
Appendix

A. Proof
We give the proofs of the theorems proposed in the paper.

A.1. Proof of Theorem 1

When α = 0 and β ≥ 0, the optimization problem can be
formalized with constraints as

min
F
LECE − β · log

[
det(M̃>\yM̃\y)

]
s. t. 0 ≤ F k

j ≤ 1,∑
j∈[L]

F k
j = 1,

where k ∈ [K], j ∈ [L]. Note that in the objective function,
the first term LECE depends on the predictions on label y,
i.e., F k

y . The second term − log
[
det(M̃>\yM̃\y)

]
depends

on the normalized non-maximal predictions F̃ k
\y. Because

∀i, j, F i
y and F j

y are mutually independent, F i
y and F̃ i

\y are
also mutually independent (since the normalization), the
two terms in the objective function can separately achieve
their own minimum. Therefore, the optimal solution of
the objective function will tend to satisfies the equations
F k = 1y , where k ∈ [K].

A.2. Proof of Theorem 2

When α > 0 and β = 0, the optimization problem can be
formalized with constraints as

min
F
LECE − α · H(F)

s. t. 0 ≤ F k
j ≤ 1,∑

j∈[L]

F k
j = 1,

where k ∈ [K], j ∈ [L]. Then the Lagrangian is

L = LECE − α · H(F) +
∑

k∈[K]

ωk(1−
∑
j∈[L]

F k
j )

+
∑

k∈[K]

∑
j∈[L]

[
βk,jF

k
j + γk,j(1− F k

j )
]

,

where βk,j ≤ 0, γk,j ≤ 0. The partial derivatives for F k
j

are

∂L

∂F k
y

= − 1

F k
y

+
α

K
[1 + logFy]− ωk + βk,y − γk,y ,

∂L

∂F k
j

=
α

K
[1 + logF j ]− ωk + βk,j − γk,j , ∀j 6= y.

According to the KKT conditions for the optimal solution,
we have ∀k ∈ [K], j ∈ [L],

∂L

∂F k
j

= 0,

βk,jF
k
j = 0,

γk,j(1− F k
j ) = 0.

Consider the optimal solutions in (0, 1)L×K , then all βk,j
and γk,j equal to zero. Now we have

− 1

F k
y

+
α

K
[1 + logFy] = ωk,

α

K
[1 + logF j ] = ωk, ∀j 6= y,

and from the second equations, we can derive ∀j 6= y,

F j = exp (
ωkK

α
− 1) =⇒

∑
j 6=y

F j =
∑
j 6=y

exp (
ωkK

α
− 1)

=⇒ 1−Fy = (L− 1) exp (
ωkK

α
− 1)

=⇒ ωk =
α

K

[
1 + log(

1−Fy

L− 1
)

]
,

and this also shows that ∀i, j 6= y, there is F i = F j =
1−Fy

L−1 . There further is ∀k ∈ [K],

1

F k
y

=
α

K
log

[
Fy(L− 1)

1−Fy

]
.

Thus for ∀k, l ∈ [K], F k
y = F l

y = Fy , and finally

1

Fy
=

α

K
log

[
Fy(L− 1)

1−Fy

]
.
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A.3. Proof of Corollary 1

It is easy to see that the negative LED part − log(ED)
achieves its minimum if and only if the non-maximal pre-
dictions of each individual network are mutually orthogo-
nal. According to the conclusion in Theorem 2, if there
is K | (L − 1), the optimal solution in Corollary 1 can
simultaneously make the two terms of the ADP regularizer
achieve their own minimum.

B. More Analyses
In this section, we provide more details on the theoretical
and practical analyses mentioned in the paper.

B.1. JS-divergence as the Diversity

JS-divergence among individual predictions is a potentially
plausible definition of ensemble diversity for DNNs. Specif-
ically, we consider in the output space of classifiers, where
F k represents a vector variable in RL. The JS-divergence
of K elements in F is defined as

JSD(F) = H(F)− 1

K

∑
k∈[K]

H(F k). (1)

To encourage high values of JS-divergence , we can add a
regularization term of it in the objective function. However,
when minimizing the objective function, there is neither a
closed form solution nor an intuitively reasonable solution,
as formally stated in the following theorem:

Theorem* 1. Given λ > 0, (x, y) be an input-label pair.
The minimization problem is defined as

min
F
LECE − λ · JSD . (2)

Then the problem has no solution in (0, 1)L×K .

Proof. The optimization problem can be formalized with
constraints as

min
F
LECE − λ · JSD(F)

s. t. 0 ≤ F k
j ≤ 1,∑

j∈[L]

F k
j = 1,

where k ∈ [K], j ∈ [L]. Then the Lagrangian is

L = LECE − λ · JSD(F) +
∑

k∈[K]

ωk(1−
∑
j∈[L]

F k
j )

+
∑

k∈[K]

∑
j∈[L]

[
βk,jF

k
j + γk,j(1− F k

j )
]

,

where βk,j ≤ 0, γk,j ≤ 0. The partial derivatives for F k
j

are

∂L

∂F k
y

= − 1

F k
y

+
λ

K

[
logFy − logF k

y

]
− ωk + βk,y − γk,y ,

∂L

∂F k
j

=
λ

K

[
logF j − logF k

j

]
− ωk + βk,j − γk,j , ∀j 6= y.

According to the KKT conditions for the optimal solution,
similar to the proof of Theorem 2, we can derive ∀j 6= y,

F j = F k
j exp (

ωkK

λ
) =⇒

∑
j 6=y

F j =
∑
j 6=y

F k
j exp (

ωkK

λ
)

=⇒ 1−Fy = (1− F k
y ) exp (

ωkK

λ
)

=⇒ ωk =
λ

K
log(

1−Fy

1− F k
y

),

further combine with the first equation, there is

λ

K
log

[
Fy(1− F k

y )

F k
y (1−Fy)

]
=

1

F k
y

. (3)

Since Fy = 1
K

∑
k∈[K] F

k
y , Eq. (3) cannot holds for all

k ∈ [K], there is no optimal solution in (0, 1)L×K .

Therefore, it is difficult to appropriately select λ and a
balance between accuracy and diversity, which makes it
unsuitable to directly define the ensemble diversity as JS-
divergence. Note that this dilemma is mainly caused by
the second term in the definition of JS-divergence (Eq. (1))
since it can override the ECE term and lead to the wrong
prediction with a low value of the total loss.

B.2. Temperature Scaling

Guo et al. (2017) propose the temperature scaling (TS)
method to calibrate the predictions of neural networks. The
TS method simply use a temperature T > 0 on the logits,
and return the predictions as

F = S(
z

T
),

where S(·) is the softmax function, z is the logits. Usually
the temperature T is set to be 1 in the training phase, and be
larger than 1 in the test phase (Hinton et al., 2015). To solve
the numerical obstacle in the ADP training procedure when
L is large, we propose to apply the TS method in an opposite
way. Namely, in the training phase, we apply a high value of
T to increase the values of non-maximal predictions, then
in the test phase we apply T = 1 to give final predictions.
Note that the non-maximal predictions in Corollary 1 equal
to K(1−Fy)

L−1 . Using the TS method is equivalent to reduce
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Figure 1. The histogram of the ensemble diversity values on the
test set of CIFAR-10. There are totally 10,000 samples. The tiny
table shows the median values of the ensemble diversity.

Fy in the training phase. Other possible ways to solve
the numerical obstacle can be increasing the number of
members in the ensemble (increasing K) or performing a
dropout sampling in the ensemble entropy term of the ADP
regularizer (decreasing L−1). Further investigation of these
solutions is one of our future work.

B.3. Histogram of the Ensemble Diversity

To further investigate the relationship between ensemble
diversity and robustness, we plot the histogram of the loga-
rithm values of ensemble diversity on the test set of CIFAR-
10 in Fig. 1. The median values of different training meth-
ods are shown in the top-right panel. An interesting phe-
nomenon is that when the LED part is inactive as in the
ADP2,0 setting, the learned ensemble diversity is still much
larger than the baseline. This is because even though the
ensemble entropy part of ADP regularizer does not explic-
itly encourage ensemble diversity, it does expand the fea-
sible space of the optimal solution. Due to the degrees of
freedom on the optimal individual predictions F k

j in the
feasible space, the ensemble diversity is unlikely to be small.
However, the existence of the LED part further explicitly
encourage the ensemble diversity, as shown in Fig. 1.
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