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Abstract
Policy Search (PS) is an effective approach to
Reinforcement Learning (RL) for solving con-
trol tasks with continuous state-action spaces. In
this paper, we address the exploration-exploitation
trade-off in PS by proposing an approach based
on Optimism in the Face of Uncertainty. We cast
the PS problem as a suitable Multi Armed Bandit
(MAB) problem, defined over the policy param-
eter space, and we propose a class of algorithms
that effectively exploit the problem structure, by
leveraging Multiple Importance Sampling to per-
form an off-policy estimation of the expected re-
turn. We show that the regret of the proposed
approach is bounded by rOp

?
T q for both discrete

and continuous parameter spaces. Finally, we
evaluate our algorithms on tasks of varying dif-
ficulty, comparing them with existing MAB and
RL algorithms.

1. Introduction
Reinforcement Learning (RL, Sutton & Barto, 2018) allows
an agent to learn a control task by repeated interaction with
the environment in the presence of a reward signal. One
of the current challenges of RL is to master tasks, such as
robotic locomotion, in which states and actions are natu-
rally modeled as real numbers. Policy optimization (PO,
Deisenroth et al., 2013) is a family of RL algorithms that
are particularly suited to this class of problems. In PO,
the behavior of the agent, or policy, is modeled explicitly,
typically as a parametric mapping from states to actions.
Learning corresponds to the optimization of a performance
measure w.r.t. the agent’s parameters.

The literature on PO focused mainly on the problem of
finding the optimal policy with the minimum amount of
interaction (Sutton et al., 2000; Sehnke et al., 2008; Silver
et al., 2014; Schulman et al., 2015; Mnih et al., 2016; Es-
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peholt et al., 2018). This is well motivated, as interacting
with some environments can be very expensive. However,
in many cases, we are also interested in the performance
of the agent during the learning process. We call this on-
line policy optimization. This goal is particularly relevant
in applications where an agent must be deployed in the
real world to perfect its behavior (e.g., robot learning) or
to learn at all (e.g., recommender systems). In such cases,
the exploration-exploitation dilemma arises naturally, as
the agent must continually find the right trade-off between
complying with its current expertise or widening it by trial
and error. Equivalently, it must minimize its total regret
w.r.t. the optimal behavior. This problem has been thor-
oughly studied in the field of Multi Armed Bandits (MAB,
Auer et al., 2002; Lattimore & Szepesvári, 2019). In this
simple framework, an agent has to repeatedly select an ac-
tion, called an arm in this context, in order to maximize
an unknown, stochastic reward. This can be seen as RL
without states. However, we can also see PO as a MAB-like
problem where the set of available actions is the parameter
space of the agent. Hopefully, this allows to apply some of
the theoretical and algorithmic ideas developed in the MAB
literature to the problem of exploration in continuous-action
RL, whose proposed solutions have been largely heuristic so
far (Houthooft et al., 2016; Haarnoja et al., 2017; 2018). In
particular, the Optimism in the Face of Uncertainty (OFU)
principle, at the heart of the Upper Confidence Bound (UCB,
Lai & Robbins, 1985; Agrawal, 1995; Auer, 2002) family of
MAB algorithms, lends itself to relatively straightforward
application to PO. The core idea is simply to overestimate
the expected reward of arms, which, in our scenario, are the
policies the agent can play. The overestimation is larger for
those arms the agent knows less about.

To apply the OFU principle to PO, we need to exploit some
structure in the way arms (policy parameters) concur to
generate rewards. This is both necessary, as the parameter
space is typically continuous, and desirable, as there exists
an evident correlation between arms that we can hope to
exploit (different policies can lead to similar performances).
Both features are absent in the classic MAB formulation,
but have been studied before (e.g., Pandey et al., 2007;
Kleinberg, 2005)1.

1See Section 7 for a brief overview of the related literature,
including applications to RL.
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In this work, we use Multiple Importance Sampling (MIS,
Veach & Guibas, 1995) to capture the information shared by
different policies and we employ robust estimators inspired
by Bubeck et al. (2013) to overcome the heavy-tail behav-
ior typical of importance sampling. We adapt techniques
from Metelli et al. (2018) to build confidence intervals of
the expected performance of policy parameters via robust
MIS. We employ these tools to design UCB-like algorithms
for PO. The proposed algorithms apply to both the pol-
icy optimization paradigms:2 action-based PO, in which
we learn the policy parameters (Sutton et al., 2000), and
parameter-based PO where optimization is over parametric
policy distributions (Sehnke et al., 2008). Furthermore, we
show how these algorithms can be used both in finite and
continuous parameter spaces and we prove that they attain
a regret bound of rOp

?
T q. Since the optimization problem

can be challenging in the continuous case, we propose a
general discretization method that allows to trade computa-
tional complexity with regret, preserving the sub-linearity
of the latter.

We start by providing the essential background in Section 2.
In Section 3, we develop robust MIS estimators that will play
an essential role in the algorithms. In Section 4, we provide
a formalization of the online policy optimization problem.
The algorithms are presented in Section 5 and analyzed
in Section 6. Section 7 relates our work to the existing
literature. Finally, in Section 8, we empirically evaluate
the proposed methods on continuous control tasks. The
implementation of the proposed algorithms can be found
at https://github.com/WolfLo/optimist.

2. Preliminaries
In this section, we provide an essential background on policy
optimization and multiple importance sampling.

2.1. Policy optimization

In Policy Optimization (PO, Deisenroth et al., 2013) we
look for the policy that maximizes the agent’s performance
on a given RL task. The task is modeled as a discrete-
time Markov Decision Process (MDP, Puterman, 2014)
M “ xS,A,P,R, γ, µy, where S is the state space; A is
the action space; P : S ˆAÑ ∆pSq is a Markovian transi-
tion kernel, such that, for each time h, the next state is drawn
as sh`1 „ Pp¨|sh, ahq that depends only on the current state
and action; R : S ˆ A Ñ r´Rmax, Rmaxs is a bounded
reward signal, such that the next reward rh`1 “ Rpsh, ahq
is a function of the current state and action, and Rmax ă 8

is the maximum reward; γ P p0, 1s is a discount factor;
µ P ∆pSq is the initial state distribution, such that the
initial state is drawn as s0 „ µ. The agent’s behavior is

2We follow the taxonomy of Metelli et al. (2018).

modeled as a parametric policy πθ : S Ñ ∆pAq, such
that the current action is drawn as ah „ πθp¨|shq, depend-
ing on the current state, where θ P Θ Ď Rm are the pol-
icy parameters. Deterministic policies represent a special
case where πθ is a Dirac delta function. With little abuse
of notation, we write ah “ πθpshq in this case. In prac-
tice, we consider finite trajectories of length H , the task’s
horizon. A trajectory is a sequence of states and actions
τ “ rs0, a0, s1, a1, . . . , sH´1, aH´1s. Every policy πθ in-
duces a distribution over trajectories, whose density is de-
noted as pθ. Our basic measure of performance is the sum
of discounted rewards over the trajectory:

Rpτq “
H´1
ÿ

h“0

γhrh`1. (1)

Let Jpθq :“ Eτ„pθ rRpτqs be the expected performance
under policy πθ. In an online learning scenario, we aim
to maximize the sum of expected performances over a se-
quence of episodes t “ 0, . . . , T . In the action-based policy
optimization paradigm (Peters & Schaal, 2008), the problem
we want to solve is simply:

max
θ0,...,θT PΘ

T
ÿ

t“0

E
τt„pθt

rRpτtqs “ max
θ0,...,θT PΘ

T
ÿ

t“0

Jpθtq, (2)

where πθt is the policy used for episode t. In the action-
based paradigm, stochastic policies are typically employed
in order to ensure exploration, although deterministic poli-
cies have also been used with the addition of exogenous
noise (Silver et al., 2014). Instead, in the parameter-based
policy optimization paradigm (Sehnke et al., 2008), we
define a distribution over policy parameters, νξ P ∆pΘq,
called hyperpolicy, where ξ P Ξ Ď Rd are the hyperpolicy
parameters, or hyperparameters. For each episode t, the
policy parameters are drawn as θt „ νξt and the whole tra-
jectory is executed with πθt . In this case, the optimization
problem becomes:

max
ξ0,...,ξT PΞ

T
ÿ

t“0

E
θt„νξt

rJpθtqs :“ max
ξ0,...,ξT PΞ

T
ÿ

t“0

Jpξtq. (3)

In the parameter-based paradigm, deterministic policies are
typically employed, paired with stochastic hyperpolicies in
order to ensure exploration.

2.2. Multiple importance sampling

Importance sampling (Cochran, 2007; Owen, 2013) is a
technique that allows estimating the expectation of a func-
tion under some target or proposal distribution with samples
drawn from a different distribution, called behavioral.

Let P and Q be probability measures on a measurable space
pZ,Fq, such that P ! Q (i.e., P is absolutely continu-
ous w.r.t. Q). The importance weight wP {Q is the Radon-
Nikodym derivative of P w.r.t. Q, i.e., wP {Q ” dP

dQ . Let
p and q be the densities of P and Q, respectively, w.r.t. a

https://github.com/WolfLo/optimist
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reference measure. From the chain rule, wP {Q “
p
q . In the

continuous case, p and q are probability density functions
(pdf’s) of absolutely continuous random variables having
laws P and Q, respectively, and wP {Q is a likelihood ra-
tio. Given a bounded function f : Z Ñ R, and a set of
i.i.d. outcomes z1, . . . , zN sampled from Q, the importance
sampling estimator of µ :“ Ez„P rfpzqs is:

pµIS “
1

N

N
ÿ

i“1

wP {Qpziqfpziq, (4)

which is an unbiased estimator (Owen, 2013), i.e.,
E
zi

iid
„Q
rpµISs “ µ.

Multiple importance sampling (Veach & Guibas, 1995)
is a generalization of the importance sampling technique
which allows samples drawn from several different behav-
ioral distributions to be used for the same estimate. Let
Q1, . . . , QK be all probability measures over the same prob-
ability space as P , and P ! Qk for k “ 1, . . . ,K. Let
β1pzq, . . . , βKpzq be mixture weights, i.e., for all z P Z ,
β1pzq ` ¨ ¨ ¨ ` βKpzq “ 1 and βkpzq ě 0 for k “ 1, . . . ,K.
Let zik denote the i-th sample drawn from Qk. Given Nk
i.i.d. samples from each Qk, the Multiple Importance Sam-
pling (MIS) estimator is:

pµMIS :“
K
ÿ

k“1

1

Nk

Nk
ÿ

i“1

βkpzikqwP {Qkpzikqfpzikq, (5)

which is also an unbiased estimator of µ for any valid choice
of the mixture weights. A common choice of the mixture
weights having desirable variance properties is the balance
heuristic (Veach & Guibas, 1995):

βkpzq “
Nkqkpzq

řK
j“1Njqjpzq

, (6)

which yields the Balance Heuristic estimator (BH):

pµBH :“
K
ÿ

k“1

Nk
ÿ

i“1

ppzikq
řK
j“1Njqjpzikq

fpzikq. (7)

Since (6) are valid mixture weights, pµBH is an unbiased
estimator of µ. Moreover, its variance is not significantly
larger than any other choice of the mixture weights (Veach
& Guibas, 1995, Theorem 1).

To further characterize the variance of this estimator, we
introduce the concept of Rényi divergence. Given probabil-
ity measures P and Q on pZ,Fq, where P ! Q and Q is
σ-finite, the α-Rényi divergence is defined as (Rényi, 1961):

DαpP }Qq :“
1

α´ 1
log

ż

Z

`

wP {Q
˘α

dQ, (8)

for α P r0,8s3. We denote with dαpP }Qq “

exptDαpP }Qqu the exponentiated α-Rényi divergence. Of
particular interest is d2, as the variance of the importance
weight is Varz„Q

“

wP {Qpzq
‰

“ d2pP }Qq ´ 1, which is a
divergence itself (Cortes et al., 2010). For this reason, we al-

3The special cases α “ 0, 1 and8 are defined as limits.

ways mean the 2-Rényi divergence when omitting the order
α. The Rényi divergence was used by Metelli et al. (2018,
Lemma 4.1) to upper bound the variance of the importance
sampling estimator as Var

zi
iid
„q
rpµISs ď }f}

2
8 d2pP }Qq{N .

A similar result can be derived for the BH estimator:

Lemma 1. Let P and tQkuKk“1 be probability measures
on the measurable space pZ,Fq such that P ! Qk and
d2pP }Qkq ă 8 for k “ 1, . . . ,K. Let f : Z Ñ R be a
bounded function, i.e., }f}8 ă 8. Let pµBH be the balance
heuristic estimator of f , as defined in (7), using Nk i.i.d.
samples from each Qk. Then, the variance of pµBH can be
upper bounded as:

Var
zik

iid
„Qk

rpµBHs ď }f}
2
8

d2pP }Φq

N
,

where N “
řK
k“1Nk is the total number of samples and

Φ “
řK
k“1

Nk
N Qk is a finite mixture.

3. Robust Importance Sampling Estimation
In this section, we discuss how to perform a robust im-
portance sampling estimation. Recently it has been ob-
served that, in many cases of interest, the plain estimator (4)
presents problematic tail behaviors (Metelli et al., 2018),
preventing the use of exponential concentration inequali-
ties.4 A common heuristic to address this problem consists
in truncating the weights (Ionides, 2008):

qµIS :“
1

N

N
ÿ

i“1

min
 

M,wP {Qpziq
(

fpziq, (9)

where M ă 8 is a threshold to limit the magnitude of the
importance weight. Similarly, for the multiple importance
sampling case, restricting to the BH, we have:

qµBH :“
1

N

K
ÿ

k“1

Nk
ÿ

i“1

min

#

M,
ppzikq

řK
j“1

Nj
N qjpzikq

+

fpzikq.

(10)
Clearly, since we are changing the importance weights, we
introduce a bias term, but, by reducing the range of the
estimate, we get a benefit in terms of variance. Below, we
present the bias-variance analysis of the estimator qµBH and
we conclude by showing that we are able, using an adap-
tive truncation, to guarantee an exponential concentration
(differently from the non-truncated case).

Lemma 2. Let P and tQkuNk“1 be probability measures on
the measurable space pZ,Fq such that P ! Qk and there
exists ε P p0, 1s s.t. d1`εpP }Qkq ă 8 for k “ 1, . . . ,K.
Let f : Z Ñ R` be a bounded non-negative function, i.e.,
}f}8 ă 8. Let qµBH be the truncated balance heuristic
estimator of f , as defined in (10), using Nk i.i.d. samples

4Unless we require that d8pP }Φq is finite, i.e., that the impor-
tance weight have finite essential supremum, there always exists a
value 1 ă α ă 8 such that dαpP }Φq “ 8.
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from each Qk. Then, the bias of qµBH can be bounded as:
0 ď µ´ E

zik
iid
„Qk

rqµBHs ď }f}8M
´εd1`ε pP }Φq

ε
, (11)

and the variance of qµBH can be bounded as:

Var
zik

iid
„Qk

rqµBHs ď }f}
2
8M

1´ε d1`ε pP }Φq
ε

N
, (12)

where N “
řK
k“1Nk is the total number of samples and

Φ “
řK
k“1

Nk
N Qk is a finite mixture.

It is worth noting that, by selecting ε “ 1, equation (12)
reduces to Lemma 1, as the truncation operation can only
reduce the variance. Clearly, the smaller we choose M , the
larger the bias. Overall, we are interested in minimizing the
joint contribution of bias and variance. Keeping P and Φ
fixed we observe that the bias depends only on M , whereas
the variance depends on M and on the number of samples
N . Intuitively, we can allow larger truncation thresholds M
as the number of samples N increases. The following result
states that, when using an adaptive threshold depending on
N , we are able to reach exponential concentration.

Theorem 1. Let P and tQkuNk“1 be probability measures
on the measurable space pZ,Fq such that P ! Qk and
there exists ε P p0, 1s s.t. d1`εpP }Qkq ă 8 for k “
1, . . . ,K. Let f : Z Ñ R` be a bounded non-negative
function, i.e., }f}8 ă 8. Let qµBH be the truncated balance
heuristic estimator of f , as defined in (10), using Nk i.i.d.

samples from each Qk. Let MN “

´

Nd1`εpP }Φq
ε

log 1
δ

¯
1

1`ε

,
then with probability at least 1´ δ:

qµBH ď µ` }f}8

ˆ

?
2`

1

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

,

and also, with probability at least 1´ δ:

qµBH ě µ´ }f}8

ˆ

?
2`

4

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

.

Our adaptive truncation approach and the consequent con-
centration results resemble the ones proposed in Bubeck
et al. (2013). However, unlike Bubeck et al. (2013), we
do not remove samples with too high value, but we exploit
the nature of the importance weighted estimator only to
limit the weight magnitude. Indeed, this form of truncation
turned out to be very effective in practice (Ionides, 2008;
Koblents & Mı́guez, 2015).

4. Problem Formalization
The online learning problem that we aim to solve does not
fall within the traditional MAB framework and can benefit
from an ad-hoc formalization, provided in this section.

Let X Ď Rd be our decision set, or arm set in MAB
jargon. Let pΩ,F , P q be a probability space. Let
tZx : Ω Ñ Z | x P X u be a set of continuous random

vectors parametrized by X , with common sample space
Z Ď Rm. We denote with px the probability density func-
tion of Zx. Finally, let f : Z Ñ R be a bounded payoff
function, and µpxq “ Ez„px rfpzqs its expectation under
px. For each iteration t “ 0, . . . , T , we select an arm xt,
draw a sample zt from pxt , and observe payoff fpztq, up
to horizon T . The goal is to maximize the expected total
payoff:

max
x0,...,xT PX

T
ÿ

t“0

E
zt„pxt

rfpztqs “ max
x0,...,xT PX

T
ÿ

t“0

µpxtq.

(13)
Although we can evaluate px for each x P X , we can only
observe fpztq for the zt that are actually sampled. This
reflects the online, episodic policy optimization problem.
In action-based PO, X corresponds to the parameter space
Θ of a class of stochastic policies tπθ | θ P Θu, Z to the
set T of possible trajectories, px to the density pθ over
trajectories induced by policy πθ, and fpzq to cumulated
rewardRpτq. In parameter-based PO, X corresponds to the
hyperparameter space Ξ of a class of stochastic hyperpoli-
cies tνξ | ξ P Ξu, Z to the cartesian product Θ ˆ T , px
to the joint distribution pξpθ, τq :“ νξpθqpθpτq, and fpzq
to return Rpτq. In both cases, each iteration corresponds
to a single episode, and horizon T is the total number of
episodes (not to be confused with the trajectory horizon H).
From now on, we will refer to (13) simply as the policy
optimization (PO) problem.5

The peculiarity of this framework, compared to the classic
MAB one, is the special structure existing over the arms. In
particular, the expected payoff µ of different arms is corre-
lated thanks to the stochasticity of the px’s on a common
sample space Z . We could, of course, frame PO as a MAB
problem, at the cost of ignoring some structure. It would
be enough to regard µpxq as the expectation of a totally
unknown, stochastic reward function. This would put us in
the continuous MAB framework (Kleinberg et al., 2013),
but would ignore the special arm correlation. In the follow-
ing, we will show how this correlation can be exploited to
guarantee efficient exploration.

5. Algorithms
In this section, we use the mathematical tools presented
so far to design a policy search algorithm that efficiently
explores the space of solutions. The proposed algorithm,
called OPTIMIST (Optimistic Policy opTImization via Mul-
tiple Importance Sampling with Truncation), is based on the
Optimism in the Face of Uncertainty (OFU) principle and
follows the Upper Confidence Bound (UCB) strategy (Lai &

5 In abstract terms, (13) is a sequential decision problem over
a functional space of random variables, and may have applications
beyond policy optimization.
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Robbins, 1985; Agrawal, 1995; Auer et al., 2002) commonly
used in Multi Armed Bandit (MAB) problems (Robbins,
1985; Bubeck et al., 2012; Lattimore & Szepesvári, 2019).

To apply the UCB strategy to the PO problem, we need an
estimate of the objective µpxq and a confidence region. We
use importance sampling to capture the correlation among
the arms. In particular, to better use all the data that we
collect, we would like to use a multiple importance sampling
estimator like the one from (5). Unfortunately, the heavy-
tailed behavior of this estimator would result in an inefficient
exploration. Instead, we use the robust balance heuristic
estimator qµBH from (10), which has a more desirable tail
behavior. To simplify the notation, we treat each sample
x as a distinct one. This is w.l.o.g. (as each sample is
always multiplied by its number of occurrences anyway)
and corresponds to the case K “ t´ 1 and Nk ” 1. Hence,
at each iteration t:

qµtpxq “
t´1
ÿ

k“0

min

#

Mt,
pxpzkq

řt´1
j“0 pxjpzkq

+

fpzkq, (14)

where Mt “

ˆ

td1`εppx}Φtq
ε

log 1
δt

˙
1

1`ε

and Φt “
1
t

řt´1
k“0 pxk .

According to Theorem 1, the following index:
Bεt px, δtq :“ qµtpxq

` }f}8

ˆ

?
2`

4

3

˙

˜

d1`εppx}Φtq log 1
δt

t

¸
ε

1`ε

,

is an upper bound on µpxq with probability at least 1´ δt,
i.e., an upper confidence bound. The OPTIMIST algorithm
simply selects, at each iteration t, the arm with the largest
value of the index Bεt pxq, breaking ties deterministically.
The pseudocode is provided in Algorithm 1. The initial
arm x0 is arbitrary, as no prior information is available.
The regret analysis of Section 6 will provide a confidence
schedule pδtqTt“1. The knowledge of the actual horizon T
is not needed. Although we can use any ε P p0, 1s, we
suggest to use ε “ 1 in practice, as it yields the more
common 2-Rényi divergence. To be able to compute the
indexes (or to perform any kind of index maximization),
the algorithm needs to store all the xt together with the
observed payoffs fpztq, hence OpTdq space is required,
where d is the dimensionality of the arm space X (not to be
confused with cardinality |X |, which may be infinite).

The optimization step (line 4) may be very difficult when
X is not discrete (cf. Srinivas et al., 2010), as the index
Bεt px, δtq is non-convex and non-differentiable. Global
optimization methods could be applied at the cost of giving
up theoretical guarantees. In practice, this direction may
be beneficial, but we leave it to future, more application-
oriented work. Instead, we propose a general discretization
method. The key intuition, common in the continuous MAB
literature, is to make the discretization progressively finer.
The pseudocode for this variant, called OPTIMIST 2, is

Algorithm 1 OPTIMIST

1: Input: initial arm x0, confidence schedule pδtqTt“1, or-
der ε P p0, 1s

2: Draw sample z0 „ px0
and observe payoff fpz0q

3: for t “ 1, . . . , T do
4: Select arm xt P arg maxxPX B

ε
t px, δtq

5: Draw sample zt „ pxt and observe payoff fpztq
6: end for

reported in Algorithm 2. Note that the arm space X itself is
fixed (and infinite), as adaptive discretization is performed
for optimization purposes only. Implementing any variant
of OPTIMIST to solve a PO problem, whether in the action-
based or in the parameter-based formulation, requires some
additional caveats, discussed in Appendix B.

6. Regret Analysis
In this section, we provide high-probability guarantees on
the quality of the solution provided by Algorithm 1. First,
we rephrase the optimization problem (1) in terms of regret
minimization. The instantaneous regret is defined as:

∆t :“ µpx˚q ´ µpxtq, (15)

where x˚ P arg maxxPX µpxq. Let RegretpT q “
řT
t“0 ∆t

be the total regret. As µpx˚q is a constant, problem (13) is
trivially equivalent to:

min
x0,...,xT PX

RegretpT q. (16)

In the following, we will show that Algorithm 1 yields
sublinear regret under some mild assumptions. The proofs
combine techniques from Srinivas et al. (2010) and Bubeck
et al. (2013) and are reported in Appendix C. First, we need
the following assumption on the Rényi divergence:

Assumption 1. For all t “ 1, . . . , T , the p1 ` εq-Rényi
divergence is uniformly bounded as:

sup
x0,,...,xT PX

d1`εppxt}Φtq :“ vε ă 8,

where Φt “
1
t

řt´1
k“0 pxk ,

which can be easily enforced through careful policy (or
hyperpolicy) design (see Appendix B).

6.1. Discrete arm set

We start from the discrete case, where |X | “ K P N`.
This setting is particularly convenient, as the optimization
step can be trivially solved in time OpKtq per iteration,6

where t is from evaluation of (14) via clever caching. 7 This
sums up to total time OpKT 2q. The case of the discrete

6We consider the evaluation of pdf’s, payoffs and Rényi diver-
gences in (14) atomic, as their cost are heavily problem-dependent.

7Elvira et al. (2015) propose a way to further reduce the com-
plexity of MIS estimation.
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arm set, besides being convenient for the analysis, is also of
practical interest. Even in applications where X is naturally
continuous (e.g., robotics), the set of solutions that can be
actually tried in practice may sometimes be constrained
to a discrete, reasonably small, set. In this simple setting,
OPTIMIST achieves rOpT 1

1`ε q regret:

Theorem 2. Let X be a discrete arm set with
|X | “ K P N`. Under Assumption 1, Algorithm 1 with
confidence schedule δt “ 3δ

t2π2K guarantees, with probabil-
ity at least 1´ δ:

RegretpT q ď ∆0

` CT
1

1`ε

„

vε

ˆ

2 log T ` log
π2K

3δ

˙

ε
1`ε

,

where C “ p1` εq
`

2
?

2` 5
3

˘

}f}8, and ∆0 is the instan-
taneous regret of the initial arm x0.

This yields a rOp
?
T q regret when ε “ 1.

6.2. Compact arm set

We consider the more general case of a compact arm set
X P Rd. This case is even more interesting as it allows
tackling virtually any RL task. We assume, w.l.o.g., that X
is entirely contained in a box r´D,Dsd, with D P R`. We
also need the following assumption on the expected payoff:

Assumption 2. The expected payoff µ is Lipschitz continu-
ous, i.e., there exists a constant L ą 0 such that, for every
x,x1 P X :

|µpx1q ´ µpxq| ď L
›

›x´ x1
›

›

1
.

This assumption is easily satisfied for policy optimization,
as shown in the following:

Lemma 3. Assumption 2 can be replaced, in the action-
based paradigm, by:

sup
sPS,θPΘ

E
a„πθ

r|∇θ log πθpa|sq|s ď u1, (17)

and, in the parameter-based paradigm, by:
sup
ξPΞ

E
θ„νξ

r|∇ξ log νξpθq|s ď u2, (18)

where u1 and u2 are d-dimensional vectors and the inequal-
ities are component-wise.

In the proof, we show how to derive the corresponding
Lipschitz constants, and show how (17) and (18) are satisfied
by the commonly-used Gaussian policy and hyperpolicy,
respectively. This is allows achieving rOpd ε

1`εT
1

1`ε q regret:

Theorem 3. Let X be a d-dimensional compact arm set
with X Ď r´D,Dsd. Under Assumptions 1 and 2, Algo-
rithm 1 with confidence schedule δt “ 6δ

π2t2p1`ddt2dq
guar-

antees, with probability at least 1´ δ:

RegretpT q ď ∆0 `
π2LD

6

Algorithm 2 OPTIMIST 2

1: Input: initial arm x0, confidence schedule pδtqTt“1, dis-
cretization schedule pτtqTt“1, order ε P p0, 1s

2: Draw sample z0 „ px0
and observe payoff fpz0q

3: for t “ 1, . . . , T do
4: Discretize X with a uniform grid rXt of pτtqd points
5: Select arm xt P arg maxxP rXt B

ε
t px, δtq

6: Draw sample zt „ pxt and observe payoff fpztq
7: end for

` CT
1

1`ε

„

vε

ˆ

2pd` 1q log T ` d log d` log
π2

3δ

˙

ε
1`ε

,

where C “ p1` εq
`

2
?

2` 5
3

˘

}f}8, and ∆0 is the instan-
taneous regret of the initial arm x0.

This yields a rOp
?
dT q regret when ε “ 1. Unfortunately,

the optimization step may be very time-consuming. In some
applications, we can assume that the time required to draw
samples dominates the computational time. In fact, drawing
a sample (Algorithm 1, line 2) corresponds to generating a
whole trajectory of experience, which may take a long time.

6.3. Discretization

When optimization over the infinite arm space X is not
feasible, Algorithm 2 can be used instead. This variant
restricts the optimization to a progressively finer grid rXt of
pτtq

d vertices. A reasonably coarse discretization schedule
can be used at the price of a worse (but still sublinear) regret:

Theorem 4. Let X be a d-dimensional compact arm
set with X Ď r´D,Dsd. For any κ ě 2, under As-
sumptions 1 and 2, Algorithm 2 with confidence schedule
δt “

6δ

π2t2
´

1`rt1{κs
d
¯ and discretization schedule τt “ rt

1
κ s

guarantees, with probability at least 1´ δ:

RegretpT q ď ∆0 ` C1T
p1´ 1

κ qd` C2T
1

1`ε

¨

„

vε

ˆˆ

2`
d

κ

˙

log T ` d log 2` log
π2

3δ

˙

ε
1`ε

,

where C1 “
κ
κ´1LD, C2 “ p1` εq

`

2
?

2` 5
3

˘

}f}8, and
∆0 is the instantaneous regret of the initial arm x0.

Let us focus on the case ε “ 1, which is the only one of
practical interest in the scope of this paper. For κ “ 2, we
obtain regret rOpd

?
T q. Unfortunately, the time required for

optimization is exponential in arm space dimensionality d.
For d ě 2, we can break the curse of dimensionality by
taking κ “ d. In this case, the regret is rO

`

dT p1´
1
d q
˘

. On
the other hand, the time per iteration is only Opt2q. Note
that the regret is sublinear for any choice of κ. Going further:
for any ζ ą 0, κ “ d

ζ grants Opt1`ζq time per iteration at
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the cost of rO
`

dT p1´
ζ
d q
˘

regret.8

7. Related Works
In this section, we survey related works from the literature.

Finite-Arms Bandits Exploiting particular arm structures
is a common trend in the MAB literature. Correlated bandit
methods assume dependencies among arms, either through
a subdivision of the arms in clusters (Pandey et al., 2007;
Wang et al., 2018) or through the dependency of the ex-
pected payoffs on a global latent variable (Mersereau et al.,
2009; Atan et al., 2015). The arm correlation we model in
Section 4, instead, is based on the effects the arms have on
a shared stochastic process. This is closer in spirit to the
work of Kallus (2018), in which the selection influences,
but does not completely determine, the arm that is actu-
ally pulled. Also related is the concept of probabilistically
triggered arms in combinatorial bandits (Cesa-Bianchi &
Lugosi, 2012; Saritaç & Tekin, 2017; Chen et al., 2016).

Continuous Bandits In continuous bandits, it is necessary
to exploit some sort of structure. In linear bandits (Auer,
2002), the expected payoff is a linear function of the selected
arm. The OFU principle can be applied to the unknown
linear coefficients, estimated with ridge regression (Abbasi-
Yadkori et al., 2011). Unfortunately, the linearity assump-
tion is too stringent for most applications. More general
frameworks make Lipschitz or Hölder continuity assump-
tions and often resolve to clever discretization schedules
combined with UCB-like strategies (Kleinberg, 2005; Auer
et al., 2007; Kleinberg et al., 2008; Bubeck et al., 2009), ob-
taining rOp

?
T q regret in some cases. Srinivas et al. (2010)

make the assumption that the payoff function has low RKHS
complexity, and use Gaussian processes to model uncer-
tainty, achieving rOp

?
dT q regret. The main advantage of

our framework is that the necessary technical assumptions
are easily met in the context of policy optimization.

Reinforcement Learning Although there is a long his-
tory of rigorously applying the OFU principle to tabular
RL (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002;
Strehl et al., 2009; Jaksch et al., 2010; Lattimore & Hut-
ter, 2014; Dann & Brunskill, 2015; Dann et al., 2017; Jin
et al., 2018; Ok et al., 2018), with extensions to continuous
states (Ortner & Ryabko, 2012; Lakshmanan et al., 2015;
Bellemare et al., 2016), optimistic approaches to continuous-
action MDPs remain largely heuristic (Houthooft et al.,
2016; Haarnoja et al., 2017; 2018). Developing ideas
from Bubeck & Munos (2010), Weinstein & Littman (2012)
apply continuous bandit techniques to open-loop iterative
planning, a model-based approach to RL. In the model-free

8The worse dependency rOpdq of the regret on the arm space
dimensionality (w.r.t. rOp

?
dq of Algorithm 1) is also necessary to

prevent the time per iteration from being exponential in d.

setting, Chowdhury & Gopalan (2018) prove rOp
?
T q re-

gret for kernelized MDPs, where rewards and transitions
are assumed to have low RKHS complexity, leaving some
computational problems open. Our proposed algorithms
are model-free and do not make assumptions on the MDP,
besides boundedness of the reward. Moreover, Algorithm 2
applied to parameter-based PO allows a straightforward and
efficient implementation. Thompson sampling (TS, Thomp-
son, 1933) is a different approach to MABs, not based on
optimism, which enjoys the same theoretical guarantees
of UCB (Kaufmann et al., 2012) with better performance
in many applications (Chapelle & Li, 2011). TS was ap-
plied to value-based RL (e.g., Osband et al., 2013), and its
application to PO could also be fruitful.

8. Numerical Simulations
In this section, we present the results of the numerical sim-
ulation of OPTIMIST on RL tasks with both discrete and
continuous parameter spaces. We restrict our experiments to
the parameter-based PS and Gaussian hyperpolicies, which
are, by far, the most widely used hyperpolicies. This setting
is particularly convenient as the Rényi divergence between
Gaussian distributions admits closed form (Gil et al., 2013).
On the contrary, in the action-based scenario, we would need
to compute the divergences between trajectory distributions,
which is intractable. The usual approach consists in estimat-
ing the Rényi divergence from the samples. However, we
would lose our theoretical guarantees on the regret. Further-
more, the known estimators for the Rényi divergence tend
to be unstable empirically (Metelli et al., 2018). It is worth
noting that at each iteration OPTIMIST needs to compute
the Rényi divergence between a candidate hyperpolicy νξt
and the mixture of hyperpolicies visited so far νξ0 , ..., νξt´1

.
We prove in Appendix A that this quantity can be upper
bounded by the harmonic mean of the divergences between
the candidate hyperpolicy νξt and each component of the
mixture νξk for k “ 1, ..., t´ 1.

8.1. Linear Quadratic Gaussian Regulator

The Linear Quadratic Gaussian Regulator (LQG, Dorato
et al., 1995) is a benchmark problem for continuous con-
trol. We consider the monodimensional case in which the
state space is limited to S “ r´4, 4s, the action space is
A “ r´4, 4s and the horizon is limited to 20. At each
timestep, the agent receives a penalization proportional
to the magnitude of the state and the action applied, i.e.,
Rps, aq “ ´as2 ´ ba2. We employ a Gaussian hyperpol-
icy νξ “ N pξ, σ2q to select the gain of a linear policy in
the state, where ξ is the mean parameter to be learned and
σ “ 0.15 fixed. The case in which we also learn the stan-
dard deviation is reported in Appendix D.1. The goal of
this experiment is to compare OPTIMIST with classical
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Figure 1. Cumulative regret in the LQG ex-
periment, comparing OPTIMIST, UCB1 and
GPUCB (30 runs, 95% c.i.).
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Figure 2. Cumulative average return for the
River Swim, comparing OPTIMIST, OPTI-
MIST2 and PGPE (10 runs, 95% c.i.).
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Figure 3. Cumulative average return for
the Mountain Car, comparing OPTIMIST,
PGPE and PB-POIS (5 runs, 95% c.i.).

MAB algorithms, in particular UCB1 (Auer et al., 2002)
and GPUCB (Srinivas et al., 2010) when the parameter
space Ξ is discrete, as well as to verify empirically the
sublinearity of its regret. For this purpose we consider a
uniform discretization of the interval r´1, 1s made of 100
arms. All algorithms are run with confidence level δ “ 0.2.
In Figure 1, we show the cumulative regret of OPTIMIST
compared with UCB1 and GPUCB. We can see that OPTI-
MIST significantly outperforms UCB1. Indeed, OPTIMIST
is able to exploit the structure of arms, i.e., hyperpolicies,
by means of the MIS estimation, whereas UCB1 does not
make any assumption on arm correlation. On the contrary,
GPUCB shows a better performance w.r.t. to OPTIMIST. 9

8.2. River Swim

The River Swim (Strehl & Littman, 2008) is a classical
benchmark for exploration in RL, in which the goal of the
agent is to swim against the current of the river to reach the
right bank. The interesting feature of this problem is that
there is a local optimum that consists in remaining on the left
bank. Hence, finding the global optimum requires a certain
degree of exploration. We parametrized the probability p to
perform a right action (in every state) as p “ 1

1`e´ζ
, where

ζ is sampled from a Gaussian hyperpolicy νξ “ N pξ, σ2q

with ξ P r´5, 5s and σ “ 0.5 fixed. In Figure 2, we can
see that PGPE (Sehnke et al., 2008), a classical parameter-
based algorithm, starting with with ξ “ 0 (so p is sampled
around 0.5), converges to the local optimum as it lacks the
exploration of the high values of p. Instead, OPTIMIST
both with a fixed discretization of the arm set (20 arms)
and an adaptive discretization (OPTIMIST2 with κ “ 2)
manages to reach the global optimum and converges to the

9We point out that GPUCB requires to specify, at the beginning
of learning, the kernel of the Gaussian Process (GP) from which the
payoff function is meant to be sampled. We employed the default
scikit-learn kernel (RBF). However, our payoff is not actually
sampled from a GP. This invalidates the theoretical guarantees of
GPUCB and it might explain why GPUCB showed a significantly
more exploitative behavior w.r.t. UCB1 and OPTIMIST in the
experiment, thus achieving lower regret.

policy that allows crossing the river. Additional details are
reported in Appendix D.2.

8.3. Mountain Car

The third experiment, shown in Figure 3, illustrates the be-
havior of OPTIMIST when the parameters of the hyperpol-
icy belong to a compact (continuous) space, on the Mountain
Car task (Brockman et al., 2016). We use a Gaussian hyper-
policy with a two-dimensional learnable mean within a box
r´1, 1sˆr0, 20s and a fixed covariance diagp0.15, 3q2. We
compare OPTIMIST2 with κ “ 3 against PGPE (Sehnke
et al., 2008) and PB-POIS (Metelli et al., 2018). We can
notice that OPTIMIST2 is able to learn a good policy in a
very short time thanks to its better exploration capabilities.
However, the policy gradient methods outperform it on the
long run because the Mountain Car task does not require
a thorough exploration as the River Swim does. Further
details are reported in Appendix D.3.

9. Conclusion
We have studied the problem of exploration versus exploita-
tion in policy optimization using MAB techniques. We
have proposed OPTIMIST, an optimism-based approach
for both the action-based and the parameter-based explo-
ration frameworks, and for both discrete and continuous
parameter spaces. We have proved sublinear regret bounds
for OPTIMIST under assumptions that are easily met in
practice. The empirical evaluation on continuous control
tasks showed that the proposed algorithms are effectively
able to leverage the structure of the PO problem, although
the performances are not always optimal when compared to
methods with stronger assumptions or without guarantees.
However, the real benefits of our approach are visible when
the task poses significant exploration challenges (like the
River Swim). Future work should focus on finding more
efficient (but still effective) ways to perform optimization
in the infinite-arm setting, and on applying OPTIMIST to
the action-based framework too, which requires additional
caveats in computing the exploration bonus.



Optimistic Policy Optimization via Multiple Importance Sampling

Acknowledgments
The study was partially funded by Lombardy Region (An-
nouncement PORFESR 2014-2020).

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved
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A. Upper Bound for the Exponentiated Renyi Divergence between mixtures
OPTIMIST requires at each iteration to compute the exponentiated Rényi divergence between the currently considered
distribution px and the mixture Φt, i.e., d1`εppx}Φtq. Even for Gaussian distributions, this quantity cannot be obtained in
closed form, while the Rényi divergence between Gaussians can be computed exactly. In this section, we provide an upper
bound for computing the exponentiated Rényi divergence between a generic distribution and a mixture.

Theorem 5. Let P be a probability measure and Φ “
řK
k“1 βkQk, with βk P r0, 1s and

řK
k“1 βk “ 1, be a finite mixture

of the probability measures tQkuKk“1. Then, for any α ě 1, the exponentiated α-Rényi divergence can be bounded as:

dαpP }Φq ď
1

řK
k“1

βk
dαpP }Qkq

.

In Appendix C, we prove a more general result for the case when also P is a mixture.

B. Boundedness of the Exponentiated Renyi Divergence
Assumption 1 requires the existence of a uniform upper bound on the exponentiated p1` εq-Rényi divergence between the
current distribution pxt and the mixture of previous ones Φt “

1
t

řt´1
k“0 pxk :

sup
x0,...,xT PX

d1`εppxt}Φtq ď vε for all t “ 1, . . . , T .

Note, from Algorithm 1, that the value of vε is not required in practice. Hence, we will just show that an upper bound exists.
From Theorem 5, it suffices to bound the exponentiated Rényi divergence between the current distribution and each previous
one:

sup
xt,xkPX

d1`εppxt}pxkq ă 8 for all t “ 1, . . . , T and k “ 0, . . . , t´ 1. (19)

Since the arm set X is compact, we just need to ensure that d1`εppxt}pxkq is continuous over X 2 (a continuous function on
a compact set is bounded). This may require additional care in defining the arm space, depending on the kind of distribution
that is employed and on the specific parametrization. We analyze two cases of practical interest for the scope of this paper.

B.1. Gaussian hyperpolicies with fixed covariance matrix

Let νξ denote an m-variate Gaussian hyperpolicy with parametric mean ξ and fixed covariance matrix Σ:

νξpθq “
1

p2πqm{2|Σ|1{2
exp

"

´
1

2
pθ ´ ξqTΣ´1pθ ´ ξq

*

. (20)

The exponentiated p1` εq-Rényi divergence between νξt and νξk is (Gil et al., 2013):

d1`εpνξt}νξkq “ exp

"

1` ε

2
pξt ´ ξkq

TΣ´1pξt ´ ξkq

*

, (21)

which is continuous.

B.2. Univariate Gaussian hyperpolicies with adaptive standard deviation

Let νξ be an univariate Gaussian hyperpolicy:

νξpθq “
1

?
2πσ

exp

#

´
1

2

ˆ

θ ´ µ

σ

˙2
+

, (22)

where the hyperparameter consists of a mean µ and a standard deviation σ ą 0, i.e., ξ “ pµ, σqT . The exponentiated
p1` εq-Rényi divergence between νξt and νξk is (Gil et al., 2013):

d1`εpνξt}νξkq “
σk
σt

ˆ

σ2
k

σ2
1`ε

˙1{2ε

exp

"

p1` εqpµt ´ µkq
2

2σ2
ε`1

*

, (23)

where σ2
1`ε “ p1` εqσ

2
k ´ εσ

2
t . The divergence is well-defined (and continuous) as long as σ2

ε`1 ą 0, hence σ2
t ă

1`ε
ε σ2

k.
Intuitively, the target distribution cannot be too much stochastic than the behavioral. To ensure this for all t “ 1, . . . , T
and k “ 0, . . . , t´ 1, it is enough to fix a minimum standard deviation σ0 and constrain the search for the σ parameter to
rσ0,

1`ε
ε σ0s. This easily generalizes to multivariate Gaussian hyperpolicies with diagonal covariance matrix.
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C. Proofs
Lemma 1. Let P and tQkuKk“1 be probability measures on the measurable space pZ,Fq such that P ! Qk and
d2pP }Qkq ă 8 for k “ 1, . . . ,K. Let f : Z Ñ R be a bounded function, i.e., }f}8 ă 8. Let pµBH be the bal-
ance heuristic estimator of f , as defined in (7), using Nk i.i.d. samples from each Qk. Then, the variance of pµBH can be
upper bounded as:

Var
zik

iid
„Qk

rpµBHs ď }f}
2
8

d2pP }Φq

N
,

where N “
řK
k“1Nk is the total number of samples and Φ “

řK
k“1

Nk
N Qk is a finite mixture.

Proof. The proof is similar to Lemma 4.1 of (Metelli et al., 2018):

Var
zik

iid
„Qk

rpµBHs “ Var
zik

iid
„Qk

«

1

N

K
ÿ

k“1

Nk
ÿ

i“1

fpzkiq
ppzkiq

řn
j“1

Nj
N qjpzkiq

ff

“
1

N2

K
ÿ

k“1

Nk
ÿ

i“1

Var
zik„Qk

«

fpzkiq
ppzkiq

řn
j“1

Nj
N qjpzkiq

ff

(24)

ď
1

N2

K
ÿ

k“1

Nk
ÿ

i“1

E
zik„Qk

»

–

˜

fpzkiq
ppzkiq

řn
j“1

Nj
N qjpzkiq

¸2
fi

fl

ď }f}28
1

N2

K
ÿ

k“1

Nk
ÿ

i“1

E
zik„Qk

»

–

˜

ppzkiq
řn
j“1

Nj
N qjpzkiq

¸2
fi

fl

“ }f}28
1

N
E
z„Φ

»

–

˜

ppzq
řn
j“1

Nj
N qjpzq

¸2
fi

fl (25)

“ }f}28
d2pP }Φq

N
,

where (24) follows from the independence of the zik and (25) is obtained by the definition of Φ and observing that for an
arbitrary function g:

1

N

K
ÿ

k“1

Nk
ÿ

i“1

E
zik„Qk

rgpzikqs “
K
ÿ

k“1

Nk
N

E
z1k„Qk

rgpz1kqs “ E
z„Φ

rgpzqs. (26)

Lemma 2. Let P and tQkuNk“1 be probability measures on the measurable space pZ,Fq such that P ! Qk and there exists
ε P p0, 1s s.t. d1`εpP }Qkq ă 8 for k “ 1, . . . ,K. Let f : Z Ñ R` be a bounded non-negative function, i.e., }f}8 ă 8.
Let qµBH be the truncated balance heuristic estimator of f , as defined in (10), using Nk i.i.d. samples from each Qk. Then,
the bias of qµBH can be bounded as:

0 ď µ´ E
zik

iid
„Qk

rqµBHs ď }f}8M
´εd1`ε pP }Φq

ε
, (11)

and the variance of qµBH can be bounded as:

Var
zik

iid
„Qk

rqµBHs ď }f}
2
8M

1´ε d1`ε pP }Φq
ε

N
, (12)

where N “
řK
k“1Nk is the total number of samples and Φ “

řK
k“1

Nk
N Qk is a finite mixture.

Proof. Let us start with the bias term. The first inequality 0 ď µ´ E
zik

iid
„Qk

rqµBHs derives from the fact that pµBH ě qµBH,
being fpzq ě 0 for all z and observing that pµ is unbiased, i.e., E

zik
iid
„Qk

rpµBHs “ µ. For the second inequality, let us consider
the following derivation:

µ´ E
xi„qi

rqµs “ E
zik

iid
„Qk

rpµBHs ´ E
zik

iid
„Qk

rqµBHs
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“
1

N

K
ÿ

k“1

Nk
ÿ

i“1

E
zik„Qk

«

fpzikq

˜

ppzikq
řK
j“1

Nj
N qjpzikq

´min

#

M,
ppzikq

řK
j“1

Nj
N qjpzikq

+¸ff

(27)

“ E
z„Φ

»

—

—

–

fpzq

˜

ppzq
řK
j“1

Nj
N qjpzq

´M

¸

1$
&

%

ppzq
řK
j“1

Nj
N
qjpzq

ěM

,

.

-

fi

ffi

ffi

fl

(28)

ď E
z„Φ

»

—

—

–

fpzq

˜

ppzq
řK
j“1

Nj
N qjpzq

¸

1$
&

%

ppzq
řK
j“1

Nj
N
qjpzq

ěM

,

.

-

fi

ffi

ffi

fl

(29)

ď }f}8 E
z„Φ

»

—

—

–

˜

ppzq
řK
j“1

Nj
N qjpzq

¸

1$
&

%

ppzq
řK
j“1

Nj
N
qjpzq

ěM

,

.

-

fi

ffi

ffi

fl

ď }f}8 E
z„Φ

»

—

—

–

˜

ppzq
řK
j“1

Nj
N qjpzq

¸1`ε˜

ppzq
řK
j“1

Nj
N qjpzq

¸´ε

1$
&

%

ppzq
řK
j“1

Nj
N
qjpzq

ěM

,

.

-

fi

ffi

ffi

fl

ď }f}8 E
z„Φ

»

–

˜

ppzq
řK
j“1

Nj
N qjpzq

¸1`ε
fi

flM´ε (30)

“ }f}8d1`εpP }Φq
εM´ε,

where (28) is an application of equation (26), (29) derives from recalling that M ě 0 and (30) is obtained by observing that
x´ε1txěMu is either 0 and thus the bound holds or at most M´ε. For the variance the argument is similar:

Var
zik

iid
„Qk

rqµBHs “ Var
zik

iid
„Qk

«

1

N

K
ÿ

k“1

Nk
ÿ

i“1

fpzkiqmin

#

M,
ppzkiq

řn
j“1

Nj
N qjpzkiq

+ff

“
1

N2

K
ÿ

k“1

Nk
ÿ

i“1

Var
zik„Qk

«

fpzkiqmin

#

M,
ppzkiq

řn
j“1

Nj
N qjpzkiq

+ff

ď
1

N2

K
ÿ

k“1

Nk
ÿ

i“1

E
zik„Qk

»

–

˜

fpzkiqmin

#

M,
ppzkiq

řn
j“1

Nj
N qjpzkiq

+¸2
fi

fl

ď }f}28
1

N2

K
ÿ

k“1

Nk
ÿ

i“1

E
zik„Qk

»

–

˜

min

#

M,
ppzkiq

řn
j“1

Nj
N qjpzkiq

+¸2
fi

fl

“ }f}28
1

N
E
z„Φ

»

–min

#

M,
ppzq

řn
j“1

Nj
N qjpzq

+2
fi

fl (31)

“ }f}28
1

N
E
z„Φ

»

–min

#

M,
ppzq

řn
j“1

Nj
N qjpzq

+1`ε

min

#

M,
ppzq

řn
j“1

Nj
N qjpzq

+1´ε
fi

fl

ď }f}28
1

N
E
z„Φ

»

–

˜

ppzq
řn
j“1

Nj
N qjpzq

¸1`ε
fi

flM1´ε (32)

“ }f}28M
1´ε d1`εpP }Φq

ε

N
,

(33)
where (31) is again an application of equation (26) and 32 derives from observing that mintx, yu ď x and also mintx, yu ď
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y.

Theorem 1. Let P and tQkuNk“1 be probability measures on the measurable space pZ,Fq such that P ! Qk and there
exists ε P p0, 1s s.t. d1`εpP }Qkq ă 8 for k “ 1, . . . ,K. Let f : Z Ñ R` be a bounded non-negative function, i.e.,
}f}8 ă 8. Let qµBH be the truncated balance heuristic estimator of f , as defined in (10), using Nk i.i.d. samples from each

Qk. Let MN “

´

Nd1`εpP }Φq
ε

log 1
δ

¯
1

1`ε

, then with probability at least 1´ δ:

qµBH ď µ` }f}8

ˆ

?
2`

1

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

,

and also, with probability at least 1´ δ:

qµBH ě µ´ }f}8

ˆ

?
2`

4

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

.

Proof. Let us start with the first inequality. Observing that all samples zik are independent and that qµBH ďM}f}8, we can
state using Bernstein inequality (Boucheron et al., 2013) that with probability at least 1´ δ we have:

qµBH ď E
zik„Qk

rqµBHs `

d

2 Var
zik

iid
„Qk

rqµBHs log
1

δ
` }f}8

M log 1
δ

3N

ď µ` }f}8

d

2M1´εd1`ε pP }Φq
ε
log 1

δ

N
` }f}8

M log 1
δ

3N
(34)

“ µ` }f}8

ˆ

?
2`

1

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

, (35)

where (34) is obtained by substituting the variance with its bound (12) and (35) is from the choice of M . For the second
inequality we just need to consider additionally the bias.

qµBH ě E
zik„Qk

rqµBHs ´

d

2 Var
zik

iid
„Qk

rqµBHs log
1

δ
´ }f}8

M log 1
δ

3N

“ µ´

ˆ

µ´ E
zik„Qk

rqµBHs

˙

´

d

2 Var
zik

iid
„Qk

rqµBHs log
1

δ
´ }f}8

M log 1
δ

3N

ě µ´ }f}8M
´εd1`ε pP }Φq

ε
´ }f}8

ˆ

?
2`

1

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

(36)

“ µ´ }f}8

ˆ

?
2`

4

3

˙ˆ

d1`ε pP }Φq log 1
δ

N

˙

ε
1`ε

,

(37)
where (36) comes from substituting the bias with its bound (11).

Theorem 2. Let X be a discrete arm set with |X | “ K P N`. Under Assumption 1, Algorithm 1 with confidence schedule
δt “

3δ
t2π2K guarantees, with probability at least 1´ δ:

RegretpT q ď ∆0

` CT
1

1`ε

„

vε

ˆ

2 log T ` log
π2K

3δ

˙

ε
1`ε

,

where C “ p1` εq
`

2
?

2` 5
3

˘

}f}8, and ∆0 is the instantaneous regret of the initial arm x0.

Proof. Fix an ε ą 0. To ease the notation, let c´ :“ }f}8
`?

2` 1
3

˘

, c` :“ }f}8
`?

2` 4
3

˘

, and βtpxq :“
ˆ

d1`εppx}Φtq log 1
δt

t

˙
ε

1`ε

. We start by showing that, with probability at least 1´ δ:

´ c`βtpxq ď qµtpxq ´ µpxq ď c´βtpxq for all x P X and t “ 1, . . . , T . (38)
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Indeed:

P

˜

K
č

k“1

T
č

t“1

“

qµtpxkq ´ µpxkq ď c´βtpxkq
‰

¸

“ 1´ P

˜

K
ď

k“1

T
ď

t“1

“

qµtpxkq ´ µpxkq ą c´βtpxkq
‰

¸

ě 1´K
T
ÿ

t“1

P
`

qµtpx1q ´ µpx1q ą c´βtpx1q
˘

(39)

ě 1´K
T
ÿ

t“1

δt (40)

ě 1´
δ

2
, (41)

where (39) is from a double union bound (over time and over the finite elements of X ), (40) is from Theorem 1, and (41) is
by hypothesis on δt and

řT
t“1

1
t2 ď

ř8

t“1
1
t2 “

π2

6 . Similarly:

P

˜

K
č

k“1

T
č

t“1

“

qµtpxkq ´ µpxkq ě ´c
`βtpxkq

‰

¸

“ 1´ P

˜

K
ď

k“1

T
ď

t“1

“

qµtpxkq ´ µpxkq ă ´c
`βtpxkq

‰

¸

ě 1´K
T
ÿ

t“1

P
`

qµtpx1q ´ µpx1q ă ´c
`βtpx1q

˘

ě 1´K
T
ÿ

t“1

δt

ě 1´
δ

2
.

Hence, by union bound over the two inequalities, (38) holds with probability at least 1´ δ. This allows to lower bound the
instantaneous regret with the same probability:

∆t “ µpx˚q ´ µpxq ď qµtpx
˚q ` c`βtpx

˚q ´ µpxtq (42)

ď qµtpxtq ` c
`βtpxtq ´ µpxtq (43)

ď pc´ ` c`qβpxtq for all t “ 1, . . . , T , (44)
where (42) and (44) are from (38), while (43) is by hypothesis, as xt P arg maxxPX p qµtpxq ` c`βtpxqq. Note that the
union bound over the elements of X in (38) was necessary for (42) as the optimal arm x˚ may not be unique. Finally, with
probability at least 1´ δ:

RegretpT q “
T
ÿ

t“0

∆t

“ ∆0 `

T
ÿ

t“1

∆t

ď ∆0 ` pc
` ` c´q

T
ÿ

t“1

βtpxtq (45)

ď ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

log 1
δt

t

¸
ε

1`ε

(46)

“ ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

2 log t` log π2K
3δ

t

¸
ε

1`ε

(47)

ď ∆0 ` pc
` ` c´q

„

vε

ˆ

2 log T ` log
π2K

3δ

˙

ε
1`ε T

ÿ

t“1

t´
ε

1`ε

ď ∆0 ` pc
` ` c´q

„

vε

ˆ

2 log T ` log
π2K

3δ

˙

ε
1`ε

p1` εqT
1

1`ε , (48)

where (45) is from (44) and holds with probability no less than 1´ δ, (46) is from Assumption 1, (47) is by definition of δt,
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and (48) is from:
T
ÿ

t“1

t´α ď

ż T`1

1

t´αdt “
1

1´ α

`

pT ` 1q1´α ´ 1
˘

ď
T 1´α

1´ α
for all 0 ă α ă 1, (49)

with α “ ε
1`ε . The proof is completed by renaming C Ð p1` εqpc` ` c´q “ p1` εqp2

?
2` 5

3 q }f}8.

Lemma 3. Assumption 2 can be replaced, in the action-based paradigm, by:
sup

sPS,θPΘ
E

a„πθ
r|∇θ log πθpa|sq|s ď u1, (17)

and, in the parameter-based paradigm, by:
sup
ξPΞ

E
θ„νξ

r|∇ξ log νξpθq|s ď u2, (18)

where u1 and u2 are d-dimensional vectors and the inequalities are component-wise.

Proof. We consider the infinite-horizon case (H “ 8, γ ă 1), as the finite-horizon case is w.l.o.g. under mild assumptions.
To show Lipschitz continuity in the action-based paradigm, it is enough to bound }∇θJ}8 under (17). From the Policy
Gradient Theorem (Sutton et al., 2000):

∇θJpθq “
1

1´ γ
E

s„ρθ
a„πθ

r∇θ log πθpa|sqQθps, aqs , (50)

where ρθ is the discounted state-occupancy measure under policy πθ and Qθ is the action-value function (Sutton et al.,
2000), modeling the reward that can be obtained starting from state s, taking action a and following πθ thereafter. From
(50), for every θ P Θ:

|∇θJpθq| ď
Rmax

p1´ γq2
E

s„ρθ
a„πθ

r|∇θ log πθps, aq|s (51)

ď
Rmax

p1´ γq2
sup
sPS

E
a„πθ

r|∇θ log πθps, aq|s

“
u1Rmax

p1´ γq2
, (52)

where the inequalities are component-wise, (51) is from the trivial fact }Qθ}8 ď
Rmax

p1´γq , and (52) is from assumption (17).

It follows that L “ }u1}8Rmax

p1´γq2 is a valid Lipschitz constant under the l1 norm. The commonly used Gaussian policy:

πθpa|sq “ N pθTφpsq, σ2q “
1

?
2πσ

exp

$

&

%

´
1

2

˜

a´ θTφpsq

σ

¸2
,

.

-

, (53)

where φpsq is a vector of component-wise bounded state features, i.e., supsPS |φpsq| ď φmax, satisfies assumption (17):

E
a„πθ

r|∇θ log πθpa|sq|s “ E
a„πθ

«

|φpsqpa´ θTφpsqq|

σ2

ff

ď
|φpsq|

σ
E

a„πθ

«ˇ

ˇ

ˇ

ˇ

ˇ

a´ θTφpsq

σ

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď
|φpsq|
?

2πσ

ż

R
e´x

2

|x|dx (54)

ď
2φmax?

2πσ
:“ u1, (55)

where inequalities are component-wise and (54) is by the substitution xÐ a´θTφpsq
σ . Even when σ must be learned, proper

parametrization (e.g., σ9 exptθu), together with the compactness of Θ, allows to satisfy assumption (17).

To show Lipschitz continuity for the parameter-based paradigm, it is enough to bound
›

›∇ξ Eθ„νξrJpθqs
›

›

8
under (18). For

every ξ P Ξ:
ˇ

ˇ

ˇ

ˇ

∇ξ E
θ„νξ

rJpθqs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

E
θ„νξ

r∇ξ log νξpθqJpθqs

ˇ

ˇ

ˇ

ˇ
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ď
Rmax

p1´ γq
E

θ„νξ
r|∇ξ log νξpθq|s (56)

ď
u2Rmax

p1´ γq
, (57)

where the inequalities are component-wise, (56) is from the trivial fact Jpθq ď Rmax

1´γ , and (57) is from assumption

(18). It follows that L “ }u2Rmax}8
p1´γq is a valid Lipschitz constant under the l1 norm. A Gaussian hyperpolicy νξpθq “

N pξ,diagpσqq satisfies assumption (18) with u2 “
2?
2πσ

. The proof of this fact is analogous to that of (55). Even when σ
must be learned, proper parametrization (e.g., σ9 exptξu), together with the compactness of Ξ, allows to satisfy assumption
(18).

Theorem 3. Let X be a d-dimensional compact arm set with X Ď r´D,Dsd. Under Assumptions 1 and 2, Algorithm 1
with confidence schedule δt “ 6δ

π2t2p1`ddt2dq
guarantees, with probability at least 1´ δ:

RegretpT q ď ∆0 `
π2LD

6

` CT
1

1`ε

„

vε

ˆ

2pd` 1q log T ` d log d` log
π2

3δ

˙

ε
1`ε

,

where C “ p1` εq
`

2
?

2` 5
3

˘

}f}8, and ∆0 is the instantaneous regret of the initial arm x0.

Proof. Fix an ε ą 0. Let c´, c` and βtpxq be defined as in the proof of Theorem 2. The finite cardinality of X allowed to
perform a union bound over the arms that was crucial for the proof of Theorem 2. We cannot do the same here as X has
infinite cardinality. To overcome this problem, we follow the line of reasoning proposed by Srinivas et al. (2010). First, we
can say something about the arms that are actually selected by the algorithm, which are finite. From Theorem 1, by a union
bound over t “ 1, . . . , T , we have that, with probability at least 1´

řT
t“1 δt:

qµtpxtq ´ µpxtq ď c´βtpxtq for all t “ 1, . . . , T . (58)

We also need a specular inequality for the optimal arm. Unfortunately, we cannot assume there exists a unique optimal arm
x˚.10 Even worse, a dense set of optimal arms may exist. To overcome this problem, we introduce, only for the purposes of
the proof, a discretization of the arm space. Let rXt be a d-dimensional regular grid of τdt vertexes, where pτt P N`qTt“1 is a
discretization schedule. Let rxst be the closest vertex to x in rXt. From Assumption 2:

|µpxq ´ µprxstq| ď L }x´ rxst}1 ď
LDd

τt
, (59)

as each voxel of the grid has side 2D
τt

and no point can be further from a vertex than d half-sides according to the l1 norm.
Now fix a t ě 1 and an optimal arm x˚. With probability at least 1´ δt:

µpx˚q ´ qµtprx
˚stq “ µpx˚q ´ µprx˚stq ` µprx

˚stq ´ qµtprx
˚stq

ď µprx˚stq ´ qµtprx
˚stq ` |µpx

˚q ´ µprx˚stq|

ď c`βtprx
˚stq `

LDd

τt
, (60)

where the inequality (60) is from Theorem 1 and (59). Since any voxel may contain an optimal arm, we must perform a union
bound over the rτ sd vertexes of rXt, and a subsequent one over t, . . . , T . Hence, with probability at least 1´

řT
t“1 τ

d
t δt:

µpx˚q ´ qµtprx
˚stq ď c`βtprx

˚stq `
LDd

τt
for t “ 1, . . . , T and every x˚ P arg max

xPX
µpxq. (61)

We can now proceed to bound the instantaneous regret. With probability at least 1´
řT
t“1 δtp1` τ

d
t q:

∆t “ µpx˚q ´ µpxtq ď qµtprx
˚stq ` c

`βtprx
˚stq `

LDd

τt
´ µpxtq (62)

ď qµtpxtq ` c
`βtpxtq `

LDd

τt
´ µpxtq (63)

ď pc` ` c´qβtpxtq `
LDd

τt
, (64)

10Instead, µpx˚) is always unique.
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where (62) is from (61) and holds with probability at least 1´
řT
t“1 τ

d
t δt, (63) is by hypothesis, as xt P arg maxxPX p qµtpxq`

c`βtpxqq, and (64) is from (59) and holds with probability at least 1 ´
řT
t“1 δt. Hence, (64) holds with probability no

less than 1´
řT
t“1 τ

d
t δt ´

řT
t“1 δt “ 1´

řT
t“1 δtp1` τ

d
t q. Let us pick as a discretization schedule τt “ dt2. This has no

impact whatsoever on the algorithm, as the discretization is only hypothetical. With this τt and the confidence schedule
proposed in the statement of the theorem, it is easy to verify that (64) holds with probability at least 1´ δ.

Finally, we can bound the regret. With probability at least 1´ δ:

RegretpT q ď ∆0 `

T
ÿ

t“1

∆t

ď ∆0 ` pc
` ` c´q

T
ÿ

t“1

βtpxtq ` LDd
T
ÿ

t“1

1

τt
(65)

ď pc` ` c´q
T
ÿ

t“1

βtpxtq `
π2LD

6
(66)

ď ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

log 1
δt

t

¸
ε

1`ε

`
π2LD

6
(67)

ď ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

logp1` ddt2dq ` 2 log t` log π2

6δ

t

¸
ε

1`ε

`
π2LD

6
(68)

ď ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

logp2ddt2dq ` 2 log t` log π2

6δ

t

¸
ε

1`ε

`
π2LD

6
(69)

“ ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

2pd` 1q log t` d log d` log π2

3δ

t

¸
ε

1`ε

`
π2LD

6

ď ∆0 ` pc
` ` c´q

„

vε

ˆ

2pd` 1q log T ` d log d` log
π2

3δ

˙

ε
1`ε T

ÿ

t“1

t´
ε

1`ε `
π2LD

6

ď ∆0 ` pc
` ` c´q

„

vε

ˆ

2pd` 1q log T ` d log d` log
π2

3δ

˙

ε
1`ε

p1` εqT
1

1`ε `
π2LD

6
, (70)

where (65) is from (64) and holds with probability at least 1´δ, (66) is from the choice of τt and
řT
t“1 t

´2 ď
ř8

t“1 t
´2 “ π2

6 ,
(67) is from Assumption 1, (68) is from the choice of δt, (69) is from logp1`xq ď logp2xq, which holds for every x ě 1, and
(70) is from (49) with α “ ε

1`ε . The proof is completed by renaming C Ð p1`εqpc``c´q “ p1`εqp2
?

2` 5
3 q }f}8.

Theorem 4. Let X be a d-dimensional compact arm set with X Ď r´D,Dsd. For any κ ě 2, under Assumptions 1
and 2, Algorithm 2 with confidence schedule δt “ 6δ

π2t2
´

1`rt1{κs
d
¯ and discretization schedule τt “ rt

1
κ s guarantees, with

probability at least 1´ δ:

RegretpT q ď ∆0 ` C1T
p1´ 1

κ qd` C2T
1

1`ε

¨

„

vε

ˆˆ

2`
d

κ

˙

log T ` d log 2` log
π2

3δ

˙

ε
1`ε

,

where C1 “
κ
κ´1LD, C2 “ p1` εq

`

2
?

2` 5
3

˘

}f}8, and ∆0 is the instantaneous regret of the initial arm x0.

Proof. The proof follows the one of Theorem 3 up to (61), except from the fact that the discretization is actually performed
by the algorithm. That is, with probability at least 1´

řT
t“1 δtp1` τ

d
t q:

qµtpxtq ´ µpxtq ď c´βtpxtq and

µpx˚q ´ qµtprx
˚stq ď c`βtprx

˚stq `
LDd

τt
for t “ 1, . . . , T and every x˚ P arg max

xPX
µpxq. (71)
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This is enough to bound the instantaneous regret. With probability at least 1´
řT
t“1 δtp1` τ

d
t q:

∆t “ µpx˚q ´ µpxtq ď qµtprx
˚stq ` c

`βtprx
˚stq `

LDd

τt
´ µpxtq (72)

ď qµtpxtq ` c
`βtpxtq `

LDd

τt
´ µpxtq (73)

ď pc` ` c´qβtpxtq `
LDd

τt
, (74)

where (70) and (73) are from (71) and hold simultaneously with probability at least 1´
řT
t“1 δtp1` τ

d
t q, and (72) is by

hypothesis, as xt P arg maxxP rXtpqµtpxq ` c
`βtpxq. Note that the latter is true only by virtue of the fact that both rx˚st and

xt belong to rXt, as the optimization step of Algorithm 2 is restricted to rXt.
Finally, we can bound the regret. With probability at least 1´ δ:

RegretpT q “ ∆0 `

T
ÿ

t“1

∆t

ď ∆0 ` pc
` ` c´q

T
ÿ

t“1

βtpxtq ` LDd
T
ÿ

t“1

1

τt
(75)

ď ∆0 ` pc
` ` c´q

T
ÿ

t“1

βtpxtq `
κ

κ´ 1
LDT p1´

1
κ qd (76)

ď ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

log 1
δt

t

¸
ε

1`ε

`
κ

κ´ 1
LDT p1´

1
κ qd (77)

ď ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

¨

˚

˚

˝

2 log t` log

ˆ

1`
Q

t
1
κ

Ud
˙

` log π2

6δ

t

˛

‹

‹

‚

ε
1`ε

`
κ

κ´ 1
LDT p1´

1
κ qd (78)

ď ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

¨

˝

2 log t` d log
´

t
1
κ ` 1

¯

` log π2

3δ

t

˛

‚

ε
1`ε

`
κ

κ´ 1
LDT p1´

1
κ qd (79)

ď ∆0 ` pc
` ` c´qv

ε
1`ε
ε

T
ÿ

t“1

˜

`

2` d
κ

˘

log t` d log 2` log π2

3δ

t

¸
ε

1`ε

`
κ

κ´ 1
LDT p1´

1
κ qd (80)

ď ∆0 ` pc
` ` c´q

„

vε

ˆˆ

2`
d

κ

˙

log T ` d log 2` log
π2

3δ

˙

ε
1`ε T

ÿ

t“1

t´
ε

1`ε `
κ

κ´ 1
LDT p1´

1
κ qd,

ď ∆0 ` pc
` ` c´q

„

vε

ˆˆ

2`
d

κ

˙

log T ` d log 2` log
π2

3δ

˙

ε
1`ε

p1` εqT
1

1`ε `
κ

κ´ 1
LDT p1´

1
κ qd,

(81)
where (75) is from (74) and holds with probability at least 1 ´ δ with the proposed δt and τt, (76) is from the pro-
posed τt and (49) with α “ 1{κ, (77) is from Assumption 1, (78) is from the proposed δt, (79) and (80) are from the
fact logpx ` 1q ď logp2xq for x ě 1, and (80) is from (49) with α “ ε

1`ε . The proof is completed by renaming
C1 Ð p1` εqpc` ` c´q }f}8 “ p1` εqp2

?
2` 5

3 q }f}8 and C2 Ð
κ
κ´1LD.

Lemma 4. Let Ψ “
řL
l“1 ζlPl and Φ “

řK
k“1 βkQk, with ζl P r0, 1s,

řL
l“1 ζl “ 1, βk P r0, 1s and

řK
k“1 βk “ 1, be two

finite mixtures of the probability measures tPluLl“1 and tQkuKk“1 respectively. Let tψiju i“1,2,...,L
j“1,2,...,K

and tφiju i“1,2,...,L
j“1,2,...,K

be

two sets of variational parameters s.t. φij ě 0, ψij ě 0,
řK
k“1 φij “ ζl and

řL
l“1 ψij “ βk. Then, for any α ě 1, it holds

that:

dαpΨ}Φq
α´1 ď

L
ÿ

l“1

K
ÿ

k“1

φαlkψ
1´α
lk dαpPl}Qkq

α´1.
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Proof. The proof follows the idea of the variational bound for the KL-divergence proposed in (Hershey & Olsen, 2007).
Using the variational parameters we can express the two mixtures as:

Ψ “

L
ÿ

l“1

K
ÿ

k“1

φlkPl,

Φ “
L
ÿ

l“1

K
ÿ

k“1

ψlkQk.

We use the convexity of the dα and we apply Jensen inequality:

dαpΨ}Φq
α´1 “

ż
ˆ

Ψ

Φ

˙α

dΦ

“

ż

˜

L
ÿ

l“1

K
ÿ

k“1

φlkPl
ψlkQk

ψlkQk
Φ

¸α

dΦ

ď

ż L
ÿ

l“1

K
ÿ

k“1

ψlkQk
Φ

ˆ

φlkPl
ψlkQk

˙α

dΦ (82)

“

L
ÿ

l“1

K
ÿ

k“1

φαlkψ
1´α
lk

ż
ˆ

Pl
Qk

˙α

dQk

“

L
ÿ

l“1

K
ÿ

k“1

φαlkψ
1´α
lk dαpPl}Qkq

α´1,

where (82) is obtained by Jensen inequality observing that ψlkQkΦ is a distribution over t1, ..., Lu ˆ t1, ...,Ku.

Theorem 5. Let P be a probability measure and Φ “
řK
k“1 βkQk, with βk P r0, 1s and

řK
k“1 βk “ 1, be a finite mixture

of the probability measures tQkuKk“1. Then, for any α ě 1, the exponentiated α-Rényi divergence can be bounded as:

dαpP }Φq ď
1

řK
k“1

βk
dαpP }Qkq

.

Proof. We now consider the case in which Ψ has just one mixture component, i.e., L “ 1 and we abbreviate Ψ “ P . In this
case, we have that

řL
l“1 ψkl “ ψk “ βk, therefore the result reduces to:

dαpP }Φq
α´1 ď

K
ÿ

k“1

φαkβ
1´α
k dαpP }Qkq

α´1. (83)

We can now minimize the bound over the φk, subject to
řK
k“1 φk “ 1. We use the Lagrange multipliers.

Lptφkuk“1,2,...,K , λq “
K
ÿ

k“1

φαkβ
1´α
k dαpP }Qkq

α´1 ´ λ

˜

K
ÿ

k“1

φk ´ 1

¸

We take the partial derivatives w.r.t. the φk and the Lagrange multiplier λ:

BL
Bφk

“ αφα´1
k β1´α

j dαpP }Qkq
α´1 ´ λ “ 0 ùñ φk “

λ
1

α´1 βj

α
1

α´1 dαpP }Qkq
.

We now replace the expression of φk into the constraint.
K
ÿ

k“1

φk “
λ

1
α´1

α
1

α´1

K
ÿ

k“1

βk
dαpP }Qkq

“ 1 ùñ λ “
α

´

řK
k“1

βk
dαpP }Qkq

¯α´1 .

And finally we get the expression for φk:

φk “

βk
dαpP }Qkq

řK
h“1

βh
dαpP }Qhq

. (84)
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We can now compute the bound value:
K
ÿ

k“1

φαkβ
1´α
k dαpP }Qkq

α´1 “

K
ÿ

k“1

βαk
dαpP }Qkqα

´

řK
h“1

βh
dαpP }Qhq

¯α β
1´α
k dαpP }Qkq

α´1

“

řK
k“1

βk
dαpP }Qkq

´

řK
h“1

βh
dαpP }Qhq

¯α

“
1

´

řK
k“1

βk
dαpP }Qkq

¯α´1 .

As a consequence the bound becomes:

dαpP }Φq
α´1 ď

1
´

řK
k“1

βk
dαpP }Qkq

¯α´1 ùñ dαpP }Φq ď
1

řK
k“1

βk
dαpP }Qkq

,

which is the weighted harmonic mean of the exponentiated divergences.

D. Additional Experimental Results
In this section, we report some additional experiments we did not include in the main paper.

D.1. Linear Quadratic Gaussian Regulator

In this experiment, we learn both the mean and the variance parameter of the Gaussian hyperpolicy for the LQG: νξ “
N pξ1, expp2ξ2qq, where ξ “ pξ1, ξ2q

T and we modeled with ξ2 the log-standard deviation. In Figure 4, we show the
cumulative regret averaged over 5 runs comparing OPTIMIST with UCB1 and GPUCB. We see a trend similar to the case in
which we learn only the mean parameter. While OPTIMIST is able to exploit the structure of the arms induced by the fact
that hyperpolicyes share information, beating UCB1, GPUCB still displays a better performance.
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Figure 4. Cumulative regret in the LQG experiment, comparing OPTIMIST, UCB1 and GPUCB when learning both the mean and the
log-standard deviation parameters. (5 runs, 95% c.i.)

D.2. River Swim

For this experiment, we searched the best step size for PGPE in the set r0.1, 1, 10, 100s and eventually adopted step size
λ “ 10.
In Figure 5, we report more details and additional versions of OPTIMIST and OPTIMIST2. We can see that all versions of
OPTIMIST perform almost the same and they are all able to reach the global optimum consisting in crossing the river. This
is also visible as the probability of performing action right tends to approach 1 while PGPE converges soon to the local
optimum corresponding to p “ 0.
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Figure 5. Cumulative regret, per-step regret, probability of right action and size of the discretization grid for the River Swim, comparing
OPTIMIST with two fixed discretizations (20 and 100 arms), OPTIMIST2 with three values of κ and PGPE (10 runs, 95% c.i.).

D.3. Mountain Car

For this experiment, we searched the best step size for PGPE in the set r3, 2, 1, 0.1, 0.01, 0.001s and eventually adopted step
size λ “ 0.1. For PB-POIS, we used the suggested hyperparameters.
In Figure 6, we show the empirical probability density function induced by one run of OPTIMIST2 and PGPE on the
parameter space. We can clearly see that OPTIMIST2 explores a wider region of the parameter space, while PGPE tends to
limit the search in a more restricted region. This allows OPTIMIST to reach a good performance sooner but slows down the
exploitation phase, which is quicker for PGPE. A very similar result goes for PB-POIS.
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Figure 6. Heatmaps representing the region of the parameter space Ξ explored by OPTIMIST and PGPE in the Mountain Car experiment.


