Supplementary Material:

Spectral Approximate Inference

A. Proof of Claim 1

We first prove $\mathbf{f}(\Omega) \subset \mathcal{B}$. To this end we introduce the following inequalities for all $\mathbf{x} \in\{-1,1\}^{n}$:

$$
\begin{equation*}
\left|\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle\right| \leq\left\|\mathbf{u}_{j}\right\|_{1}, \quad\left|\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle-c \cdot f_{j}(\mathbf{x})\right| \leq c \cdot \frac{n+1}{2} \tag{17}
\end{equation*}
$$

which directly leads us to $\left|c \cdot f_{j}(\mathbf{x})\right| \leq\left\|\mathbf{u}_{j}\right\|_{1}+c \cdot(n+1) / 2 \leq c \cdot b_{j}$, and therefore $\mathbf{f}(\Omega) \subset \mathcal{B}$. Here, the first inequality of (17) is trivial. The second inequality of (17) is from the fact that the error between $c \cdot f_{j}(\mathbf{x})$ and $\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle$ arises from a series of quantizations which is presented once in (8) and at most n times in (9). Since the quantization error is at most $c / 2$ for each quantization, the second inequality of (17) holds.

Now we prove the bound of $|\mathcal{B}|$. From the definition of \mathcal{B} and b_{j}, one can easily observe that the following bound on $|\mathcal{B}|$ holds:

$$
\begin{aligned}
|\mathcal{B}|=\prod_{j=1}^{r}\left(2 b_{j}+1\right) & =2^{r} \prod_{j=1}^{r}\left(\frac{1}{c}\left\|\mathbf{u}_{j}\right\|_{1}+\frac{n}{2}+1\right) \\
& =2^{r} \prod_{j=1}^{r}\left(\frac{1}{c} \sqrt{\left|\lambda_{j}\right|}\left\|\mathbf{v}_{j}\right\|_{1}+\frac{n}{2}+1\right) \\
& \leq 2^{r} \prod_{j=1}^{r}\left(\frac{1}{c} \sqrt{\left|\lambda_{j}\right| n}+\frac{n}{2}+1\right)
\end{aligned}
$$

where the inequality is from $\left\|\mathbf{v}_{j}\right\|_{1} \leq \sqrt{n}\left\|\mathbf{v}_{j}\right\|_{2}=\sqrt{n}$.

B. Proof of Claim 2

Claim 2 holds since

$$
\begin{align*}
t_{i}(\mathbf{k}) & =t_{i-1}(\mathbf{k})+\sum_{\mathbf{x} \in \mathbf{f}^{-1}(\mathbf{k}) \cap\left(\mathcal{S}_{i} \backslash \mathcal{S}_{i-1}\right)} \exp (\langle\boldsymbol{\theta}, \mathbf{x}\rangle) \\
& =t_{i-1}(\mathbf{k})+\sum_{\mathbf{g}_{i}(\mathbf{x}) \in \mathbf{g}_{i}\left(\mathbf{f}^{-1}(\mathbf{k}) \cap\left(\mathcal{S}_{i} \backslash \mathcal{S}_{i-1}\right)\right)} \exp (\langle\boldsymbol{\theta}, \mathbf{x}\rangle) \\
& =t_{i-1}(\mathbf{k})+\sum_{\mathbf{x}^{\prime} \in \mathbf{f}^{-1}\left(\mathbf{k}-\left[\widehat{u}_{j i}\right]_{j=1}^{r}\right) \cap \mathcal{S}_{i-1}} \exp \left(\left\langle\boldsymbol{\theta}, \mathbf{g}_{i}^{-1}\left(\mathbf{x}^{\prime}\right)\right\rangle\right) \\
& =t_{i-1}(\mathbf{k})+\sum_{\mathbf{x}^{\prime} \in \mathbf{f}^{-1}\left(\mathbf{k}-\left[\widehat{u}_{j i}\right]_{j=1}^{r}\right) \cap \mathcal{S}_{i-1}} \exp \left(2 \theta_{i}+\left\langle\boldsymbol{\theta}, \mathbf{x}^{\prime}\right\rangle\right) \\
& =t_{i-1}(\mathbf{k})+\exp \left(2 \theta_{i}\right) \cdot t_{i-1}\left(\mathbf{k}-\left[\widehat{u}_{j i}\right]_{j=1}^{r}\right) . \tag{18}
\end{align*}
$$

In the above, $\mathbf{g}_{i}: \mathcal{S}_{i} \backslash \mathcal{S}_{i-1} \rightarrow \mathcal{S}_{i-1}$ is a bijection defined by $\mathbf{g}_{i}(\mathbf{x})=\mathbf{x}^{\prime}$ such that $x_{\ell}^{\prime}=x_{\ell}$ except for $\ell=i$. The second equality of (18) is from replacing the summation over $\mathbf{f}^{-1}(\mathbf{k}) \cap\left(\mathcal{S}_{i} \backslash \mathcal{S}_{i-1}\right)$ by that over $\mathbf{g}_{i}\left(\mathbf{f}^{-1}(\mathbf{k}) \cap\left(\mathcal{S}_{i} \backslash \mathcal{S}_{i-1}\right)\right)$. The third equality of (18) is based on (9) which implies that for all $\mathbf{x} \in \mathcal{S}_{i} \backslash \mathcal{S}_{i-1}, \mathrm{x}^{\prime}=\mathbf{g}_{i}(x)$ satisfies

$$
\begin{equation*}
\mathbf{f}(\mathbf{x})-\left[\widehat{u}_{j i}\right]_{j=1}^{r}=\mathbf{f}\left(\mathbf{x}^{\prime}\right) \tag{19}
\end{equation*}
$$

Hence, (19) leads us to

$$
\begin{aligned}
\mathbf{g}_{i}\left(\mathbf{f}^{-1}(\mathbf{k}) \cap\left(\mathcal{S}_{i} \backslash \mathcal{S}_{i-1}\right)\right) & =\mathbf{g}_{i}\left(\left\{\mathbf{x} \in \mathcal{S}_{i} \backslash \mathcal{S}_{i-1}: \mathbf{f}(\mathbf{x})=\mathbf{k}\right\}\right) \\
& =\left\{\mathbf{x}^{\prime} \in \mathcal{S}_{i-1}: \mathbf{f}\left(\mathbf{x}^{\prime}\right)=\mathbf{k}-\left[\widehat{u}_{j i}\right]_{j=1}^{r}\right\} \\
& =\mathbf{f}^{-1}\left(\mathbf{k}-\left[\widehat{u}_{j i}\right]_{j=1}^{r}\right) \cap \mathcal{S}_{i-1}
\end{aligned}
$$

and the third equality of (18) follows. The fourth equality of (18) directly follows from the definition of \mathbf{g}_{i} that $x_{i}^{\prime}=-1$ and $\left(\mathbf{g}_{i}^{-1}\left(\mathbf{x}^{\prime}\right)\right)_{i}=x_{i}=1$.

C. Proof of Theorem 3

We first prove the computational complexity of Algorithm 1. Since each $t(\mathbf{k}), t^{\prime}(\mathbf{k})$ possesses a memory of $O(|\mathcal{B}|)$ and $|\mathcal{B}| \leq 2^{r} \prod_{j=1}^{r}\left(\sqrt{\left|\lambda_{j}\right| n} / c+n / 2+1\right)$ from Claim 1, the space complexity of Algorithm 1 is $O\left(2^{r} \prod_{j=1}^{r}\left(\sqrt{\left|\lambda_{j}\right| n} / c+\right.\right.$ $n / 2+1)$). In addition, as the algorithm iterates n times while each iteration accesses to $t(\mathbf{k})$ and $t^{\prime}(\mathbf{k})$, Algorithm 1 has $O\left(n 2^{r} \prod_{j=1}^{r}\left(\sqrt{\left|\lambda_{j}\right| n} / c+n / 2+1\right)\right)$ computational complexity.
Now we provide the bound on the partition function approximation. First, we refer the following error bound introduced in the proof of Claim 1.

$$
\begin{equation*}
\left|\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle-c \cdot f_{j}(\mathbf{x})\right| \leq c \cdot \frac{n+1}{2} \tag{20}
\end{equation*}
$$

Using (20), we provide a bound for $\left|\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle^{2}-\left(c \cdot f_{j}(\mathbf{x})\right)^{2}\right|$ as follows

$$
\begin{align*}
\left|\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle^{2}-\left(c \cdot f_{j}(\mathbf{x})\right)^{2}\right| & =\left|\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle-c \cdot f_{j}(\mathbf{x})\right|\left|\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle+c \cdot f_{j}(\mathbf{x})\right| \\
& \leq c \cdot \frac{n+1}{2}\left(\left|2\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle\right|+c \cdot \frac{n+1}{2}\right) \\
& \leq \frac{1}{4} c^{2}(n+1)^{2}+c \sqrt{\left|\lambda_{j}\right| n}(n+1) \tag{21}
\end{align*}
$$

where the first inequality is from (20) and the second inequality is from $\left|\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle\right| \leq\left\|\mathbf{u}_{j}\right\|_{1} \leq \sqrt{\left|\lambda_{j}\right| n}$. From (21), the error bound can be derived as

$$
\begin{aligned}
\frac{Z}{\widehat{Z}} & =\frac{\sum_{\mathbf{x} \in \Omega} \exp \left(\langle\boldsymbol{\theta}, \mathbf{x}\rangle+\sum_{j=1}^{r} \operatorname{sign}\left(\lambda_{j}\right)\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle^{2}\right)}{\sum_{\mathbf{x} \in \Omega} \exp \left(\langle\boldsymbol{\theta}, \mathbf{x}\rangle+\sum_{j=1}^{r} \operatorname{sign}\left(\lambda_{j}\right)\left(c \cdot f_{j}(\mathbf{x})\right)^{2}\right)} \\
& \leq \max _{\mathbf{x} \in \Omega} \frac{\exp \left(\langle\boldsymbol{\theta}, \mathbf{x}\rangle+\sum_{j=1}^{r} \operatorname{sign}\left(\lambda_{j}\right)\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle^{2}\right)}{\exp \left(\langle\boldsymbol{\theta}, \mathbf{x}\rangle+\sum_{j=1}^{r} \operatorname{sign}\left(\lambda_{j}\right)\left(c \cdot f_{j}(\mathbf{x})\right)^{2}\right)} \\
& \leq \max _{\mathbf{x} \in \Omega} \exp \left(\sum_{j=1}^{r}\left|\left\langle\mathbf{u}_{j}, \mathbf{x}\right\rangle^{2}-\left(c \cdot f_{j}(x)\right)^{2}\right|\right) \\
& \leq \exp \left(\frac{1}{4} r c^{2}(n+1)^{2}+c \sqrt{n}(n+1) \sum_{j=1}^{r} \sqrt{\left|\lambda_{j}\right|}\right)
\end{aligned}
$$

where the last inequality follows from (21). One can obtain a same bound for \widehat{Z} / Z and this completes the proof of Theorem 3.

D. Proof of Claim 4

The result of Claim 4 directly follows from the following inequality:

$$
\begin{aligned}
\mathrm{KL}\left(P_{\mathcal{Y}}(\mathbf{y}) \| \prod_{j=1}^{r} q_{j}\left(y_{j}\right)\right) & =-\sum_{\mathbf{y} \in \mathcal{Y}} P_{\mathcal{Y}}(\mathbf{y}) \log \prod_{j=1}^{r} q_{j}\left(y_{j}\right)-H\left(P_{\mathcal{Y}}(\mathbf{y})\right) \\
& =-\sum_{\mathbf{y} \in \mathcal{Y}} P_{\mathcal{Y}}(\mathbf{y}) \sum_{j=1}^{r} \log q_{j}\left(y_{j}\right)-H\left(P_{\mathcal{Y}}(\mathbf{y})\right) \\
& =-\sum_{j=1}^{r} \sum_{y_{j}: \mathbf{y} \in \mathcal{Y}} P_{\mathcal{Y}}\left(y_{j}\right) \log q_{j}\left(y_{j}\right)-H\left(P_{\mathcal{Y}}(\mathbf{y})\right) \\
& \geq-\sum_{j=1}^{r} \sum_{y_{j}: \mathbf{y} \in \mathcal{Y}} P_{\mathcal{Y}}\left(y_{j}\right) \log P_{\mathcal{Y}}\left(y_{j}\right)-H\left(P_{\mathcal{Y}}(\mathbf{y})\right)
\end{aligned}
$$

where the last inequality follows from the source coding theorem (Shannon, 1948).

