictions
at out-of-sample test instances are given by

f (x) = k>x Pα
∗
H .

Proposition 3. The Kreı̆n support vector machine (Loosli
et al., 2016) is equivalent to the standard support vector ma-
chine with the flip-spectrum matrix in place of an indefinite
Kreı̆n kernel matrix (Graepel et al., 1998), combined with
the out-of-sample transformation from Chen et al. (2009).

Proof. The optimal hypothesis over training instances is

Kα∗ = KPα∗H = UDU>USU>α∗H = Hα∗H ,

where α∗H is the optimal solution for the support vector
machine problem with the flip-spectrum matrix H in place
of the indefinite Kreı̆n kernel matrix K. Thus, this variant
of Kreı̆n support vector machine is equivalent to learning
with the flip-spectrum transformation of an indefinite kernel
matrix. An out-of-sample extension for a test instance x is

f (x) = k>x α
∗ = k>x Pα

∗
H .

B. Discussion Addendum
We provide here a brief review of the approach by Gisbrecht
and Schleif (2015); Schleif and Tiño (2015); Schleif et al.
(2016) for approximate eigendecomposition of an indefinite
matrix 2. The approach is motivated by the observation that
an indefinite symmetric matrix and its square have identical
eigenvectors. For this reason, the authors first form the
squared low-rank Kreı̆n kernel matrix

K̃2 = KX×ZK
−1
Z×ZKZ×XKX×ZK

−1
Z×ZKZ×X .

The matrix A = K−1Z×ZKZ×XKX×ZK
−1
Z×Z is positive

definite because it can be written as LL> (e.g., taking
L = K−1Z×ZKZ×X ). Thus, all the eigenvalues in an eigen-
decomposition of A = V ΓV > are non-negative and we can
set A = LL> with L = V Γ

1
2 . From here it then follows

that the matrix K̃2 can be factored as K̃2 = BB> with
B = KX×ZV Γ

1
2 . Following this, Gisbrecht and Schleif

(2015); Schleif and Tiño (2015); Schleif et al. (2016) mimic
the standard procedure for the derivation of approximate
eigenvectors and eigenvalues characteristic to the Nyström
method for positive definite kernels (Williams and Seeger,
2001; Fowlkes et al., 2004; Drineas and Mahoney, 2005;
Drineas et al., 2006). In particular, they first decompose the
positive definite matrix B>B = Q∆Q> and then compute
the approximate eigenvectors of K̃2 as Ũ = BQ∆−

1
2 . Now,

to obtain an approximate eigendecomposition of the Kreı̆n
kernel matrix the authors use these eigenvectors in combi-
nation with the posited form of the low-rank approximation
K̃ = KX×ZK

−1
Z×ZKZ×X and compute the approximate

eigenvalues as D̃ = Ũ>K̃Ũ . As the diagonal matrix ∆
contains the eigenvalues of K̃2 this step retrieves the signed
eigenvalues of K̃. The one-shot Nyström approximation of
the kernel matrix is then given as (Gisbrecht and Schleif,
2015; Schleif and Tiño, 2015; Schleif et al., 2016)

KSGT∗

X|Z = ŨD̃Ũ> =

KX×ZV Γ
1
2Q∆−

1
2 D̃ ∆−

1
2Q>Γ

1
2V >KZ×X .

2
https://www.techfak.uni-bielefeld.de/~fschleif/eigenvalue_

corrections_demos.tgz, accessed in May 2018

https://www.techfak.uni-bielefeld.de/~fschleif/eigenvalue_corrections_demos.tgz
https://www.techfak.uni-bielefeld.de/~fschleif/eigenvalue_corrections_demos.tgz
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C. Additional Experiments
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Figure 4: The figure shows the reduction in the approximation error for an indefinite kernel matrix obtained using the SIGMOID
kernel (Oglic and Gärtner, 2018, Appendix D), which comes as a result of the increase in the approximation rank. In the figure legend, we
use (k | l) to express the fact that a rank k approximation of the kernel matrix is computed using a set of l landmarks.
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Figure 5: The figure shows the reduction in the approximation error for an indefinite kernel matrix obtained using the RL-SIGMOID
kernel (Oglic and Gärtner, 2018, Appendix D), which comes as a result of the increase in the approximation rank. In the figure legend, we
use (k | l) to express the fact that a rank k approximation of the kernel matrix is computed using a set of l landmarks.
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Figure 6: The figure shows the reduction in the approximation error for an indefinite kernel matrix obtained using the EPANECHNIKOV
kernel (Oglic and Gärtner, 2018, Appendix D), which comes as a result of the increase in the approximation rank. In the figure legend, we
use (k | l) to express the fact that a rank k approximation of the kernel matrix is computed using a set of l landmarks.
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Figure 7: The figure shows the reduction in the classification error as the approximation rank of a Nyström low-rank approximation
increases. The reported error is the median classification error obtained using 10-fold stratified cross-validation.
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Figure 8: The figure depicts the computational cost for Nyström approximations of different ranks as a function of the number of instances
in a dataset. The reported time is the average time required to compute the Nyström approximation of a given rank (averaged over 10
repetitions of the experiment). The confidence interval for a cost-curve is computed by subtracting/adding the corresponding standard
deviations from the average computational costs. The landmarks are selected using the approximate kernel K-means++ sampling strategy
proposed in Section 2.3. For all the considered approximation ranks, the cost-curves indicate that the approach scales (approximately)
linearly with respect to the dataset size (the slope of a cost-curve depends on the approximation rank).

DATASET
RANK 100 APPROXIMATION (PRIMAL OPTIMIZATION) WHOLE KREĬN SPACE (DUAL OPTIMIZATION)

KREĬN VC-LSM KREĬN LSM KREĬN SH-SVM SF-LSM K-SVM SF-LSM VC-LSM

coilyork 32.22 (±7.89) 31.21 (±5.28) 38.20 (±7.20) 35.33 (±10.09) 32.91 (±8.06) 26.03 (±5.60) 22.56 (±7.66)
balls 3D 1.00 (±2.00) 0.50 (±1.50) 0.00 (±0.00) 0.50 (±1.50) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)
prodom 0.92 (±0.46) 0.92 (±0.46) 0.54 (±0.47) 1.57 (±0.58) 0.00 (±0.00) 0.04 (±0.11) 0.00 (±0.00)
chicken10 16.35 (±4.31) 15.69 (±4.97) 16.82 (±6.57) 14.37 (±4.02) 30.95 (±7.81) 11.91 (±3.56) 5.62 (±2.55)
protein 4.19 (±2.47) 3.72 (±2.76) 5.23 (±2.89) 5.15 (±3.91) 5.17 (±3.34) 2.83 (±3.15) 0.00 (±0.00)
zongker 17.70 (±2.06) 17.75 (±2.23) 15.30 (±3.39) 17.05 (±2.36) 16.00 (±1.41) 5.60 (±1.20) 0.95 (±1.68)
chicken25 19.29 (±4.64) 20.41 (±4.09) 25.77 (±4.68) 18.17 (±6.67) 17.72 (±6.57) 16.38 (±5.14) 4.73 (±3.29)
pdish57 3.40 (±0.39) 3.40 (±0.42) 2.73 (±0.62) 3.03 (±0.67) 0.42 (±0.25) 0.20 (±0.19) 0.35 (±0.37)
pdism57 0.38 (±0.26) 0.38 (±0.26) 0.30 (±0.29) 0.63 (±0.42) 0.13 (±0.23) 0.15 (±0.17) 0.11 (±0.18)
woody50 30.84 (±5.25) 30.47 (±5.54) 38.42 (±7.13) 26.41 (±4.42) 37.04 (±5.07) 22.89 (±4.07) 2.53 (±2.66)

K-SVM denotes the Kreı̆n support vector machine (Loosli et al., 2016).
SF-LSM denotes a variant of the least squares method with similarities as features (Graepel et al., 1998; Chen et al., 2009; Alabdulmohsin et al., 2015).
VC-LSM denotes the variance constrained least squares method (Oglic and Gärtner, 2018).

Table 2: The table reports the results of our experiments on benchmark datasets for learning with indefinite kernels (Pekalska and Duin,
2005). The effectiveness of an approach is measured using the average classification error obtained via 10-fold stratified cross-validation.
In contrast to the experiments over the whole Kreı̆n space (Oglic and Gärtner, 2018), the hyper-parameter optimization for low-rank
approaches did not involve any random restarts (which could further improve the reported results for considered Kreı̆n methods).


