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Abstract

Efficient exploration is a long-standing problem
in sensorimotor learning. Major advances have
been demonstrated in noise-free, non-stochastic
domains such as video games and simulation.
However, most of these formulations either get
stuck in environments with stochastic dynamics
or are too inefficient to be scalable to real robotics
setups. In this paper, we propose a formulation for
exploration inspired by the work in active learn-
ing literature. Specifically, we train an ensem-
ble of dynamics models and incentivize the agent
to explore such that the disagreement of those
ensembles is maximized. This allows the agent
to learn skills by exploring in a self-supervised
manner without any external reward. Notably,
we further leverage the disagreement objective
to optimize the agent’s policy in a differentiable
manner, without using reinforcement learning,
which results in a sample-efficient exploration.
We demonstrate the efficacy of this formulation
across a variety of benchmark environments in-
cluding stochastic-Atari, Mujoco and Unity. Fi-
nally, we implement our differentiable exploration
on a real robot which learns to interact with ob-
jects completely from scratch. Project videos and
code are at https://pathak22.github.
io/exploration-by-disagreement/.

1. Introduction

Exploration is a major bottleneck in both model-free and
model-based approaches to sensorimotor learning. In model-
based learning, exploration is a critical component in col-
lecting diverse data for training the model in the first place.
On the other hand, exploration is indispensable in model-
free reinforcement learning (RL) when rewards extrinsic
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to the agent are sparse. The common approach to explo-
ration has been to generate “intrinsic” rewards, i.e., rewards
automatically computed based on the agents model of the
environment. Existing formulations of intrinsic rewards in-
clude maximizing “visitation count” (Bellemare et al., 2016;
Lopes et al., 2012; Poupart et al., 2006) of less-frequently
visited states, “curiosity” (Oudeyer & Kaplan, 2009; Pathak
et al., 2017; Schmidhuber, 1991a) where prediction error is
used as reward signal and “diversity rewards” (Eysenbach
et al., 2018; Lehman & Stanley, 2011a;b) which incentivize
diversity in the visited states. These rewards provide con-
tinuous feedback to the agent when extrinsic rewards are
sparse, or even absent altogether.

Generating intrinsic rewards requires building some form
of a predictive model of the world. However, there is a key
challenge in learning predictive models beyond noise-free
simulated environments: how should the stochastic nature
of agent-environment interaction be handled? Stochasticity
could be caused by several sources: (1) noisy environment
observations (e.g, TV playing noise), (2) noise in the execu-
tion of agent’s action (e.g., slipping) (3) stochasticity as an
output of the agent’s action (e.g., agent flipping coin). One
straightforward solution to learn a predictive forward model
that is itself stochastic! Despite several methods to build
stochastic models in low-dimensional state space (Chua
et al., 2018; Houthooft et al., 2016), scaling it to high di-
mensional inputs (e.g., images) still remains challenging.
An alternative is to build deterministic models but encode
the input in a feature space that is invariant to stochastic-
ity. Recent work proposed building such models in inverse
model feature space (Pathak et al., 2017) which can handle
stochastic observations but fail when the agent itself is the
source of noise (e.g. TV with remote (Burda et al., 2019)).

Beyond handling stochasticity, a bigger issue in the current
intrinsic reward formulations is that of sample efficiency.
The agent performs an action and then computes the reward
based on its own prediction and environment behavior. For
instance, in curiosity (Oudeyer & Kaplan, 2009; Pathak
et al., 2017), the policy is rewarded if the prediction model
and the observed environment disagree. From an explo-
ration viewpoint, this seems like a good formulation, i.e,
rewarding actions whose effects are poorly modeled. But
this reward is a function of environment dynamics with
respect to the performed action. Since the environment
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Figure 1. Self-Supervised Exploration via Disagreement: At time step ¢, the agent in the state x; interacts with the environment by
taking action a; sampled from the current policy 7 and ends up in the state z;+1. The ensemble of forward models { f1, f2, ..., f» } takes
this current state x+ and the executed action a; as input to predict the next state estimates {itl_H, JE?H, ..., Ty41 }- The variance over the
ensemble of network output is used as intrinsic reward 7 to train the policy 7. In practice, we encode the state z into an embedding space

¢(x) for all the prediction purposes.

dynamics is unknown, it is treated as black-box and the
policy’s gradients have to be estimated using high-variance
estimators like REINFORCE (Williams, 1992) which are
extremely sample-inefficient in practice.

We address both the challenges by proposing an alternative
formulation for exploration taking inspiration from active
learning. The goal of active learning is to selectively pick
samples to label such that the classifier is maximally im-
proved. However, unlike current intrinsic motivation for-
mulations where an agent is rewarded by comparing the
prediction to the ground-truth, the importance of a sample
is not computed by looking at the ground-truth label but
rather by looking at the state of the classifier itself. For
instance, a popular approach is to label the most uncer-
tain samples by looking at the confidence of the classifier.
However, since most of the high-capacity deep neural net-
works tend to overfit, confidence is not a good measure of
uncertainty. Hence, taking an analogy from the Query-by-
Committee algorithm (Seung et al., 1992), we propose a
simple disagreement-based approach: we train an ensem-
ble of forward dynamics models and incentivize the agent
to explore the action space where there is maximum dis-
agreement or variance among the predictions of models
of this ensemble. Taking actions to maximize the model-
disagreement allows the agent to explore in a completely
self-supervised manner without relying on any external re-
wards. We show that this approach does not get stuck in
stochastic-dynamics scenarios because all the models in
the ensemble converge to mean, eventually reducing the
variance of the ensemble.

Furthermore, we show that our new objective is a differen-
tiable function allowing us to perform policy optimization
via direct likelihood maximization — much like supervised
learning instead of reinforcement learning. This leads to a

sample efficient exploration policy allowing us to deploy
it in a real robotic object manipulation setup with 7-DOF
Sawyer arm. We demonstrate the efficacy of our approach
on a variety of standard environments including stochas-
tic Atari games (Machado et al., 2017), MNIST, Mujoco,
Unity (Juliani et al., 2018) and a real robot.

2. Exploration by Disagreement

Consider an agent interacting with the environment E. At
time t, it receives the observation X¢ and then takes an action
predicted by its policy, i.e., a¢ (X¢; p). Upon executing
the action, it receives, in return, the next observation X¢+1
which is ‘generated’ by the environment. Our goal is to
build an agent that chooses its action in order to maximally
explore the state space of the environment in an efficient
manner. There are two main components to our agent: an
intrinsic forward prediction model that captures the agent’s
current knowledge of the states explored so far, and policy
to output actions. As our agent explores the environment,
we learn the agent’s forward prediction model to predict the
consequences of its own actions. The prediction uncertainty
of this model is used to incentivize the policy to visit states
with maximum uncertainty.

Both measuring and maximizing model uncertainty are chal-
lenging to execute with high dimensional raw sensory input
(e.g. images). More importantly, the agent should learn
to deal with ‘stochasticity’ in its interaction with the en-
vironment caused by either noisy actuation of the agent’s
motors, or the observations could be inherently stochastic.
A deterministic prediction model will always end up with a
non-zero prediction error allowing the agent to get stuck in
the local minima of exploration.

Similar behavior would occur if the task at hand is too dif-
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cult to learn. Consider a robotic arm manipulating a key-similar parts of the state-space. However, the areas which
bunch and observing its outcome. Predicting the change iare novel and unexplored would still have high prediction
pose and position of each key in the keybunch is extremelgrror for all models as none of them are yet trained on such
dif cult. Although the behavior is not inherently stochastic, examples, resulting in disagreement on the next state pre-
our agent could easily get stuck in playing with the samediction. Therefore, we use this disagreement as an intrinsic
keybunch and not try other actions or even other objectseward to guide the policy. Concretely, the intrinsic reward
Existing formulations of curiosity reward or novelty-seeking r! is de ned as thevarianceacross the output of different
count-based methods would also suffer in such scenariosiodels in the ensemble: _

Learning probabilistic predictive models to measure uncer- i h o o 2'

tainty (Houthooft et al., 2016), or measuring learnability by re, B kK(xgas ) E[f(x;as )lk; @)
capturing the change in prediction error (Oudeyer & Kaplan . .

2009; Schmidhuber, 1991a) have been proposed as so%%tflet:f;tgz EXpES;'O:) Oenrtth\?vr?i?:utvaﬁeei r}g}[t?r?girf on
tions, but have been demonstrated in low-dimensional statt 53t t+l f P I? ?/ timizati P

space inputs and are dif cult to scale to high dimensional 1on 2.5 1o propose et cient policy optimization.

image inputs. Given the agent's rollout sequence and the intrinsic reward
ri at each timestep the policy is trained to mapdmize the
2.1. Disagreement as Intrinsic Reward sum of expected reward, i.enax , E (...,  'n

dofl . inale d . del discounted by a factor. Note that the agent is self-
Instead of learning a single dynamics model, we IOrOIOOS%upervised and does not need any extrinsic reward to ex-
an alternate exploration formulation based on ensemble lore. The agent policy and the forward model ensemble
models as inspired by the classical active learning literay o i5intiy trained in an online manner on the data collected

ture (Seung et al., 1992). The goal of active learning is tq, e agent during exploration. This objective can be max-

nd the optimal training examples to label such that the aCimized by any policy optimization technique, e.g., we use

proximal policy optimization (PPO) (Schulman et al., 2017)
unless speci ed otherwise.

curacy is maximized at minimum labeling cost. While active
learning minimizes optimal cost with an analytic policy, the
goal of an exploration-driven agent is to learn a policy that
allows it to best navigate the environment space. AIthougf&
the two might look different at the surface, we argue that ™
active learning objectives could inspire powerful intrinsic Consider a scenario where the next statg is stochas-
reward formulations. In this work, we leverage the idea oftic with respect to the current state and actiora;. The
model-variance maximization to propose exploration formusource of stochasticity could be noisy actuation, dif culty
lation. Leveraging model variance to investigate a systenor inherent randomness. Given enough samples, a dynamic
is also a well-studied mechanism in optimal experimentabprediction model should learn to predict the mean of the
design literature (Boyd & Vandenberghe, 2004) in statisticsstochastic samples. Hence, the variance of the outputs in

As our agent interacts with the environment, it collects tra—.ensemble will drop preventing the agent from getting stuck

jectory of the formf x;: a.; Xi+1 g. After each rollout, the in stochastic local-minima of exploration. Note this is un-

- ; ike prediction error based objectives (Pathak et al., 2017;
I le of pre: ) . ) ’ '
collected transitions are used to train an ensemble of pr chmidhuber, 1991b) which will settle down to a mean

diction models (i.e., forward modelsj ,;f ,:::;f  gof value after large enough samples. Since, the mean is differ-
the environment. Each of the model is trained to map aent from the igdividuagll rounz tl’l;th stoéhastic states, the
given tuple of current observation and the actiora; to 9 ’

the resulting stat&;+; . These models are trained using prediction erfor remains _high making the age_n_t forever cu-
straightforward maximum likelihood estimation that mini- rious ab_qut the stocha§t|c beh.avllor. We emp|.r|cally verify
mizes the prediction error, i.&f (xi:a;: ) Xis1 Ko. TO this intuition by comparing prediction-error to disagreement

maintain the diversity across the individual models of the?cT0ss several environments in Section 4.2.
ensemble, we initialize each model's parameters differently . . . . o
and train each of them on a subset of data randomly sample%t& Differentiable Exploration for Policy Optimization

with replacement (bootstrap). One commonality between different exploration meth-

Each model in our ensemble is trained to predict the groun@ds (Bellemare etal., 2016; Houthooft et al., 2016; Pathak
truth next state. Hence, the parts of the state space whicf al-» 2017), is that the prediction model is usually learned
have been well explored by the agent will have gathered? @ Supervised manner and the agent's policy is trained us-
enough data to train all models, resulting in an agreemerif'd réinforcement learning either in on-policy or off-policy
between the models. Since the models are learned (arf@anner. Despite several formulations over the years, the

not tabular), this property should generalize to unseen puRolicy optimization procedure to maximize these intrinsic
rewards has more or less remained the same —i.e. — treat-

2. Exploration in Stochastic Environments
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ing the intrinsic reward as a “black-box” even though it is This is optimized in an alternating fashion where the forward
generated by the agent itself. predictor is optimized keeping the policy parameters frozen
n%{]d vice-versa. Note that both policy and forward models
are trained via maximum likelihood in a supervised manner,
and hence, ef cient in practice.

Let's consider an example to understand the reason behi
the status quo. Consider a robotic-arm agent trying to pus
multiple objects kept on the table in front of it by look-
ing at the image from an overhead camera. Suppose the L . :

arm pushes an object such that it collides with another on&€neralization to multi-step reward horizon To op-

on the table. The resulting image observation will be thellMize policy for maximizing a discounted sum of se-
outcome of complex real-world interaction, the actual dy-d4€N¢€ of future intrinsic rewards in a differentiable .
namics of which is not known to the agent. Note that thisManner, the forward model would have to make predic-

resulting image observation is a function of the agent‘st'OnS spanning over multiple time-steps. The policy objec-

action (i.e., push in this case). Most commonly, the ir]_tive_ in Equation(2) can k_)e general_ized to the muIti—ste_p
trinsic rewardr’ (x,; a; X+1 ) is function of the next state °rZon setup by reicurswely applying the forward predic-
(which is a function of the agent's action), e.g., information O+ -8 max ,  (Ti(Re; &) Wh?rek,t = (& L&, ),
gain (Houthooft et al., 2016), prediction error (Pathak et al. 3 = (Xt p), Ro = Xo, andr,(?) is de ned in Equa-
2017) etc. This dependency on the unknown environmentfOn (@)- Alte_rnatlvely,_ one could use LSTM to make for-
dynamics absolves the policy optimization of analyticalVa'd model itself multi-step. However, training a long term
reward gradients with respect to the action. Hence, the staf2ulti-Step prediction model is challenging and an active
dard way is to optimize the policy to maximize the sequencearea of research.

of intrinsic rewards using reinforcement learning, and not

make any use of the structure present in the desigh.of 3. Implementation Details and Baselines

We formulate our proposed intrinsic reward as a differenf_eaming forward predictions in the feature space It
tiable function so as to perform policy optimization using has been shown that learning forward-dynamics predictor
likelihood maximization — much like supervised learning f in a feature space leads to better generalization in contrast
instead of reinforcement. If possible, this would allow theto raw pixel-space predictions (Burda et al., 2019; Pathak
agent to make use of the structure jrexplicitly, i.e., the et al., 2017). Our formulation is trivially extensible to any
intrinsic reward from the model could very ef ciently in- representation spacebecause all the operations can be
form the agent to change its action space in the directioperformed with (x,) instead ofx;. Hence, in all of our
where forward prediction loss is high, instead of providingexperiments, we train our forward prediction models in
ascalarfeedback as in case of reinforcement Iearning. Exfeature space. In particular, we use random feature space
plicit reward (cost) functions are one of the key reasons foiin all video games and navigation, classi cation features in
success stories in optimal-control based robotics (DeiseMNIST and ImageNet-pretrained ResNet-18 features in real
roth & Rasmussen, 2011b; Gal et al., 2016), but they don'tyorld robot experiments. We use 5 models in the ensemble.
scale to high-dimensional state space such as images and
rely on having access to a good model of the e”Viro”mentBack-propagation through forward model To directly
We rst discuss the one step case and then provide theptimize the policy with respect to the Iqss function of the
general setup. Note that our intrinsic reward formulationforward predictor, as discussed in Section 2.3, we need to
shown in Equatiorfl), does not depend on the environment backpropagate all the way through action sampling process
interaction at all, i.e., no dependencyxu; . It is purely from the policy. In case of continuous action space, one
a mental simulation of the ensemble of models based ofould achieve this via making policy deterministic, iag.=
the current state and the agent's prediction action. Hence, » With epsilon-greedy sampling (Lillicrap et al., 2016).
instead of maximizing the intrinsic reward in expectation For discrete action space, we found that straight-through
via PPO (RL), we can optimize for policy parametegs estimator (Bengio et al., 2013) works well in practice.
using direct gradients by treatim§j as a differentiable loss
function. The objective for a one-step reward horizon is: Baseline Comparisons "Disagreement’ refers to our ex-
ploration formulation optimized using PPO (Schulman et al.,
2017) as discussed in Section 2.1, unless mentioned other-

min  (1=k)  kf  (Xi;@&)  Xeer ke (2)  wise. Disagreement [Differentiable] refers to the direct
e i=1 policy optimization for our formulation as described in Sec-
X h Xk 2i tion 2.3. “Pathak et.al. [ICML 2017] refers to the curiosity-
max (1=Kk) kf (x;a) (1=K f  (Xx;a)kz  driven exploration formulation based on the prediction error
i=1 i=1 of the learned forward dynamics model in inverse model ac-

st.a= (Xt; p) tion space (Pathak et al., 2017). "Burda et.al. [ICLR 2019]'
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Figure 2.Sanity Check in Non-Stochastic EnvironmentsWe compare different intrinsic reward formulations across near-deterministic,
non-stochastic standard benchmark of the Atari games. Our disagreement-based approach compares favorably to state-of-the-art
approaches without losing accuracy in non-stochastic scenarios.

refers to the random feature-based prediction-error (Burdaot shown to the agent.

et al., 2019). "Pred-Error Variance' is an alternative abla;: : . .
a}/\Ie train our ensemble of models for computing disagree-

tion where we train the agent to maximize the variance o ! : )
" . ment in the embedding space of a random network as dis-
the prediction error as opposed to the variance of model . . . X
. . cussed in Section 3. The performance is compared to curios-
output itself. Finally, we also compare our performance to. : e
i . . ity formulation (Pathak et al., 2017), curiosity with random
Bayesian Neural Networks for measuring variance. In par;

ticular, we compared to Dropout NN (Gal & Ghahramam,fef'ﬂures (Bur(ja etal., 201.9)’. Bayesian network based uncer
2015) represented as ‘Bayesian Disagreement tainty and variance of prediction error. As seen in the results,
P y 9 ' our method is as good as or slightly better than state-of-the-
] art exploration methods in most of the scenarios. Overall,
4. Experiments these experiments suggest that our exploration formulation
. : hich is only driven by disagreement between models out-
We evaluate our approach on several environments includ-
; X A ) : put compares favorably to state of the art methods. Note that
ing Atari games, 3D navigation in Unity, MNIST, object . L I
. o : . : the variance of prediction error performs signi cantly worse.
manipulation in Mujoco and real world robotic manipula- -, . . . -
. . . . his is so because the low variance in prediction error of
tion task using Sawyer arm. Our experiments comprise of,. . . .
i g different models doesn't necessarily mean they will agree
three parts: a) verifying the performance on standard non- o N : .
. . ] : . on the next state prediction. Hence, "Pred-Error Variance
stochastic environments; b) comparison on environments . : : :
: L - . may sometimes incorrectly stop exploring even if output
with stochasticity in either transition dynamics or observa- I : . .
. ) S . . . prediction across models is drastically different.
tion space; and c) validating the ef ciency of differentiable

olicy optimization facilitated by our objective. o : .
policy op y J 4.2. Exploration in Stochastic Environments

4.1. Sanity Check in Non-Stochastic Environments A) Noisy MNIST. We rst build a toy task on MNIST to
intuitively demonstrate the contrast between disagreement-

o . l%ased intrinsic reward and prediction error-based re-
to maintain the performance on the standard environmen

: . ard (Pathak et al., 2017) in stochastic setups. This is a
as compared to state of the art exploration techniques. Al- )
one-step environment where the agent starts by randomly

though the_ primar_y adva_ntage O.f our appro_ach s ?n handlin%bserving an MNIST image from either class 0 or class 1.
stochasticity and improving ef ciency via differentiable pol- The dynamics of the environment are de ned as follows:

icy optimization, it should not come at the cost of perfor-l) images with label 0 always transition to another image

mance in nearly-deterministic scenarios. We run this Sanit¥rom class 0. 2) Images with label 1 transition to a randomly

check on standard Atari benchmark suite, as shown in quéhosen image from class label 2 to 9. This ensures that a

ure 2. These games are not completely deterministic an o : : -
. rgnsition from images with label 0 has low stochasticity
have some randomness as to where the agent is spawn o .
i : . (I.e., transition to the same label). On the other hand, transi-
upon game resets (Mnih et al., 2015). The agent is traine . . . -
) A . lons from images with label 1 have high stochasticity. The
with only an intrinsic reward, without any external reward

X ; ideal intrinsic reward function should give similar incentive
from the game environment. The external reward is only,

: . éreward) to both the scenarios after the agent has observed a
used as a proxy to evaluate the quality of exploration and..” . "
Signi cant number of transitions.

We rst verify whether our disagreement formulation is able
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Figure 3.Performance of disagreement across ensemble vs predic-

tion error based reward function on Noisy MNIST environment.Figure 4.Comparison of prediction-error based curiosity reward
This environment has 2 sets of state with different level of stochagwith our proposed disagreement-based exploration on 3D naviga-
ticity associated with them. The disagreement-based intrinsi¢ion task in Unity with and without the presence of TV+remote.
reward converges to the ideal case of assigning the same rewa¥dhile both the approaches perform similar in normal case (left),
value for both states. However, the prediction-error based rewardisagreement-based approach performs better in the presence of
function assigns a high reward to states with high stochasticity. stochasticity (right).

Figure 3 shows the performance of these methods on th@troduce stochasticity in Atari games by making actions
test set of MNIST as a function of the number of statessticky', i.e., at each step, either the agent's intended ac-
visited by the agent. Even at convergence, the predictiofion is executed or the previously executed action is re-
error based model assigns more reward to the observatiorpfeated with equal probability. As shown in Figure 5, our
with higher stochasticity, i.e., images with label 1. This disagreement-based exploration approach outperforms pre-
behavior is detrimental since the transition from states Ot/ious state-of-the-art approaches_ In Pong' our approach
images with label 1 cannot ever be perfectly modeled andtarts slightly slower than Burda et.al. (Burda et al., 2019),
hence the agent will get stuck forever. In contrast, oulhyt eventually achieves a higher score. Further note that the
ensemble-based disagreement method converges to alm@ydyesian network-based disagreement does not perform as
zero intrinsic reward in both the scenarios after the agerm/e” as ensemble-based disagreement_ This Suggests that
has seen enough samples, as desired. perhaps dropout (Gal & Ghahramani, 2015) isn't able to
capture good uncertainty estimate in practice. These experi-
B) 3D Navigation in Unity. The goal in this setup is to ments along with the navigation experiment, demonstrate
train the agent to reach a target location in the maze. Ththe potential of ensembles in the face of stochasticity.
agent receives a sparse reward of +1 on reaching the goal.
For all the methods, we train the policy of the agent to4 3. Differentiable Exploration in Structured Envs
maximize the summation of intrinsic and sparse extrinsic re- ) ) ) o
ward. This particular environment is a replica of VizDoom- V& now evaluate the differentiable exploration objective
MyWayHome environment in unity ML-agent and was pro_pro.polsed in Sgctlon 2.3. As dlsc.ussed earlier, the pollqy is
posed in Burda et al. (2019). Interestingly, this environmentoPtimized via direct analytic gradients from the exploration
has 2 variants, one of which has a TV on the wall. Themodule. Therefore, the horizon of exploration depends
agent can change the channel of the TV but the content idiréctly on the horizon of the module. Since training long-
stochastic (random images appear after pressing buttor#)?”zon models from high dimensional inputs (images) is
The agent can start randomly anywhere in the maze in eacﬂ",' an unsolvgd problem, we.evaluate our proposed formu-
episode, but the goal location is xed. We compare our pro-'at'on on relatively short horizon scenarios. However, to
posed method with state-of-the-art prediction error-base§ompensate for the length of the horizon, we test on large
exploration (Burda et al., 2019). The results are showrfiction space setups for real-world robot manipulation task.

in Figure 4. Our approach performs similar to the base-
line in the non-TV setup and outperforms the baseline inA) Enduro Video Game. In this game, the goal of the
the presence of the TV. This result demonstrates that aggent is to steer the car on racing track to avoid enemies.
ensemble-based disagreement could be a viable alternativéye agent is trained to explore via purely intrinsic rewards,
in realistic stochastic setups. and the extrinsic reward is only used for evaluation. In order
to steer the car, the agent doesn't need to model long-range
C) Atari with Sticky Actions. As discussed in Sec- dependencies. Hence, in this environment, we combine our
tion 4.1, the usual Atari setup is nearly deterministic. Theredifferentiable policy optimization with reinforcement learn-
fore, a recent study (Machado et al., 2017) proposed ting (PPO) to maximize our disagreement based intrinsic



