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Abstract
In this paper, we study two challenges in cluster-
ing analysis, namely, how to cluster multi-view
data and how to perform clustering without pa-
rameter selection on cluster size. To this end, we
propose a novel objective function to project raw
data into one space in which the projection em-
braces the geometric consistency (GC) and the
cluster assignment consistency (CAC). To be spe-
cific, the GC aims to learn a connection graph
from a projection space wherein the data points
are connected if and only if they belong to the
same cluster. The CAC aims to minimize the dis-
crepancy of pairwise connection graphs induced
from different views based on the view-consensus
assumption, i.e., different views could produce
the same cluster assignment structure as they are
different portraits of the same object. Thanks to
the view-consensus derived from the connection
graph, our method could achieve promising per-
formance in learning view-specific representation
and eliminating the heterogeneous gaps across
different views. Furthermore, with the proposed
objective, it could learn almost all parameters
including the cluster number from data without
labor-intensive parameter selection. Extensive
experimental results show the promising perfor-
mance achieved by our method on five datasets
comparing with nine state-of-the-art multi-view
clustering approaches.

1. Introduction
Clustering analysis aims to group unlabeled data into differ-
ent clusters based on their intrinsic similarities, which is a
fundamental task in machine learning. Traditional single-
view clustering methods only consider the data from a sin-
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gle source (Hocking et al., 2011; Elhamifar & Vidal, 2013;
Liu et al., 2016; Flammarion, Nicolas et al., 2017; Shah &
Koltun, 2017; Liu et al., 2019; Peng et al., 2017a; 2018; Liu
et al., 2017), which may be less attractive to some scenarios
due to the heterogeneous properties in data. To be specific,
most real-world data are collected from diverse domains
or obtained from various feature extractors (Zhang et al.,
2019; Liu & Tsang, 2017; Lu et al., 2018). Each domain or
feature extractor is referred to as a particular view, thus lead-
ing to the heterogeneous properties of data. In real-world
applications, the heterogeneous properties always take in
variety of multi-view forms, e.g., 1) text + image + voice,
and 2) local binary pattern (LBP) + scale-invariant feature
transform (SIFT). Kumar et al. (2011); Xu et al. (2015);
Zhang et al. (2017); Yang et al. have proven that simply
applying single-view clustering methods cannot narrow the
heterogeneous gap to achieve desirable results because the
clusters may largely differ in each of the data views. There-
fore, it is highly expected to develop multi-view clustering
(MvC) methods which could group similar objects into the
same cluster and dissimilar objects into different clusters by
utilizing the available multi-view information.

Based on the way to utilize the multi-view information, ex-
isting methods could be roughly classified into the following
categories, namely, canonical correlation analysis (Chaud-
huri et al., 2009), multi-view matrix factorization (Zhang
et al., 2018), multi-view subspace clustering/spectral clus-
tering (Kumar et al., 2011; Cao et al., 2015; Lu et al., 2016;
Zhang et al., 2017), and deep multi-view clustering (An-
drew et al., 2013; Wang et al., 2015; Zhao et al., 2017). The
core commonality of these methods is encapsulating the
complementary information of different views to learn a
shared/common representation followed by a single-view
clustering approach. Xu et al. (2013) provided a compre-
hensive survey and we will introduce these works in related
works with more details.

Although numerous works have been conducted and
achieved significant progress in multi-view clustering, most
of them have suffered from parameter selection issue. In
brief, almost all MvC methods have to seek an optimal com-
bination of parameters including expected cluster number so
that a desirable data partition is obtained. To seek the opti-
mal parameters, some evaluation metrics such as normalized
mutual information (NMI) are used as a performance guid-
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(a) t = 0 on X(1) (b) t = 100 on X(1) (c) t = 0 on X(2) (d) t = 100 on X(2)

Figure 1. Our basic idea. Suppose there are five data points from two views, each view consists of two clusters (rectangle and circle). Light-
colored points denote the original data points {X(v)}2v=1 and deep-colored points denote the corresponding representation {Z(v)}2v=1.
At the initialization period (t = 0), X(v) = Z(v). After the model converged, the representation should incorporate the discrimination.
Our idea is twofold. On one hand, a good representation could be helpful to address the linearly inseparable issue. On the other hand, the
connection graph S(v) for each single view will be more robust and better than view-specific representation Z(v) for achieving cross-view
consensus. In other words, we enforce the connection graph {S(v)}mv=1 to be as similar as possible. Such a cross-view consensus learning
paradigm is remarkably different from existing works which usually enforce {Z(v)}mv=1 to be as similar as possible.

ance, which are based on the label information. In practice,
it is a daunting task to obtain either of the label information
and the expected cluster number, especially, in big data era.

To overcome the aforementioned challenging issue, we pro-
pose a novel multi-view clustering approach, termed as
CrOss-view MatchIng Clustering (COMIC) which could
automatically learn almost all parameters including ex-
pected cluster number in a data-driven way. In brief,
COMIC projects each data point into a space in which two
properties are satisfied, i.e., geometric consistency (GC) and
cluster assignment consistency (CAC) which are specifi-
cally designed for different goals. More specifically, GC
aims to learn a normalized connection graph S(v) for the
v-th view in a learned projection space with the help of
local geometrical consistency W(v). Note that, GC does
not learn a compact representation for each data point like
existing works did. In contrast, the representation Z(v) is
learned from the ambient space and theoretically Z(v) will
collapse to a small number of landmarks, thus leading to
interpretable results. In brief, as the learned representation
are with the same dimensionality of the input space, our
method enjoys the interpretable data partition and repre-
sentation. Different from GC, CAC is proposed to handle
multi-view data by minimizing the discrepancy of the con-
nection graphs {S(v)}mv=1. In other words, different from
most of traditional approaches, our method adopts an end-to-
end pipeline to explicitly optimize representations and their
relationship which is formulated as a connection graph. By
enforcing view consensus on the connection graph instead
of the learned representations, our method embraces the
following advantages. As shown in Fig. 1, the value of the
learning representation Z(v) may remarkably differ in data
views even though a well-established representation learn-

ing algorithm is employed. If enforcing the view-specific
representation as similar as possible, the optimization may
be distorted and useful information probably be lost, thus
giving inferior clustering performance. In contrast, by using
the connection relationship among Z(v) as an invariance
and enforcing them as close as possible, our method could
largely avoid distorting representations, thus boosting data
clustering. Such an idea is easily understood. If two ob-
jects belong to the same class, their connection relationship
will be invariant to different views and different projection
spaces.

2. Cross-view Matching Clustering Without
Parameter Selection

For a given dataset X(v) = [x
(v)
1 ,x

(v)
2 , · · · ,x(v)

n ] ∈
RD(v)×n(v)

, let X(v) denote the dataset sampled from the
v-th view and there are m different views, the proposed
objective function is as below:

L =
∑
v
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Figure 2. An illustration to the proposed COMIC.

and
L2 =

1

2

∑
i,j

∑
v 6=k

(S
(v)
ij − S

(k)
ij )2︸ ︷︷ ︸

cluster assignment consistency

(3)

where z
(v)
i ∈ RD is the learned representation of x

(v)
i ,

which aims to keep two properties, namely, geometric con-
sistency within a single view and cluster assignment consis-
tency across different views. W(v) is a precomputed sim-
ilarity graph to achieve the geometric consistency. In this
paper, we employ mutual k-nearest neighbors connectivity
(m-kNN) to compute W(v) and will elaborate it later. The
symmetric matrix S(v) is the learned connection graph of
which the connected data points are regarded as belonging
to the same cluster. λ(v) and µ(v) are penalty parameters to
balance these terms, which are automatically learned from
data as presented in the following section.

The terms L(v)
1 and L2 are designed for different goals. In-

tuitively, L(v)
1 aims to learn Z(v) and S(v) for each single

view by embracing the geometric consistency on the man-
ifold. In contrast, L2 aims to minimize the discrepancy
of the connection graphs {S(v)}mv=1 since different views
should generate the same connection components. More
specifically, L(v)

1 consists of the reconstruction loss and the
GC constraint. The reconstruction loss performs like the
recent convex clustering (Hocking et al., 2011; Chen et al.,
2015; Flammarion, Nicolas et al., 2017; Shah & Koltun,
2017) which learns Z(v) for X(v) in the ambient space. The
motivation behind of such an idea is that all within-cluster
data points are highly encouraged to collapse to the set of
a small number of landmarks. To facilitate clustering, we
propose the GC constraint to learn the connection graph
S(v) and simultaneously enforce Z(v) lying onto a manifold
charactered by W(v). Note that, the term S

(v)
ij − 1 plays

three roles. First, it will ignore the connection (i, j) that
tends to zero when the connection is established (S(v)

ij → 1)
and be a penalty of one when the connection is disestab-

lished (S(v)
ij → 0). Second, the weight of the connection

graph is constrained into the range of [0, 1] to avoid the scale
variance causing by different views. Third, it could avoid
the trivial solutions such as S(v) = 0 and Z(v) = X(v).

2.1. Optimization

To optimize Z(v) and S(v), we adopt the alternating mini-
mization strategy. To be specific, when Z(v) is fixed, we
compute the derivative of Eq.1 w.r.t. S

(v)
ij as below:

∂L
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Let Eq.4 be zero, then we update S(v) by

S
(v)
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µ(v) +
∑
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ij
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Since
∑

k 6=v S
(v)
ij = m − 1, one could see that if the data

points x
(v)
i and x

(v)
j are sufficiently close (i.e., belonging

to the same cluster), then S
(v)
ij → 1 from Eq.5; Otherwise,

S
(v)
ij → 0. When S(v) is fixed, we drop the terms including

S(v) from Eq.3 and rewrite it as below:
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where ei is an indicator vector with the i-th entry of 1. This
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problem can be efficiently solved by

Z(v)M(v) = X(v), (7)

where
M(v) = I(v) + λ(v)Ω(v), (8)

Ω(v) =
∑

i,j W
(v)
ij (S

(v)
ij )2(e

(v)
i − e

(v)
j )(e

(v)
i − e

(v)
j )> and

I(v) is an identity matrix. To efficiently solve the above
problem, we need the following theorem.

Theorem 1. M(v) defined in Eq.8 is a symmetric and posi-
tive semidefinite matrix.

Proof. As (e(v)
i −e

(v)
j )(e

(v)
i −e

(v)
j )> is a Laplacian matrix,

either of Ω(v) and M(v) is a Laplacian matrix since W
(v)
ij ≥

0, S
(v)
ij ≥ 0, and the sum of Laplacian matrices is also

a Laplacian matrix. In consequence, M(v) is symmetric
and positive semidefinite. Furthermore, one could obtain
that M(v) is symmetric diagonally dominant, i.e., M

(v)
ii ≥∑

i 6=j |M
(v)
ij |.

With Theorem 1, each row of Z(v) can be solved indepen-
dently and in parallel with any one multi-grid solver. In
other words, the computational complexity could be re-
duced from O(

∑m
v=1(n

(v))3) to O(
∑m

v=1(n̂
(v) log n̂(v)),

where n̂(v) denotes the number of nonzero entries of the
vector of M(v).

2.2. Initialization and Implementation Details

Z(v) and S(v) are initialized by X(v) and 1, respectively.
After the model converged, we could obtain the final clus-
ter graph via the following approach. First, we build m
view-specific connection graphs in which z

(v)
i and z

(v)
j are

connected iif ‖z(v)i − z
(v)
j ‖2 ≤ ε(v), where ε(v) is set to

the mean length of the shortest 90% edges in W(v). After
that, we obtain the final connection graph by employing the
voting strategy. To be specific, any two instances belong
to the same cluster iif they mutually connect into a half
of view-specific connection graphs at least. Note that, al-
though the learned S(v) could also be directly emerged into
the final connection graph, we experimentally found that
performance is slightly improved by thresholding the trivial
connections as mentioned above.

2.3. Data-driven Parameter Selection

The proposed algorithm includes five parameters, namely,
λ(v), µ(v), the connectivity of W(v), and the threshold
parameter ε(v) and δ. All these parameters are automati-
cally learned from data. To be exact, as Eq.7 is a linear
least-squares problem, λ(v) balances the reconstruction loss

and the geometric consistency loss. According to (Shah &
Koltun, 2017), we automatically update it as below:

λ(v) =
‖X(v)‖2
‖Ω(v)‖2

, (9)

where Ω(v) = W
(v)
ij (S

(v)
ij )2(e

(v)
i −e

(v)
j )(e

(v)
i −e

(v)
j )>, and

‖ · ‖2 denotes the spectral norm of a matrix. Clearly, the
update of λ(v) only depends on the spectral norm of X(v)

and Ω(v). As ‖X(v)‖2 could be computed at the initial stage
and reused during training, we only need to compute the
largest eigenvalue of Ω(v) for each update.

Regarding to µ(v), we set it to µ(v) = (r(v))2, where r(v) is
the maximal edge length in W(v). Furthermore, ε(v) is set
to be the mean length of the shortest 90% of the edges in
W(v) and δ is the mean of {ε(v)}mv=1.

Regarding to the precomputed similarity graph W(v), we
set the neighbor size to 10 and adopt the cosine distance as
the measurement. In the graph, two nodes are connected iif
each falls into the neighborhood of the other. To achieve
robustness to different views, we set

W
(v)
ij =

∑n(v)

k=1 n
(v)
k

n(v)
√
n
(v)
i n

(v)
j

, (10)

where n(v)i is the number of edges connected to x
(v)
i in the

graph.

Besides the aforementioned five parameters, our method is
capable of automatically determining the cluster number,
which is remarkably different from the popular approaches.
In fact, to the best of our knowledge, there are few multi-
view clustering methods which could escapes from such a
parameter selection trap. Benefiting from the cross-view as-
signment loss L2, the proposed method directly treats each
connected component as a cluster, thus avoiding to specify
the value for the parameter and improving the availability
in practice.

3. Related Works
In this section, we briefly introduce convex clustering and
multi-view clustering, as well as the relationship between
our method and them.

3.1. Convex Clustering

Convex clustering (Hocking et al., 2011; Flammarion, Nico-
las et al., 2017) projects the data point into another space by
incorporating some convex pairwise fusion penalties. Mo-
tivated by the success of convex clustering, Flammarion,
Nicolas et al. (2017); Chen et al. (2015); Shah & Koltun
(2017) have proposed a variety of penalties which result in
regularization paths useful for clustering.
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Algorithm 1 Cross-view Matching Clustering

Input: A given dataset {X(v)}mv=1 from m different
views.
1. Normalize each row of {X(v)}mv=1 to have a unit of
`2-norm to avoid scale difference caused by different
views.
2. Build the similarity graph {W(v)}mv=1 via Eq.10 and
compute the spectral norm of {X(v)}mv=1.
3. Initialize t = 1, Z(v) = X(v) and S(v) = 1.
4. Initialize λ(v), µ(v), ε(v), δ as indicated in Section 2.3.
while |Lt+1 − Lt| ≤ 10−8 or t ≤ 1000 do

Update S(v) using Eq.5.
Update Z(v) using Eq.7.
Update λ(v) as indicated in Section 2.3.
Update t by t+ 1.

end while
output Obtain the clustering result as elaborated in Sec-

tion 2.2.

The major differences between existing convex clustering
approaches and our COMIC are in three-fold. First, our
method does not suffer from the parameter selection is-
sue faced by most of existing convex clustering methods.
Second, these methods can only handle singe-view data,
whereas COMIC could utilize the multi-view information.
Third, they usually enforces some convex penalties such as
`1-norm and the computational complexity is proportional
to the cubic of the dataset. In contrast, our objective func-
tion could be analytically solved, which is more efficient as
analyzed in Section 2.1.

3.2. Multi-view Clustering

The core and commonality of most existing MvC ap-
proaches is utilizing the multi-view information to learn
representation and applying a single-view clustering ap-
proach on the representation. As one of most effective learn-
ing paradigms, canonical correlation analysis explores the
relationship between two views by finding their linear com-
binations and maximally correlating them, which has been
investigated into shallow (Chaudhuri et al., 2009; Wang &
Livescu, 2016) and deep MvC models (Andrew et al., 2013).
Multi-view matrix factorization (Zhang et al., 2018) usu-
ally decomposes each view into two low rank matrices with
some specific constraints and applies k-means to obtain data
partitions. Multi-view subspace clustering (Kumar et al.,
2011; Cao et al., 2015; Lu et al., 2016; Zhang et al., 2017)
utilizes the local/global consistency to learn representation
under the framework of manifold learning. In recent, An-
drew et al. (2013); Wang et al. (2015); Zhao et al. (2017);
Peng et al. (2017b) have devoted to neural network based
MvC by deeply learning a shared representation across dif-
ferent views. Moreover, graph weighting (Nie et al., 2017)

and binary coding (Zhang et al., 2018) have recently been
used for MvC and achieved state-of-the-art performance.

The differences between the aforementioned approaches
and this work are in two-fold. On one hand, most of them
need to know the number of clusters in advance and have to
seek a set of optimal parameters for a better performance.
In contrast, our method does not suffer from such a pa-
rameter selection issue. On the other hand, these methods
usually learn a shared representation for different views
and employ a single-view clustering method to achieve data
clustering. In other words, they treat representation learning
and clustering as two separate steps, which may result in
inferior performance. In contrast, our method is a clustering-
oriented method, which jointly learn the representation and
connection graph. Such an end-to-end pipeline narrows the
gap between representation learning and clustering analysis,
thus benefitting data partition.

4. Experiments
We carry out experiments on five widely-used multi-view
datasets comparing with nine state-of-the-art MvC ap-
proaches in terms of two performance evaluation met-
rics. All the experiments are implemented using MATLAB
2016a/Python 2.7 on a standard Linux Server with an Intel
Xeon 2.10 GHz CPU and 32 GB RAM.

4.1. Experimental Setting

We compare our methods with nine MvC approaches,
namely, the vanilla k-means, the normalized spectral clus-
tering (SC) (Ng et al., 2002), low rank representation
(LRR) (Liu et al., 2016), diversity-induced multi-view
subspace clustering (DiMSC) (Cao et al., 2015), latent
multi-view subspace clustering (Zhang et al., 2017), deep
canonical correlation analysis (DCCA) (Andrew et al.,
2013), self-weighted multi-view clustering (SwMVC) (Nie
et al., 2017), deep canonically correlated autoencoders
(DCCA) (Wang et al., 2015), and binary multi-view cluster-
ing (BMVC) (Zhang et al., 2018). We use the sklearn code
of k-means and SC, and implement our COMIC in python.
Regarding to other seven tested method, we use the code
released by the corresponding authors.

As k-means, SC, and LRR are single-view clustering meth-
ods, we concatenate all views into a single view and then ap-
ply these methods to perform clustering by following the set-
ting in (Zhang et al., 2017). In other words, these three meth-
ods transform multi-view datasets into single-view ones. For
all the above mentioned methods, we tune their parameters
to seek an optimal performance by following the setting in
the original works. In brief, we tune the kernel width for SC
with the parameter range of (0.001, 0.01, 0.1). For LRR,
the value of λ ranges from 0.1 to 6.0 with an interval of
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Table 1. Performance comparison with state of the arts in terms of the NMI score. The number in bold indicates the best result. The
mean score denotes the mean NMI across different datasets.

Method Caltech101 LandUse-21 Scene-15 Still-DB mean score

k-means 35.84 28.85 30.86 11.21 26.69
SC (NIPS’02) 37.62 33.52 26.12 11.36 27.16
LRR (TPAMI’13) 14.62 33.70 34.48 7.81 22.65
DCCA (ICML’13) 46.48 26.92 40.21 11.87 31.37
DCCAE (ICML’15) 45.56 26.97 39.90 10.71 30.79
DiMSC (CVPR’15) 29.05 16.65 14.95 13.81 18.62
LMSC (CVPR’17) 63.55 34.01 38.30 14.27 37.53
SwMC (IJCAI’17) 55.92 31.40 34.46 7.79 32.39
BMVC (TPAMI’18) 64.24 28.69 35.55 5.82 33.58
COMIC 69.25 43.29 46.59 26.03 46.29

Table 2. Performance comparison with state of the arts in terms of the v-measure score. The number in bold indicates the best result.
The mean score denotes the mean v-measure across different datasets.

Method Caltech101 LandUse-21 Scene-15 Still-DB mean score

k-means 35.67 28.82 30.86 11.21 26.64
SC (NIPS’02) 37.50 33.49 26.12 11.36 27.12
LRR (TPAMI’13) 12.26 33.53 34.43 6.67 21.72
DCCA (ICML’13) 46.33 26.62 40.18 11.80 31.23
DCCAE (ICML’15) 45.35 26.60 39.87 10.68 30.63
DiMSC (CVPR’15) 28.87 16.65 14.95 13.81 18.57
LMSC (CVPR’17) 63.26 34.01 38.30 14.27 37.46
SwMC (IJCAI’17) 55.71 29.35 31.39 7.72 31.04
BMVC (TPAMI’18) 64.06 28.62 35.54 5.82 33.51
COMIC 68.60 38.89 48.54 23.02 44.76

0.5. Regarding to DCCA and DCCAE, we adopt the recom-
mended network structure and parameters. For DiMSC, we
seek the optimal λs from (0.001, 0.01, 0.1) and the optimal
λv from (1, 10, 100). For BMVC, we fix the length of code
to 128 and refer to the recommended parameter setting. For
LMSC, we fix the latent representation dimension to 100
and seek the optimal λ from (0.01, 0.1, 1, 10, 100) as sug-
gested. It should be pointed out that, besides the specific
parameters, these baselines need knowing the number of
clusters in advance, whereas COMIC does not suffer from
the parameter selection issue.

We conduct experiments using five popular datasets, namely,
Caltech101, Scene-15, LandUse-21, Still-DB, and MNIST-
USPS. To be specific,

• Caltech101 (Li et al., 2015) contains 2,386 images sam-
pled from 20 classes, which is used to construct a multi-
view dataset by following the setting in (Zhang et al.,
2018). In details, six different features are extracted as
views, including 48-dim Gabor feature, 40-dim wavelet
moments (WM), 254-dim CENTRIST feature, 1,984-
dim HOG feature, 512-dim GIST feature, and 928-dim

LBP feature.

• The used Scene-15 multi-view dataset (Zhang et al.,
2017) consists of 4485 images distributed over 15 in-
door and outdoor scene categories. Three image fea-
tures are used as views, i.e., GIST, PHOG, and LBP.

• The used LandUse-21 dataset (Zhang et al., 2017) con-
sists of satellite images from 21 categories each of
which is with 100 images. The features used are same
to Scene-15.

• The used Still-DB multi-view dataset (Zhang et al.,
2017) consists of 467 images with six classes of actions.
The views consists of three features, i.e., Sift Bow,
Color Sift Bow and Shape context Bow.

• For the MNIST-USPS dataset, we treat USPS and
MNIST as two different views and randomly select
5,000 samples distributed over 10 digits from each
view. The MNIST image is with 784 dimension and
the USPS image is with 256 dimension.

We adopt two metrics to evaluate the clustering performance,
i.e., Normalized Mutual Information (NMI) and v-measure.
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Table 3. Generalization of the COMIC representation across clustering algorithms using the MNIST-USPS dataset. RAW, AE, and
COMIC denote passing raw data, encoder feature, and COMIC feature through these methods, respectively. The number in bold indicates
the best result.

Method ACC NMI ARI v-measure
RAW AE COMIC RAW AE COMIC RAW AE COMIC RAW AE COMIC

k-means 47.52 97.26 98.88 46.35 93.30 96.92 31.09 94.02 97.53 46.35 93.30 96.92
SC 48.98 94.74 97.44 44.28 88.52 94.83 29.27 88.80 94.61 44.28 88.52 94.83
LRR 73.36 97.26 97.76 71.59 93.61 94.55 64.74 94.04 95.09 71.59 93.61 94.55
DCCA 97.42 99.80 99.24 93.60 99.39 97.81 94.35 99.55 98.31 93.60 99.39 97.81
DCCAE 98.00 99.82 99.30 94.70 99.46 97.91 95.60 99.60 98.45 94.70 99.46 97.91
DiMSC 48.34 55.58 60.12 36.02 42.34 52.23 22.03 27.45 32.14 36.01 42.33 52.21
LMSC 78.60 96.94 97.08 78.49 92.64 92.97 70.78 93.36 93.63 78.49 92.64 92.72
SwMC 99.56 99.36 99.74 98.71 98.11 99.18 99.02 98.58 99.42 98.71 98.11 99.18
BMVC 77.60 84.70 71.50 78.75 90.53 73.36 71.17 83.56 59.45 78.74 90.52 73.35
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Figure 3. t-sne visualization on the MNIST-USPS dataset with increasing training iteration.

Higher value of these metrics indicates better clustering
performance. Note that, we do not employ Accuracy or
called Purity score since the metric needs to utilize the
ground truth of cluster size, which is inconsistent with our
setting since COMIC is a parameter selection free clustering
method.

4.2. Comparison with State of The Arts

In this section, we investigate the performance of our
method comparing with nine clustering algorithms includ-
ing three single-view methods (i.e., k-means, SC, and LRR),
four shallow multi-view clustering approaches (i.e., DiMSC,
LMSC, SwMC, and BMVC), and two deep multi-view clus-
tering networks (i.e., DCCA and DCCAE). For ease of
comparison, we also compute the mean score in NMI and v-
measure across different datasets. The results are reported in
Table 1–2 which demonstrates the following observations:

• On the used four datasets, the proposed COMIC re-
markably outperforms the other methods by a consid-
erable margin. In terms of NMI, COMIC is at least
5.01%, 9.28%, 6.38%, and 11.76% higher than the
second best method. In terms of v-measure, the perfor-
mance gain over the second best approach is 4.54%,

4.88%, 8.36%, and 8.75%.

• Interestingly, the second best methods are shallow mod-
els in most cases. To be specific, BMVC, LMSC,
and LMSC achieve the second highest NMI and v-
measure score on Caltech101, LandUse-21, and Still-
DB, respectively. DCCA performs the second best on
Scene-15. The possible reason may be that deep learn-
ing based methods always need a large scale dataset
whereas Caltech101, LandUse-21, and Still-DB are
with relatively small size. Note that, our method is
capable of scaling to a larger dataset. However, we
do not conduct such an evaluation due to over-high
computational cost of LRR, DiMSC, and LMSC.

4.3. Generalization Across Clustering Algorithms

In this section, we evaluate if the representations learned
(i.e., Z(v)) by our COMIC generalize to other MvC ap-
proaches, as well as whether our method could be beneficial
from deep learning. To the end, we conduct experiments
on the MNIST-USPS dataset by performing the following
three tests. To be specific, the first test is directly feeding
the raw data into the tested methods. The second test is pass-
ing the features output by a denoising auto-encoder (AE)
through the methods. The used denoising auto-encoder is
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with the structure of m̂− 500− 500− 2000− 10− 2000−
500− 500− m̂, where m̂ denotes the input dimension and
the dropout rate is fixed to 0.2. The third test is feeding
the above deep features into COMIC and further using the
learned representation Z(v) as features to the tested MvC
approaches. In this experiment, as the tested MvC methods
need specifying the cluster size, we adopt new metrics to
evaluate their performance, namely, Accuracy (ACC) and
Adjusted Rand Index (ARI).

The results are shown in Table 3. One could observe that:

• COMIC remarkably improves the clustering perfor-
mance of k-means, SC, LRR, DiMSC, and LMSC.
Comparing with the AE features, COMIC improves
3.62% on k-means, 6.31% on SC, 0.94% on LRR,
9.89% on DiMSC, 0.33% on LMSC, and 1.07% on
SwMC in terms of NMI.

• Regarding to the other three MvC methods, the
COMIC feature slightly degrades their performance
due to different reasons. To be specific, DCCA and
DCCAE are two deep models and the COMIC feature
is also learned deeply, therefore passing the COMIC
feature through DCCA and DCCAE means passing
raw data into an eight layered encoder network which
probably performs bad due to limited data size. Dif-
ferent from the other evaluated algorithms, the learned
representation by BMVC is binary, which may be ma-
jor reason for the performance degrade of using the
COMIC feature.

4.4. Visualization Analysis

In this section, we conduct analysis on our method by visu-
alizing the representation and the connection graph learned
from the MNIST-USPS dataset with the aforementioned
setting.

To visually illustrate learned representation, we concatenate
the learned representations from the MNIST and USPS
view together and then employ t-sne (Maaten & Hinton,
2008) to reduce the dimensionality to two. As shown in
Fig. 3, the learned representation became more compact and
discriminative with increasing t.

4.5. Convergence Analysis

In this section, we investigate the convergence analysis of
our method by reporting the loss value and the correspond-
ing NMI score with increasing iteration. In this evaluation,
we use the Caltech101 dataset and report the result in Fig. 4.
One could observe that, at the first several iterations, the loss
value remarkably increases and then continuously decrease
before t = 35. The reason for the increasing loss is that
Z(v) is initialized by X(v). Regarding to the NMI score, it

Figure 4. Convergence analysis on the proposed COMIC using
the Caltech101 dataset. The left and right y-axis denote the loss
value and the corresponding NMI score.

increases to 75.30% at t = 17 and then decreases to 70.0%
after t = 24. The result tells us that if we exhaustively tune
the parameters, COMIC would achieve a better performance
than the above reported. In summary, our method achieves
convergence quickly, which takes about two seconds for
each iteration to clustering the dataset.

5. Conclusions
The proposed COMIC algorithm could handle two chal-
lenging issues in practical applications, namely, clustering
multi-view data and clustering without prior of cluster size.
One major difference between existing MvC methods and
COMIC is that the latter achieves cross-view consensus on
view-specific connection graph instead of view-specific rep-
resentation. Extensive experiments verify the effectiveness
of such a learning paradigm. In future, to further facilitate
the performance, we plan to investigate the supervised and
deep extension of COMIC to utilize the available label and
deep neural networks.
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