
Subspace Robust Wasserstein Distances

A. Projection Robust Wasserstein Distances
In this section, we prove some basic properties of projec-
tion robust Wasserstein distances Pk. First note that the
definition of Pk makes sense, since for any µ, ν ∈P2(Rd),
k ∈ JdK and E ∈ Gk, PE#µ and PE#ν have a second
moment (for orthogonal projections are 1-Lipschitz).

Pk is also well posed, since one can prove the existence
of a maximizing subspace. To prove this, we will need the
following lemma stating that the admissible set of couplings
between the projected measures are exactly the projections
of the admissible couplings between the original measures:

Lemma 6. Let f : Rd → Rd Borel and µ, ν ∈ P(Rd).
Then Π(f#µ, f#ν) = {(f ⊗ f)#π |π ∈ Π(µ, ν)}.

This can be used to get the following result:

Proposition 5. For µ, ν ∈ P2(Rd) and k ∈ JdK, there
exists a subspace E∗ ∈ Gk such that

Pk(µ, ν) =W
(
PE∗#µ, PE∗#ν

)
.

Proof. The Grassmannian Gk is compact, and we show that
the application E 7→ W

(
PE#µ, PE#ν

)
is upper semicon-

tinuous, which gives existence.

Note that we could define projection robust Wasserstein
distances for any p ≥ 1 by:

sup
E∈Gk

Wp

(
PE#µ, PE#ν

)
.

Then there is still existence of optimal subspaces, and it
defines a distance over

Pp(Rd) =

{
µ ∈P(Rd)

∣∣∣∣ ∫ ‖x‖p dµ(x) <∞
}
.

To prove the identity of indiscernibles, we use the following
Lemma due to Rényi, generalizing Cramér-Wold theorem:

Lemma 7. Let (Ej)j∈J be a family of subspaces of Rd

such that
⋃
j∈J Ej = Rd. Let µ, ν ∈P(Rd) such that for

all j ∈ J , PEj#
µ = PEj#

ν. Then µ = ν.

B. Proofs
Proof of Lemma 1. For π ∈ Π(µ, ν), the application
E 7→

∫
‖PE(x)− PE(y)‖2 dπ(x, y) is continuous and Gk

is compact, so the supremum is a maximum. Moreover, the
application π 7→ maxE∈Gk

∫
‖PE(x) − PE(y)‖2 dπ(x, y)

is lower semicontinuous as the maximum of lower semi-
continuous functions. Since Π(µ, ν) is compact (for any
sequence in Π(µ, ν) is tight), the infimum is a minimum.

Proof of Lemma 2. A classical variational result by (Fan,
1949) states that

k∑
l=1

λl(Vπ) = max
U∈Rk×d
UUT=Ik

trace
(
UVπU

T
)
.

Then using the linearity of the trace:

k∑
l=1

λl(Vπ) = max
U∈Rk×d
UUT=Ik

∫
trace

[
U(x− y)(x− y)TUT

]
dπ(x, y)

= max
U∈Rk×d
UUT=Ik

∫
‖U(x− y)‖2 dπ(x, y)

= max
E∈Gk

∫
‖PE(x)− PE(y)‖2 dπ(x, y).

Taking the minimum over π ∈ Π(µ, ν) yields the result.

Proof of Theorem 1. S2
k(µ, ν) = (2) : We fix π ∈ Π(µ, ν)

and focus on the inner maximization in (2) :

max
0�Ω�I

trace(Ω)=k

∫
d2

Ω dπ = max
0�Ω�I

trace(Ω)=k

〈Ω |Vπ〉 .

A result by (Overton & Womersley, 1993) shows that this is
equal to

max
U∈Rk×d
UUT=Ik

trace
(
UVπU

T
)

which is nothing but the sum of the k largest eigenvalues of
Vπ by Fan’s result. By lemma 2, taking the minimum over
π ∈ Π(µ, ν) yields the result.

(2) = (3) : We will use Sion’s minimax the-
orem to interchange the minimum and the max-
imum. Put f(Ω, π) =

∫
d2

Ω dπ and R ={
Ω ∈ Rd×d | 0 � Ω � I ; trace(Ω) = k

}
. Note that R is

convex and compact, and Π(µ, ν) is convex (and actually
compact, but we won’t need it here). Moreover, f is bilinear
and for any π ∈ Π(µ, ν), f(·, π) is continuous. Let Ω ∈ R.
Let us show that f(Ω, ·) is lower semicontinuous for the
weak convergence. Let (φj)j∈N be an increasing sequence
of bounded continuous functions, converging pointwise to
d2

Ω. Then f(Ω, π) = supj∈N
∫
φj dπ. For j ∈ N, φj is con-

tinuous and bounded, so π 7→
∫
φj dπ is continuous for the
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Figure 11. This figure should be compared to Figure 1. We also present an example for which the explicit computation of projection Pk
and subspace Sk robust Wasserstein distances described in §3 can be carried out explicitly, by simple enumeration. Unlike Figure 11, and
as can be seen in the rightmost plot, these two quantities do not coincide here. That plot reveals that the minimum across all maximal
eigenvalues of second order moment matrices computed on all optimal OT plans obtained by enumerating all lines (the subspace robust
quantity) is strictly larger than the worst possible projection cost.

weak convergence. Then f(Ω, ·) is lower semicontinuous
as the supremum of continuous functions. Then by Sion’s
minimax theorem,

min
π∈Π(µ,ν)

max
Ω∈R

f(Ω, π) = max
Ω∈R

min
π∈Π(µ,ν)

f(Ω, π)

which is exactly (2) = (3).

(3) = (4) : Fix Ω ∈ R. One has:

min
π∈Π(µ,ν)

∫
d2

Ω dπ = min
π∈Π(µ,ν)

∫
‖Ω1/2(x− y)‖2 dπ(x, y)

= min
π∈Π(µ,ν)

∫
‖x− y‖2 d

[
Ω1/2 ⊗ Ω1/2

]
#
π(x, y)

= min
ρ∈Π(Ω

1/2
# µ,Ω

1/2
# ν)

∫
‖x− y‖2 dρ(x, y)

=W2
(

Ω
1/2
# µ,Ω

1/2
# ν

)
where we have used Lemma 6. Taking the maximum over
Ω ∈ R gives the result.

Proof of Lemma 3. We use the fact that the pushforward
by f of a Dirac at x is the Dirac at f(x), and that the
W distance between two Diracs is the Euclidean distance
between the points:

Sk(δx, δy) = max
0�Ω�I

trace(Ω)=k

W
(

Ω1/2
#δx,Ω

1/2
#δy

)
= max

0�Ω�I
trace(Ω)=k

‖Ω1/2(x− y)‖.

Since ‖Ω1/2(x − y)‖ ≤ ‖x − y‖ with equality for any
orthogonal projection matrix Ω onto a subspace E ∈ Gk
such that span(y − x) ⊂ E, the result follows.

Proof of Proposition 2. Let k ∈ JdK and µ, ν ∈
P2(Rd). Let us prove the upper bound on Sk. Using
the change of variable formula and the fact that for any
Ω ∈

{
Ω ∈ Rd×d | 0 � Ω � I ; trace(Ω) = k

}
, Ω1/2 is 1-

Lipschitz,

S2
k(µ, ν)

= max0�Ω�I
trace(Ω)=k

min
π∈Π(µ,ν)

∫
‖Ω1/2(x− y)‖2 dπ(x, y)

≤ max0�Ω�I
trace(Ω)=k

min
π∈Π(µ,ν)

∫
‖x− y‖2 dπ(x, y)

=W2(µ, ν)

which gives the upper bound. For the lower bound, we
define Bk ⊂ Gk the (finite) set of k-dimensional subspaces
of Rd spanned by k vectors of the canonical basis of Rd:

Bk =
{

span(eσ(1), ..., eσ(k)) |σ ∈ Sd

}
.

Let us now bound Sk from below:

S2
k(µ, ν)

= min
π∈Π(µ,ν)

max
0�Ω�I

trace(Ω)=k

∫
‖Ω1/2(x− y)‖2 dπ(x, y)

≥ min
π∈Π(µ,ν)

max
E∈Bk

∫
‖PE(x)− PE(y)‖2 dπ(x, y)

= min
π∈Π(µ,ν)

max
A⊂JdK
|A|=k

∫ ∑
i∈A

(xi − yi)2 dπ(x, y)

= min
π∈Π(µ,ν)

max
A⊂JdK
|A|=k

∑
i∈A

∫
(xi − yi)2 dπ(x, y).

For π ∈ Π(µ, ν),

max
A⊂JdK
|A|=k

∑
i∈A

∫
(xi − yi)2 dπ(x, y)
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is the sum of the k largest elements of I ={∫
(xi − yi)2 dπ(x, y) | i ∈ JdK

}
, so it is greater than k

d
times the sum of all the elements in I:

S2
k(µ, ν) ≥ k

d
min

π∈Π(µ,ν)

∫
‖x− y‖2 dπ(x, y)

=
k

d
W2(µ, ν).

Note that in the case of µ = δ0 and ν = σ, the two inequali-
ties in the proof of the lower bound are equalities, hence the
tight lower bound constant.

Proof of Lemma 4. Let us first prove the lower bound:

S2
k+1(µ, ν) =

k∑
l=1

λl(Vπk+1
) + λk+1(Vπk+1

)

≥
k∑
l=1

λl(Vπk) + λk+1(Vπk+1
)

= S2
k(µ, ν) + λk+1(Vπk+1

).

Let us now prove the upper bound:

S2
k+1(µ, ν) = min

π∈Π(µ,ν)

k+1∑
l=1

λl(Vπ)

≤
k+1∑
l=1

λl(Vπk)

= S2
k(µ, ν) + λk+1(Vπk).

Proof of Propositon 3. Increase is direct using lemma 4,
since for any π ∈ Π(µ, ν), Vπ has only nonnegative eigen-
values.
Let k ∈ Jd− 2K. Then using twice lemma 4,

S2
k+2(µ, ν)− S2

k+1(µ, ν)

≤ λk+2(Vπk+1
)

≤ λk+1(Vπk+1
)

≤ S2
k+1(µ, ν)− S2

k(µ, ν),

which shows that k 7→ S2
k(µ, ν) is concave.

Let k ∈ Jd− 1K. Although the minoration of S2
k+1(µ, ν)−

S2
k(µ, ν) is a direct consequence of concavity, we give a

direct computation using lemma 4:

S2
k+1(µ, ν)− S2

k(µ, ν)

≥ λk+1(Vπk+1
)

≥ 1

d− k − 1

d∑
l=k+2

λl(Vπk+1
)

=
1

d− k − 1

[
d∑
l=1

λl(Vπk+1
)−

k+1∑
l=1

λl(Vπk+1
)

]

≥ 1

d− k − 1

[
W2(µ, ν)− S2

k+1(µ, ν)
]
,

which implies that

(d− k)
[
S2
k+1(µ, ν)− S2

k(µ, ν)
]

≥ W2(µ, ν)− S2
k(µ, ν).

Finally, the majoration of Sk(µ, ν) is a direct consequence
of lemma 4:

S2
k+1(µ, ν) ≤ S2

k(µ, ν) + λk+1(Vπk)

≤ S2
k(µ, ν) + λk(Vπk)

≤ S2
k(µ, ν) +

1

k

k∑
l=1

λl(Vπk)

=
k + 1

k
S2
k(µ, ν).

Proof of Proposition 4. For s, t ∈ [0, 1], put π(s, t) =
(fs, ft)#π

∗ ∈ Π(µs, µt), which is our candidate for an
optimal transport plan. Then

S2
k(µs, µt) ≤

k∑
l=1

λl(Vπ(s,t))

=

k∑
l=1

λl

{∫
[fs(x, y)− ft(x, y)]

[fs(x, y)− ft(x, y)]
T
dπ∗(x, y)

}
=

k∑
l=1

λl
(
(t− s)2Vπ∗

)
= (t− s)2S2

k(µ, ν)

where we have used

fs(x, y)− ft(x, y) = (1− s)x+ sy − (1− t)x− ty
= (t− s)(x− y).

Then for 0 ≤ s < t ≤ 1, using the triangular inequality,

Sk(µ, ν)

≤ Sk(µ, µs) + Sk(µs, µt) + Sk(µt, ν)

≤ (s+ (t− s) + (1− t))Sk(µ, ν) = Sk(µ, ν)

which implies equality everywhere, and in particular opti-
mality for π(s, t). Then for all s, t ∈ [0, 1],

Sk(µs, µt) = |t− s|Sk(µ, ν),

which shows that the curve (µt) has constant speed

|µ′t| = lim
ε→0

Sk(µt+ε, µt)

|ε|
= Sk(µ, ν),
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and that the length of the curve (µt) is

sup

{
n−1∑
i=0

Sk(µti , µti+1
)

∣∣∣∣ n ≥ 1
0 = t0 < ... < tn = 1

}
= Sk(µ, ν),

i.e. that (µt) is a geodesic connecting µ and ν.

Proof of Lemma 5. Although this is a direct consequence
of (Overton & Womersley, 1993), we give an explicit proof.
Fix π ∈ Π(µ, ν). Using the linearity of the trace,

max
0�Ω�I

trace(Ω)=k

∫
d2

Ω dπ = max
0�Ω�I

trace(Ω)=k

trace(ΩVπ),

which is a SDP. Its dual writes

min
s∈R,Z∈Rd×d

Z�0
Z+sI�Vπ

trace(Z) + ks.

Let us write the eigendecomposition of Vπ =
Udiag(λ1, ..., λd)U

T with λ1 ≥ ... ≥ λd. Put
Ω̂ = U diag ([1k,0d−k])UT , Ẑ = Udiag((λ1 −
λk)+, ..., (λd − λk)+)UT and ŝ = λk. Then 0 � Ω̂ � I ,
trace(Ω̂) = k and (ŝ, Ẑ) is admissible for the dual problem,
with corresponding primal and dual values

trace(Ω̂Vπ) =

k∑
l=1

λl,

trace(Ẑ) + kŝ =

k∑
l=1

(λl − λk) + kλk =

k∑
l=1

λl.

We found primal and dual admissible variables that give the
same value, so these variables are optimal. In particular, Ω̂
is solution to

max
0�Ω�I

trace(Ω)=k

∫
d2

Ω dπ.

Proof of Lemma 6. Let E = Im(f) ⊂ Rd and π ∈
Π(µ, ν). Then (f ⊗ f)#π is an admissible transport plan
between f#µ and f#ν. Indeed, for any Borel set A ⊂ E,
(f⊗f)#π(A×E) = π(f−1(A)×f−1(E)) = π(f−1(A)×
Rd) = µ(f−1(A)) = f#µ(A), so (f ⊗ f)#π has first
marginal f#µ, and likewise, has second marginal f#ν, i.e.
(f ⊗ f)#π ∈ Π(f#µ, f#ν).
Conversely, let ρ ∈ Π(f#µ, f#ν). Let us construct π ∈
Π(µ, ν) such that (f ⊗ f)#π = ρ. For any Borel sets
A,B ⊂ Rd, put

π(A×B) =
ρ(f(A)× f(B))µ(A)ν(B)

f#µ(f(A)) f#ν(f(B))

if f#µ(f(A)) 6= 0 and f#µ(f(B)) 6= 0, and π(A,B) = 0
otherwise. Then π ∈ Π(µ, ν). Indeed, for any Borel set
A ⊂ Rd, π(A× Rd) = ρ(f(A)× E) µ(A)

f#µ(f(A)) = µ(A) if
f#µ(f(A)) 6= 0 and π(A × Rd) = 0 if f#µ(f(A)) = 0.
But then, µ(A) ≤ µ(f−1(f(A))) = f#µ(f(A)) = 0 so
µ(A) = 0 = π(A × Rd). The same calculations give the
result for the second marginal.
There remains to prove that (f ⊗ f)#π = ρ. For any
Borel sets A,B ⊂ E, noting that f(f−1(A)) = A and
f(f−1(B)) = B,

(f ⊗ f)#π(A×B) = π(f−1(A)× f−1(B))

= ρ(A×B)
µ(f−1(A))

f#µ(A)

ν(f−1(B))

f#µ(B)

= ρ(A×B)

if f#µ(A) 6= 0 and f#ν(B) 6= 0. Otherwise, (f ⊗
f)#π(A×B) = 0 and ρ(A×B) ≤ min{ρ(A×E), ρ(E×
B)} = min{f#µ(A), f#ν(B)} = 0, so ρ(A × B) =
(f ⊗ f)#π(A×B) = 0. �

Proof of Proposition 5. We endow the Grassmannian
Gk with the metric topology associated with metric d :
(E,F ) 7→ ‖PE − PF ‖, where PE and PF are the linear
projectors onto E and F . Then it is well known that Gk is
compact under this topology.

We only have to show that, for µ, ν ∈ P2(Rd), the map
f : E 7→ W

(
PE#µ, PE#ν

)
is upper semicontinuous. For

any orthogonal projector P , using lemma 6,

W2 (P#µ, P#ν) = min
ρ∈Π(P#µ,P#ν)

∫
‖x− y‖2 dρ(x, y)

= min
π∈Π(µ,ν)

∫
‖x− y‖2 d(PE ⊗ PE)#π(x, y)

= min
π∈Π(µ,ν)

∫
‖P (x− y)‖2 dπ(x, y).

Since for π ∈ Π(µ, ν), the application P 7→
∫
‖P (x −

y)‖2 dπ(x, y) is continuous, the application g : P 7→
W2 (P#µ, P#ν) is upper semicontinuous as the minimum
of continuous functions. As the application h : E 7→ PE is
continuous, and x 7→

√
x is nondecreasing, f =

√
g ◦ h is

upper semicontinuous.

Proof of Lemma 7. Let j ∈ J . Since PEj#
µ = PEj#

ν,
their characteristic functions are equal, i.e. for all t ∈ Rd,∫

exp i〈t|x〉 dPEj#
µ(x) =

∫
exp i〈t|x〉 dPEj#

ν(x)∫
exp i〈t|PEjx〉 dµ(x) =

∫
exp i〈t|PEjx〉 dν(x)∫

exp i〈PEj t|x〉 dµ(x) =
∫

exp i〈PEj t|x〉 dν(x)

i.e. the characteristic functions of µ and ν coincide on Ej ,
for all j ∈ J . Since the subspaces (Ej)j∈J cover the whole
space Rd, µ and ν have the same characteristic functions on
Rd, hence µ = ν.
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Proof of the value of W2(µ, ν) for the Disk to Annulus
setup. Let us define a map T using polar coordinates for
the first two coordinates, and cartesian coordinates for the
remaining d− 2, as follows:

T (r, θ, x3, ..., xd) =
(√

4 + 5r2, θ, x3, ..., xd

)
.

We show that T is an optimal transport map between µ and
ν. First, we show that T#µ = ν. Since T only operates on
the first coordinate and µ and ν only differ on the first coor-
dinate, we only have to prove that T1#µ1 and ν1 have the
same CDF, where T1, µ1 and ν1 stand for the first coordinate
projection of T , µ and ν. For any r ∈ [2, 3]:

PR∼µ1(T1(R) ≤ r) = PR∼µ1(R ≤ T−1
1 (r))

= PR∼µ1

(
R ≤

√
r2 − 4

5

)

=

∫√
r2−4

5

0 x dx∫ 1

0
x dx

=
r2 − 4

5

and

PR∼ν1(R ≤ r) =

∫ r
2
x dx∫ 3

2
x dx

=
r2 − 4

5

which shows that T#µ = ν. Moreover, T is a subgradient of
a convex function, since its gradient is semidefinite positive:

∇T (r, θ, x3, ..., xd) = Diag
(

5r√
4 + 5r2

, 1, ..., 1

)
� 0.

Then by Brenier’s theorem, T is an optimal transport map
between µ and ν, and

W2(µ, ν) =

∫
‖x− T (x)‖2 dµ(x)

= 2

∫ 1

0

(
r −

√
4 + 5r2

)2

r dr

=
14

5
+

8

5
√

5
log

(
3 +
√

5

2

)
≈ 3.48865.

C. Experimental Details
C.1. Additional Experiment: Transport from Disk to

Annulus

Let k∗ ∈ JdK. We now consider µ the uniform distribution
over the k∗-dimensional disk embedded in Rd,

µ = U({x ∈ Rd | ‖(x1, ..., xk∗)‖ ≤ 1,

xi ∈ [0, 1] for i = (k∗ + 1), ..., d})

and ν the uniform distribution over a k∗-dimensional annu-
lus (cylinder) embedded in Rd,

ν = U({x ∈ Rd | 2 ≤ ‖(x1, ..., xk∗)‖ ≤ 3,

xi ∈ [0, 1] for i = (k∗ + 1), ..., d}).

We do the same experiments as for the fragmented hyper-
cube. Based on two empirical distributions µ̂ from µ and ν̂
from ν, we plot in Figure 12 the sequence k 7→ S2

k(µ̂, ν̂),
for different values of k∗. An “elbow” shows at k = k∗,
because the last d − k∗ dimensions only represent noise,
which is recovered in our plot.

Figure 12. S2
k(µ̂, ν̂) depending on the dimension k ∈ JdK, for

k∗ ∈ {2, 4, 7, 10}, where µ̂, ν̂ are empirical measures from µ and
ν respectively with 100 points each. Each curve is the mean over
100 samples, and shaded area show the minimum and maximum
values.

We consider next k∗ = 2, and choose k = 2. We will need
to computeW2(µ, ν). Although (Forrow et al., 2019) seem
to suggest that it is equal to 4, we find a different value :

W2(µ, ν) =
14

5
+

8

5
√

5
log

(
3 +
√

5

2

)
≈ 3.48865.

We plot in Figure 13 the estimation error |W2(µ, ν) −
S2
k(µ̂, ν̂)| depending on the number of points n in the empir-

ical measures µ̂, ν̂ from µ and ν. In Figure 14, we plot the
subspace estimation error ‖Ω∗− Ω̂‖ depending on n, where
Ω∗ is the optimal projection matrix onto span{e1, e2}.

We plot the optimal transport plan (in the sense ofW , Fig-
ure 15 left) and the optimal transport plan (in the sense of
S2) between µ̂ and ν̂ (with n = 250 points each, Figure 15
right).
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Figure 13. Mean estimation error over 500 random samples for
n ∈ {25, 50, 100, 250, 500, 1000}. The shaded areas represent
the 10%-90% and 25%-75% quantiles over the 500 samples.

Figure 14. Mean estimation of the subspace estimation error over
500 samples, depending on n ∈ {25, 50, 100, 250, 500, 1000}.
The shaded areas represent the 10%-90% and 25%-75% quantiles
over the 500 samples.

Figure 15. Disk to annulus, n = 250, d = 30. Optimal map-
ping in the Wasserstein space (left) and in the SRW space (right).
Geodesics in the SRW space are robust to statistical noise.

C.2. Details about Experiment of Section 6.5

The complete vocabulary used consists of the 20000 most
common words in English, except for the 2000 most com-
mon words, hence a total size of 18000 words. All the
words in a movie script that whether do not belong to the
vocabulary list, are digits or begin with a capital letter, are
deleted. The remaining words form a discrete measure in
R300, with the weights proportional to their frequency in
the movie script.


