We define here some notation in addition to that of Section 3 in the main text. We denote by ℓ_{i} the per-instance loss,

$$
\begin{align*}
L^{1}(\mathbf{w}) & =\frac{1}{n} \sum_{i=1}^{n} \ell_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right), \tag{35}\\
\ell_{i}(u) & =-y_{i} \log \sigma(u)-\left(1-y_{i}\right) \log (1-\sigma(u))-\ell_{i}^{*} \tag{36}
\end{align*}
$$

where ℓ_{i}^{*} are constants chosen such that the minimum of ℓ_{i} is 0 , namely $\ell_{i}^{*}=-y_{i} \log y_{i}-\left(1-y_{i}\right) \log \left(1-y_{i}\right)$.

Slightly abusing notation, we write $L(\tau)=L^{1}(\mathbf{w}(\tau))=$ $L\left(\mathbf{W}_{1}(\tau), \ldots, \mathbf{W}_{N}(\tau)\right)$ for the objective value at time τ.
Finally, for a full-rank matrix $\mathbf{A} \in \mathbb{R}^{d \times m}(m \geq 1)$, we denote by $\mathbf{P}_{\mathbf{A}} \in \mathbb{R}^{d \times d}$ the matrix of projection onto the span of A,

$$
\mathbf{P}_{\mathbf{A}}=\left\{\begin{array}{cl}
\mathbf{I}, & m \geq d \tag{37}\\
\mathbf{A}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\boldsymbol{\top}}, & m<d
\end{array}\right.
$$

A. Properties of the Cross-Entropy Loss

Theorem A. 1 (Gradient). The gradient of the cross-entropy loss (35) takes the form

$$
\begin{equation*}
\nabla L^{1}(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n}\left(\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)-y_{i}\right) \cdot \mathbf{x}_{i} \tag{38}
\end{equation*}
$$

It always lies in the data span, $\nabla L^{1}(\mathbf{w}) \in \operatorname{span}(\mathbf{X})$.

Proof. Straightforward calculation.
Theorem A. 2 (Global minima). The global minimum of the cross-entropy loss (35) is 0 and the set of global minimisers is

$$
\begin{equation*}
\left\{\mathbf{w} \in \mathbb{R}^{d}: \mathbf{X}^{\top} \mathbf{w}=\mathbf{X}^{\top} \mathbf{w}_{*}\right\} . \tag{39}
\end{equation*}
$$

Proof. We know that $L^{1} \geq 0$ and $L^{1}\left(\mathbf{w}_{*}\right)=0$, so 0 is the optimal objective value, and the set of global optima consists of all \mathbf{w} such that $L^{1}(\mathbf{w})=0$. The last condition is equivalent to $\forall_{i}: \ell_{i}(\mathbf{w})=0$, which in turn is equivalent to $\forall_{i}: \sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)=\sigma\left(\mathbf{w}_{*}^{\top} \mathbf{x}_{i}\right)$. By monotonicity of σ, this is further equivalent to $\forall_{i}: \mathbf{w}^{\top} \mathbf{x}_{i}=\mathbf{w}_{*}^{\top} \mathbf{x}_{i}$, which is a restatement of (39).

Theorem A. 3 (Restricted strong convexity). Assume \mathbf{X} is full-rank. For any sublevel set $\mathcal{W}=\left\{\mathbf{w}: L^{1}(\mathbf{w}) \leq l\right\}$,
there exists $\mu>0$ such that

$$
\begin{equation*}
L^{1}(\mathbf{v}) \geq L^{1}(\mathbf{w})+\nabla L^{1}(\mathbf{w})^{\top}(\mathbf{v}-\mathbf{w})+\frac{\mu}{2}\|\mathbf{v}-\mathbf{w}\|^{2} \tag{40}
\end{equation*}
$$

for all $\mathbf{w}, \mathbf{v} \in \mathcal{W}$ such that $\mathbf{v}-\mathbf{w} \in \operatorname{span}(\mathbf{X})$.
Proof. Consider the 2nd-order Taylor expansion of L^{1} around \mathbf{w},

$$
\begin{align*}
L^{1}(\mathbf{v})=L^{1}(\mathbf{w}) & +\nabla L^{1}(\mathbf{w})^{\top}(\mathbf{v}-\mathbf{w}) \\
& +\frac{1}{2}(\mathbf{v}-\mathbf{w})^{\top}\left[\nabla^{2} L^{1}(\overline{\mathbf{w}})\right](\mathbf{v}-\mathbf{w}) \tag{41}
\end{align*}
$$

where $\nabla^{2} L^{1}(\overline{\mathbf{w}})$ is the Hessian of L^{1} evaluated at $\overline{\mathbf{w}}$, a point lying between \mathbf{v} and \mathbf{w}. A straightforward calculation shows that the Hessian takes the form

$$
\begin{equation*}
\nabla^{2} L^{1}(\overline{\mathbf{w}})=\mathbf{X D}_{\overline{\mathbf{w}}} \mathbf{X}^{\boldsymbol{\top}} \tag{42}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{D}_{\overline{\mathbf{w}}}=\operatorname{diag}\left[\sigma\left(\overline{\mathbf{w}}^{\boldsymbol{\top}} \mathbf{x}_{1}\right)\left(1-\sigma\left(\overline{\mathbf{w}}^{\boldsymbol{\top}} \mathbf{x}_{1}\right)\right)\right. \\
\left.\quad \ldots, \sigma\left(\overline{\mathbf{w}}^{\boldsymbol{\top}} \mathbf{x}_{n}\right)\left(1-\sigma\left(\overline{\mathbf{w}}^{\boldsymbol{\top}} \mathbf{x}_{n}\right)\right)\right] \tag{43}
\end{align*}
$$

We will now show that there is a constant $\omega>0$ such that

$$
\begin{equation*}
\sigma\left(\overline{\mathbf{w}}^{\top} \mathbf{x}_{i}\right)\left(1-\sigma\left(\overline{\mathbf{w}}^{\top} \mathbf{x}_{i}\right)\right) \geq \omega \tag{44}
\end{equation*}
$$

for all $\overline{\mathbf{w}} \in \mathcal{W}$ and $i \in\{1, \ldots, n\}$, so that we can claim $\mathbf{D}_{\overline{\mathbf{w}}} \succeq \omega \mathbf{I}$, or consequently $\nabla^{2} L^{1}(\overline{\mathbf{w}}) \succeq \omega \mathbf{X X}^{\top}$.
Let $\mathbf{w} \in \mathcal{W}$. The bound on $L^{1}(\mathbf{w})$ implies a bound on $\ell_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)$ for all i,

$$
\begin{equation*}
\ell_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right) \leq n L^{1}(\mathbf{w}) \leq n l . \tag{45}
\end{equation*}
$$

Because ℓ_{i} is convex and $\ell_{i}(u) \rightarrow \infty$ as $u \rightarrow \pm \infty$, we know that $\ell_{i}^{-1}((-\infty, n l])$ is a bounded interval, and the finite union $\cup_{i=1}^{n} \ell_{i}^{-1}((-\infty, n l])$ is also a bounded interval, whose size depends only on $n l$ and the data. Hence, there exists $K>0$ such that $\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}_{i} \in[-K, K]$ for all $\mathbf{w} \in \mathcal{W}$ and $i \in\{1, \ldots, n\}$. The existence of $\omega>0$ satisfying (44) follows.

Now, let us apply $\nabla^{2} L^{1}(\mathbf{w}) \succeq \omega \mathbf{X X}^{\top}$ to lower-bound (41):

$$
\begin{align*}
L^{1}(\mathbf{v}) \geq L^{1}(\mathbf{w})+ & \nabla L^{1}(\mathbf{w})^{\top}(\mathbf{v}-\mathbf{w}) \\
& +\frac{\omega}{2}(\mathbf{v}-\mathbf{w})^{\top} \mathbf{X} \mathbf{X}^{\top}(\mathbf{v}-\mathbf{w}) . \tag{46}
\end{align*}
$$

Consider two cases. If $n \geq d, \mathbf{X X}^{\top}$ is full-rank and $\mathbf{X X}^{\top} \succeq \lambda_{\text {min }} \mathbf{I}$ holds, where $\lambda_{\text {min }}>0$ is the smallest eigenvalue of $\mathbf{X X} \mathbf{X}^{\top}$. Combined with (46), this proves the claim for $n \geq d$ and $\mu=\omega \lambda_{\text {min }}$.
If $n<d, \mathbf{X}^{\top} \mathbf{X}$ is full rank. We can use the assumption $\mathbf{v}-\mathbf{w} \in \operatorname{span}(\mathbf{X})$ to deduce

$$
\begin{align*}
\|\mathbf{v}-\mathbf{w}\|^{2} & =\left\|\mathbf{P}_{\mathbf{X}}(\mathbf{v}-\mathbf{w})\right\|^{2} \\
& =(\mathbf{v}-\mathbf{w})^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}(\mathbf{v}-\mathbf{w}) \tag{47}\\
& \leq \lambda_{\max }(\mathbf{v}-\mathbf{w})^{\top} \mathbf{X} \mathbf{X}^{\top}(\mathbf{v}-\mathbf{w})
\end{align*}
$$

where $\lambda_{\max }>0$ is the largest eigenvalue of $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$. Combined with (46), this proves the claim for $n<d$ and $\mu=\omega / \lambda_{\max }$.
Corollary A. 1 (Restricted Polyak-Lojasiewicz). Assume X is full-rank. For any sublevel set $\mathcal{W}=\left\{\mathbf{w}: L^{1}(\mathbf{w}) \leq l\right\}$, there exists $c>0$ such that

$$
\begin{equation*}
c L^{1}(\mathbf{w}) \leq \frac{1}{2}\left\|\nabla L^{1}(\mathbf{w})\right\|^{2} \tag{48}
\end{equation*}
$$

for all $\mathbf{w} \in \mathcal{W}$.
Proof. Let $\mathbf{w} \in \mathcal{W}$. (If \mathcal{W} is empty, the claim is trivially true.) Theorem A. 3 applied to \mathcal{W} implies that for some $\mu>0$,

$$
\begin{equation*}
L^{1}(\mathbf{v}) \geq L^{1}(\mathbf{w})+\nabla L^{1}(\mathbf{w})^{\top}(\mathbf{v}-\mathbf{w})+\frac{\mu}{2}\|\mathbf{v}-\mathbf{w}\|^{2} \tag{49}
\end{equation*}
$$

for all $\mathbf{v} \in \mathcal{W} \cap \mathcal{V}$ where $\mathcal{V}=\{\mathbf{v}: \mathbf{v}-\mathbf{w} \in \operatorname{span}(\mathbf{X})\}$. Taking $\min _{\mathbf{v} \in \mathcal{W} \cap \mathcal{V}}$ on both sides, then relaxing part of the constraint on the right-hand side yields

$$
\begin{align*}
& \min _{\mathbf{v} \in \mathcal{W} \cap \mathcal{V}} L^{1}(\mathbf{v}) \\
& \quad \geq \min _{\mathbf{v} \in \mathcal{W} \cap \mathcal{V}} L^{1}(\mathbf{w})+\nabla L^{1}(\mathbf{w})^{\top}(\mathbf{v}-\mathbf{w})+\frac{\mu}{2}\|\mathbf{v}-\mathbf{w}\|^{2} \\
& \quad \geq \min _{\mathbf{v} \in \mathcal{V}} L^{1}(\mathbf{w})+\nabla L^{1}(\mathbf{w})^{\top}(\mathbf{v}-\mathbf{w})+\frac{\mu}{2}\|\mathbf{v}-\mathbf{w}\|^{2} . \tag{50}
\end{align*}
$$

Now, the minimum on the left-hand side is equal to 0 and is attained at $\mathbf{v}=\mathbf{w}+\mathbf{P}_{\mathbf{X}}\left(\mathbf{w}_{*}-\mathbf{w}\right)$, as can be seen from Theorem A.2. For the right-hand side, we can substitute $\mathbf{v}=$ $\mathbf{w}+\mathbf{X a}$ for $\mathbf{a} \in \mathbb{R}^{n}$ and find the unconstrained minimum with respect to a. We get

$$
\begin{align*}
0 & \geq L^{1}(\mathbf{w})-\frac{1}{2 \mu} \nabla L^{1}(\mathbf{w})^{\top} \mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \nabla L^{1}(\mathbf{w}) \\
& \geq L^{1}(\mathbf{w})-\frac{\lambda_{\max }}{2 \mu}\left\|\nabla L^{1}(\mathbf{w})\right\|^{2} \tag{51}
\end{align*}
$$

where $\lambda_{\max }>0$ is the largest eigenvalue of $\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$. This yields the result with $c=\mu / \lambda_{\max }$.

B. Proof of Theorem 1

We will prove a supporting lemma, and then the theorem.
Lemma B.1. Assume the student is a directly parameterised linear classifier $(N=1)$ initialised at zero, $\mathbf{w}(0)=\mathbf{0}$. Then, $\mathbf{w}(\tau) \in \operatorname{span}(\mathbf{X})$ for $\tau \in[0, \infty)$.

Proof. Let $\mathbf{q} \in \mathbb{R}^{d}$ be any vector orthogonal to the span of X. It suffices to show that $\mathbf{q}^{\top} \mathbf{w}(\tau)=0$. For that, notice that $\mathbf{q}^{\boldsymbol{\top}} \mathbf{w}(0)=0$ and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\mathbf{q}^{\top} \mathbf{w}(\tau)\right)=-\mathbf{q}^{\top} \nabla L^{1}(\mathbf{w}(\tau))=0 \tag{52}
\end{equation*}
$$

where the last equality follows from the fact that $\nabla L^{1}(\mathbf{w}(\tau)) \in \operatorname{span}(\mathbf{X})$ (Theorem A.1). The claim follows.

Theorem 1. Assume the student is a directly parameterised linear classifier $(N=1)$ with weight vector initialised at zero, $\mathbf{w}(0)=\mathbf{0}$. Then, the student's weight vector fulfills almost surely

$$
\begin{equation*}
\mathbf{w}(t) \rightarrow \hat{\mathbf{w}} \tag{5}
\end{equation*}
$$

for $t \rightarrow \infty$, with

$$
\hat{\mathbf{w}}=\left\{\begin{array}{cl}
\mathbf{w}_{*}, & n \geq d \tag{6}\\
\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{w}_{*}, & n<d
\end{array}\right.
$$

Proof. Recall the time-derivative of L,

$$
\begin{equation*}
L^{\prime}(\tau)=-\left\|\nabla L^{1}(\mathbf{w}(\tau))\right\|^{2} \tag{53}
\end{equation*}
$$

The data matrix \mathbf{X} is almost surely (wrt. $\mathbf{X} \sim P_{\mathbf{x}}^{n}$) full-rank, we can therefore apply Corollary A. 1 to $\mathcal{W}=$ $\left\{\mathbf{w}: L^{1}(\mathbf{w}) \leq L^{1}(\mathbf{0})\right\}$ and $\mathbf{w}(\tau)$ to lower-bound the gradient norm on the right-hand side of (53). We obtain $L^{\prime}(\tau) \leq-c L(\tau)$ for some $c>0$ and all $\tau \in[0, \infty)$, or equivalently,

$$
\begin{equation*}
(\log L(\tau))^{\prime} \leq-c \tag{54}
\end{equation*}
$$

Integrating over $[0, t]$ yields $L(t) \leq L(0) \cdot e^{-c t}$, which proves global convergence in the objective: $L(t) \rightarrow 0$ as $t \rightarrow \infty$.
Now invoke Theorem A. 3 with \mathcal{W} as above, $\mathbf{v}=\mathbf{w}(t)$ and $\mathbf{w}=\hat{\mathbf{w}}$ (we know that both $\mathbf{w}(\tau), \hat{\mathbf{w}} \in \mathcal{W} \cap \operatorname{span}(\mathbf{X})$, partly by Lemma B.1):

$$
\begin{equation*}
L(t) \geq \frac{\mu}{2}\|\mathbf{w}(t)-\hat{\mathbf{w}}\|^{2} \tag{55}
\end{equation*}
$$

Since $L(t) \rightarrow 0$ as $t \rightarrow \infty$, the theorem follows.

C. Proof of Theorem 2

Theorem 2. Let $\hat{\mathbf{w}}$ be defined as in Theorem 1. Assume the student is a deep linear network, initialized such that for some $\epsilon>0$,

$$
\begin{equation*}
\|\mathbf{w}(0)\|<\min \left\{\|\hat{\mathbf{w}}\|, \epsilon^{N}\left(\epsilon^{2}\|\hat{\mathbf{w}}\|^{-\frac{2}{N}}+\|\hat{\mathbf{w}}\|^{2-\frac{2}{N}}\right)^{-\frac{N}{2}}\right\} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{W}_{j+1}(0)^{\top} \mathbf{W}_{j+1}(0)=\mathbf{W}_{j}(0) \mathbf{W}_{j}(0)^{\top} \tag{12}
\end{equation*}
$$

for $j=1, \ldots, N-1$. Then, for $n \geq d$, student's weight vector fulfills almost surely

$$
\begin{equation*}
\mathbf{w}(t) \rightarrow \hat{\mathbf{w}} \tag{14}
\end{equation*}
$$

and for $n<d$,

$$
\begin{equation*}
\|\mathbf{w}(t)-\hat{\mathbf{w}}\| \leq \epsilon \tag{15}
\end{equation*}
$$

for all t large enough.
For the proof, we will need a result by (Arora et al., 2018), which characterises the induced flow on $\mathbf{w}(\tau)$ when running gradient descent on the component matrices \mathbf{W}_{i}.

Lemma C. 1 ((Arora et al., 2018, Claim 2)). If the balancedness condition (13) holds, then

$$
\begin{align*}
\frac{\partial \mathbf{w}(\tau)}{\partial \tau}=-\|\mathbf{w}(\tau)\|^{\frac{2(N-1)}{N}} & \left(\nabla L^{1}(\mathbf{w}(\tau))+\right. \\
& \left.(N-1) \cdot \mathbf{P}_{\mathbf{w}(\tau)} \nabla L^{1}(\mathbf{w}(\tau))\right) \tag{56}
\end{align*}
$$

Proof of Theorem 2. Similarly to the case $N=1$, we start by looking at the time-derivative of L,

$$
\begin{align*}
L^{\prime}(\tau)= & \nabla L^{1}(\mathbf{w}(\tau))^{\top}\left(\frac{\partial \mathbf{w}(\tau)}{\partial \tau}\right) \\
= & -\|\mathbf{w}(\tau)\|^{\frac{2(N-1)}{N}}\left(\left\|\nabla L^{1}(\mathbf{w}(\tau))\right\|^{2}\right. \tag{57}\\
& \left.+(N-1) \cdot\left\|\mathbf{P}_{\mathbf{w}(\tau)} \nabla L^{1}(\mathbf{w}(\tau))\right\|^{2}\right) \\
\leq & -\|\mathbf{w}(\tau)\|^{\frac{2(N-1)}{N}} \cdot\left\|\nabla L^{1}(\mathbf{w}(\tau))\right\|^{2}
\end{align*}
$$

It is non-positive, so $\mathbf{w}(\tau)$ stays within the $L(0)$-sublevel set throughout optimisation,

$$
\begin{equation*}
\mathbf{w}(\tau) \in \mathcal{W}=\left\{\mathbf{w}: L^{1}(\mathbf{w}) \leq L(0)\right\} \tag{58}
\end{equation*}
$$

Also, \mathcal{W} is convex and by Assumption (12) it does not contain 0 . We can therefore take $\delta>0$ to be the distance between \mathcal{W} and $\mathbf{0}$, and it follows that $\|\mathbf{w}(\tau)\| \geq \delta$ for $\tau \in[0, \infty)$.

Now, noting that \mathbf{X} is almost surely full-rank, apply Corollary A. 1 to \mathcal{W} and $\mathbf{w}(\tau)$ to upper-bound the right-hand side of (57),

$$
\begin{equation*}
L^{\prime}(\tau) \leq-c \delta^{\frac{2(N-1)}{N}} L(\tau) \tag{59}
\end{equation*}
$$

Letting $\tilde{c}=c \delta^{\frac{2(N-1)}{N}}$, we get $(\log L(\tau))^{\prime} \leq-\tilde{c}$ and consequently $L(t) \leq L(0) \cdot e^{-\tilde{c} t}$. This proves convergence in the objective, $L(t) \rightarrow 0$ as $t \rightarrow \infty$.

To prove convergence in parameters, we decompose the 'error' $\mathbf{w}(\tau)-\hat{\mathbf{w}}$ into orthogonal components and bound each of them separately,

$$
\begin{align*}
\|\mathbf{w}(\tau)-\hat{\mathbf{w}}\|^{2}=\| & \mathbf{P}_{\mathbf{X}}(\mathbf{w}(\tau)-\hat{\mathbf{w}}) \|^{2} \\
& +\left\|\mathbf{P}_{\mathbf{Q}}(\mathbf{w}(\tau)-\hat{\mathbf{w}})\right\|^{2} \tag{60}
\end{align*}
$$

where the columns of $\mathbf{Q} \in \mathbb{R}^{d \times(d-n)}$ orthogonally complement those of \mathbf{X}. If $n \geq d$, we simply bound the first term and disregard the second one.

To bound the first term, invoke Theorem A. 3 with $\mathcal{W}, \mathbf{v}=$ $\mathbf{P}_{\mathbf{X}} \mathbf{w}(\tau)$ and $\mathbf{w}=\mathbf{P}_{\mathbf{X}} \hat{\mathbf{w}}$. One can check that $L^{1}\left(\mathbf{P}_{\mathbf{X}} \mathbf{u}\right)=$ $L^{1}(\mathbf{u})$ for all $\mathbf{u} \in \mathbb{R}^{d}$, so $\mathbf{P}_{\mathbf{X}} \mathbf{w}(\tau) \in \mathcal{W}$ and our use of the theorem is legal. We obtain

$$
\begin{equation*}
L(\tau) \geq \frac{\mu}{2}\left\|\mathbf{P}_{\mathbf{X}}(\mathbf{w}(\tau)-\hat{\mathbf{w}})\right\|^{2} \tag{61}
\end{equation*}
$$

Since $L(\tau) \rightarrow 0$, it follows that

$$
\begin{equation*}
\left\|\mathbf{P}_{\mathbf{X}}(\mathbf{w}(\tau)-\hat{\mathbf{w}})\right\|^{2} \rightarrow 0 \tag{62}
\end{equation*}
$$

as $\tau \rightarrow \infty$.
For the second term, notice that $\hat{\mathbf{w}} \in \operatorname{span}(\mathbf{X})$, so $\mathbf{P}_{\mathbf{Q}} \hat{\mathbf{w}}$ vanishes and we are left with $\left\|\mathbf{P}_{\mathbf{Q} \mathbf{w}}(\tau)\right\|^{2}$. Denote this quantity $q(\tau)$. Its time derivative is

$$
\begin{align*}
q^{\prime}(\tau)= & 2\left(\mathbf{P}_{\mathbf{Q}} \mathbf{w}(\tau)\right)^{\top}\left(\frac{\partial \mathbf{w}(\tau)}{\partial \tau}\right) \\
= & -2\|\mathbf{w}(\tau)\|^{\frac{2(N-1)}{N}}\left(\mathbf{w}(\tau)^{\top} \mathbf{P}_{\mathbf{Q}} \nabla L^{1}(\mathbf{w}(\tau))+\right. \\
& \left.\frac{(N-1)}{\|\mathbf{w}(\tau)\|^{2}} \cdot \mathbf{w}(\tau)^{\top} \mathbf{P}_{\mathbf{Q}} \mathbf{w}(\tau) \cdot \mathbf{w}(\tau)^{\top} \nabla L^{1}(\mathbf{w}(\tau))\right) \\
= & -2 q(\tau)(N-1)\|\mathbf{w}(\tau)\|^{-2 / N} \mathbf{w}(\tau)^{\top} \nabla L^{1}(\mathbf{w}(\tau)) \tag{63}
\end{align*}
$$

where we have used the fact that $\nabla L^{1}(\mathbf{w}(\tau)) \in \operatorname{span}(\mathbf{X})$ (Theorem A.1) and \mathbf{Q} is orthogonal to \mathbf{X}. Rearranging, we obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\frac{\log q(\tau)}{2(N-1)}\right)=-\|\mathbf{w}(\tau)\|^{-2 / N} \cdot \mathbf{w}(\tau)^{\top} \nabla L^{1}(\mathbf{w}(\tau)) \tag{64}
\end{equation*}
$$

It turns out that the right-hand side expression is integrable in yet another way, namely

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\frac{1}{2 N} \log \right. & \left.\|\mathbf{w}(\tau)\|^{2}\right)= \\
& \|\mathbf{w}(\tau)\|^{-2 / N} \cdot \mathbf{w}(\tau)^{\top} \nabla L^{1}(\mathbf{w}(\tau)) \tag{65}
\end{align*}
$$

Equating the two and integrating over $[0, t]$ yields

$$
\begin{equation*}
\log \frac{q(t)}{q(0)}=\frac{N-1}{N} \cdot \log \frac{\|\mathbf{w}(t)\|^{2}}{\|\mathbf{w}(0)\|^{2}} \tag{66}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{q(t)}{\|\mathbf{w}(t)\|^{2}} \leq\left(\frac{\|\mathbf{w}(0)\|}{\|\mathbf{w}(t)\|}\right)^{2 / N} \tag{67}
\end{equation*}
$$

because $q(0) \leq\|\mathbf{w}(0)\|^{2}$.
We now bound the norm of $\mathbf{w}(t)$. Starting from an orthogonal decomposition similar to (60) and applying (62) with (67), we get

$$
\begin{align*}
\|\mathbf{w}(t)\|^{2} & =\left\|\mathbf{P}_{\mathbf{X} \mathbf{w}}(t)\right\|^{2}+\left\|\mathbf{P}_{\mathbf{Q} \mathbf{w}}(t)\right\|^{2} \\
\limsup _{t \rightarrow \infty}\|\mathbf{w}(t)\|^{2} & \leq\|\hat{\mathbf{w}}\|^{2}+\|\mathbf{w}(0)\|^{\frac{2}{N}} \limsup _{t \rightarrow \infty}\|\mathbf{w}(t)\|^{2-\frac{2}{N}} . \tag{68}
\end{align*}
$$

Denote $\nu:=\limsup _{t \rightarrow \infty}\|\mathbf{w}(t)\|$. By the same orthogonal decomposition, we also know that $\nu^{2} \geq$ $\lim \sup _{t \rightarrow \infty}\left\|\mathbf{P}_{\mathbf{X} \mathbf{w}}(t)\right\|^{2}=\|\hat{\mathbf{w}}\|^{2}>0$, so we can divide both sides above by ν^{2},

$$
\begin{equation*}
1 \leq \frac{\|\hat{\mathbf{w}}\|^{2}}{\nu^{2}}+\frac{\|\mathbf{w}(0)\|^{2 / N}}{\nu^{2 / N}}=: f(\nu) \tag{69}
\end{equation*}
$$

On the right-hand side, we now have a decreasing function of ν that goes to zero as $\nu \rightarrow \infty$. However, evaluated at our specific ν, it is lower-bounded by 1 , implying an implicit upper bound for ν.

How do we find this bound? Suppose we find some constant K such that $f(K) \leq 1$. Then, because f is decreasing, it must be the case that $\nu \leq K$. One such candidate for K is

$$
\begin{equation*}
K=\|\hat{\mathbf{w}}\| \cdot\left(1-\frac{\|\mathbf{w}(0)\|^{2 / N}}{\|\hat{\mathbf{w}}\|^{2 / N}}\right)^{\frac{-N}{2(N-1)}} \tag{70}
\end{equation*}
$$

(Here we have used condition (11): $\|\mathbf{w}(0)\|<\|\hat{\mathbf{w}}\|$.) To check that indeed $f(K) \leq 1$, start from the inequality

$$
\begin{align*}
& (\|\hat{\mathbf{w}}\| / K)^{\frac{2(N-1)}{N}}+\frac{\|\mathbf{w}(0)\|^{2 / N}}{\|\hat{\mathbf{w}}\|^{2 / N}}=1 \\
& \quad \leq\left(1-\frac{\|\mathbf{w}(0)\|^{2 / N}}{\|\hat{\mathbf{w}}\|^{2 / N}}\right)^{\frac{-1}{N-1}}=(\|\hat{\mathbf{w}}\| / K)^{-\frac{2}{N}} \tag{71}
\end{align*}
$$

Taking the leftmost and rightmost expression and multiplying by $(\|\hat{\mathbf{w}}\| / K)^{2 / N}$ yields

$$
\begin{equation*}
f(K)=\frac{\|\hat{\mathbf{w}}\|^{2}}{K^{2}}+\frac{\|\mathbf{w}(0)\|^{2 / N}}{K^{2 / N}} \leq 1 \tag{72}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\|\mathbf{w}(t)\| \leq\|\hat{\mathbf{w}}\| \cdot\left(1-\frac{\|\mathbf{w}(0)\|^{2 / N}}{\|\hat{\mathbf{w}}\|^{2 / N}}\right)^{\frac{-N}{2(N-1)}} \tag{73}
\end{equation*}
$$

Finally, let us turn back to our original goal of bounding $\|\mathbf{w}(\tau)-\hat{\mathbf{w}}\|^{2}$. With (60), (62), (67) and (73), we now know that

$$
\begin{align*}
& \limsup _{t \rightarrow \infty}\|\mathbf{w}(\tau)-\hat{\mathbf{w}}\|^{2} \tag{74}\\
& \leq\|\mathbf{w}(0)\|^{\frac{2}{N}}\|\hat{\mathbf{w}}\|^{\frac{2(N-1)}{N}}\left(1-\frac{\|\mathbf{w}(0)\|^{\frac{2}{N}}}{\|\hat{\mathbf{w}}\|^{\frac{2}{N}}}\right)^{-1} \tag{75}\\
& =\frac{\|\hat{\mathbf{w}}\|^{2+2 / N}}{\|\hat{\mathbf{w}}\|^{2 / N}-\|\mathbf{w}(0)\|^{2 / N}}-\|\hat{\mathbf{w}}\|^{2} \tag{76}
\end{align*}
$$

Hence, if we initialise close enough to zero, as specified by condition (11), we can ensure that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}\|\mathbf{w}(\tau)-\hat{\mathbf{w}}\|^{2}<\epsilon^{2} \tag{77}
\end{equation*}
$$

This concludes the proof.

D. Theorem 3 for Approximate Distillation

We extend Theorem 3 to the setting where the student learns the solution $\hat{\mathbf{w}}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{w}_{*}$ only ϵ-approximately, as is the case for deep linear networks initialised as in Theorem 2 . When $n \geq d$, the teacher's weight vector is recovered exactly and the transfer risk is zero, even when the student is deep. The following theorem therefore only covers the case $n<d$.

Theorem D. 1 (Risk bound for approximate distillation). Let $n<d$. For any training set $\mathbf{X} \in \mathbb{R}^{d \times n}$, let $\hat{h}_{\mathbf{X}}(\mathbf{x})=$ $\mathbb{1}\left\{\hat{\mathbf{w}}_{\epsilon}^{\top} \mathbf{x} \geq 0\right\}$ be a linear classifier whose weight vector is ϵ-close to the distillation solution $\hat{\mathbf{w}}$, i.e. $\left\|\hat{\mathbf{w}}_{\epsilon}-\hat{\mathbf{w}}\right\| \leq \epsilon$, where ϵ is a positive constant such that $\epsilon \leq \frac{1}{2}\|\hat{\mathbf{w}}\|$. Define $\delta:=\sqrt{\frac{2 \pi \epsilon}{\|\hat{\mathbf{w}}\|}}$. Then, it holds for any $\beta \in[0, \pi / 2-\delta]$ that

$$
\begin{equation*}
\underset{\mathbf{x} \sim P_{\mathbf{x}}^{\otimes n}}{\mathbb{E}}\left[R\left(\hat{h}_{\mathbf{X}} \mid P_{\mathbf{x}}, \mathbf{w}_{*}\right)\right] \leq p(\beta)+p(\pi / 2-\delta-\beta)^{n} \tag{78}
\end{equation*}
$$

The result is very similar to Theorem 3 in the main text, the only difference is the constant δ which compensates for the imprecision in learning $\hat{\mathbf{w}}$ by pushing the bound up (recall that p is decreasing). However, as ϵ goes to zero, so does δ and we recover the original bound.
For the proof, we start with a tool for controlling the angle between $\hat{\mathbf{w}}$ and $\hat{\mathbf{w}}_{\epsilon}$. Recall that the angle is defined as

$$
\begin{equation*}
\alpha(\mathbf{w}, \mathbf{v})=\cos ^{-1}\left(\frac{\mathbf{w}^{\top} \mathbf{v}}{\|\mathbf{w}\| \cdot\|\mathbf{v}\|}\right) \tag{79}
\end{equation*}
$$

for $\mathbf{w}, \mathbf{v} \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}$.
Lemma D.1. Let $\mathbf{w}, \mathbf{v} \in \mathbb{R}^{d}$ be such that $\|\mathbf{w}-\mathbf{v}\| \leq \epsilon$, where $\epsilon \leq \frac{1}{2}\|\mathbf{w}\|$. Then $\alpha(\mathbf{w}, \mathbf{v}) \leq \sqrt{\frac{2 \pi \epsilon}{\|\mathbf{w}\|}}$.

Proof of Lemma D.1. The first step is to lower-bound the inner product $\mathbf{w}^{\top} \mathbf{v}$. To that end, we expand and rearrange $\|\mathbf{w}-\mathbf{v}\|^{2} \leq \epsilon^{2}$ to obtain

$$
\begin{equation*}
2 \mathbf{w}^{\top} \mathbf{v} \geq\|\mathbf{w}\|^{2}+\|\mathbf{v}\|^{2}-\epsilon^{2} \tag{80}
\end{equation*}
$$

Now use the triangle relation $\|\mathbf{v}\| \geq\|\mathbf{w}\|-\epsilon$ squared to lower-bound the right-hand side of (80) and get

$$
\begin{equation*}
2 \mathbf{w}^{\top} \mathbf{v} \geq 2\|\mathbf{w}\|^{2}-2 \epsilon\|\mathbf{w}\| \tag{81}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{\mathbf{w}^{\top} \mathbf{v}}{\|\mathbf{w}\| \cdot\|\mathbf{v}\|} \geq \frac{\|\mathbf{w}\|-\epsilon}{\|\mathbf{v}\|} \geq \frac{\|\mathbf{w}\|-\epsilon}{\|\mathbf{w}\|+\epsilon} \geq 1-\frac{2 \epsilon}{\|\mathbf{w}\|} \tag{82}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
1-\frac{2 \epsilon}{\|\mathbf{w}\|} \leq \frac{\mathbf{w}^{\top} \mathbf{v}}{\|\mathbf{w}\| \cdot\|\mathbf{v}\|}=\cos (\alpha(\mathbf{w}, \mathbf{v})) \tag{83}
\end{equation*}
$$

The left-hand side is by assumption non-negative, so we have $\alpha(\mathbf{w}, \mathbf{v}) \in[-\pi / 2, \pi / 2]$. On this domain,

$$
\begin{equation*}
\cos x \leq 1-\frac{x^{2}}{\pi} \tag{84}
\end{equation*}
$$

which lets us deduce

$$
\begin{equation*}
1-\frac{2 \epsilon}{\|\mathbf{w}\|} \leq 1-\frac{\alpha(\mathbf{w}, \mathbf{v})^{2}}{\pi} \tag{85}
\end{equation*}
$$

Rearranging yields the result.

Proof of Theorem D.1. We decompose the expected risk as follows:

$$
\left.\left.\begin{array}{rl}
\underset{\mathbf{x} \sim P_{\mathbf{x}}^{n}}{\mathbb{E}} & {\left[R\left(\hat{h}_{\mathbf{X}} \mid P_{\mathbf{x}}, \mathbf{w}_{*}\right)\right]=\underset{\underset{\mathbf{X} \sim P_{\mathbf{x}}^{n}}{\mathbb{P} \sim P_{\mathbf{x}}}}{\mathbb{P}}\left[\mathbf{w}_{*}^{\top} \mathbf{x} \cdot \hat{\mathbf{w}}_{\epsilon}^{\top} \mathbf{x}<0\right]=} \\
& =\int_{\mathbf{x}: \bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}\right) \geq \beta} \underset{\sim}{\mathbb{X} \sim P_{\mathbf{x}}^{n}}\left[\mathbf{w}_{*}^{\top} \mathbf{x} \cdot \hat{\mathbf{w}}_{\epsilon}^{\top} \mathbf{x}<0 \mid \mathbf{x}\right] \mathrm{d} P_{\mathbf{x}} \\
& +\int_{\mathbf{x}: \bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}\right)<\beta, \mathbf{w}_{*}^{\top} \mathbf{x}>0} \underset{\sim}{\mathbb{X}} \underset{\sim P_{\mathbf{x}}^{n}}{\mathbb{P}}\left[\hat{\mathbf{w}}_{\epsilon}^{\top} \mathbf{x}<0 \mid \mathbf{x}\right] \mathrm{d} P_{\mathbf{x}} \\
& +\int_{\mathbf{x}: \bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}\right)<\beta, \mathbf{w}_{*}^{\top} \mathbf{x}<0} \underset{\sim}{\mathbb{P}}\left[P_{\mathbf{x}}^{n}\right. \tag{86}
\end{array} \hat{\mathbf{w}}_{\epsilon}^{\top} \mathbf{x}>0 \right\rvert\, \mathbf{x}\right] \mathrm{d} P_{\mathbf{x}} .
$$

Let us fix some \mathbf{x} for which $\bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}\right)<\beta$ and $\mathbf{w}_{*}^{\top} \mathbf{x}>0$; for this \mathbf{x} we have $\alpha\left(\mathbf{w}_{*}, \mathbf{x}\right)=\bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}\right)$. Consider the
situation where $\bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}_{i}\right)<\pi / 2-\beta-\delta$ for some i. Then by the triangle inequality, Lemma D. 1 and Lemma 1,

$$
\begin{align*}
\alpha\left(\hat{\mathbf{w}}_{\epsilon}, \mathbf{x}\right) & \leq \alpha\left(\hat{\mathbf{w}}_{\epsilon}, \hat{\mathbf{w}}\right)+\alpha\left(\mathbf{w}_{*}, \hat{\mathbf{w}}\right)+\alpha\left(\mathbf{w}_{*}, \mathbf{x}\right) \tag{87}\\
& \leq \delta+\bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}_{i}\right)+\bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}\right) \tag{88}\\
& <\pi / 2 \tag{89}
\end{align*}
$$

which implies $\hat{\mathbf{w}}_{\epsilon}^{\top} \mathbf{x}>0$, i.e. a correct prediction (same as the teacher's). Conversely, an error can occur only if $\bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}_{i}\right) \geq \pi / 2-\delta-\beta$ for all i. Because \mathbf{x}_{i} are independent, we have

$$
\begin{align*}
& \underset{\mathbf{x} \sim P_{\mathbf{x}}^{n}}{\mathbb{P}}\left[\hat{\mathbf{w}}_{\epsilon}^{\top} \mathbf{x}<0 \mid \mathbf{x}: \bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}\right)<\beta, \mathbf{w}_{*}^{\top} \mathbf{x}>0\right] \\
& \leq \underset{\mathbf{x} \sim P_{\mathbf{x}}^{n}}{\mathbb{P}}\left[\forall_{i}: \bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}_{i}\right) \geq \pi / 2-\delta-\beta\right] \\
&=p(\pi / 2-\delta-\beta)^{n} . \tag{90}
\end{align*}
$$

By a symmetric argument, one can show that

$$
\begin{array}{r}
\underset{\mathbf{x} \sim P_{\mathbf{x}}^{n}}{\mathbb{P}}\left[\hat{\mathbf{w}}_{\epsilon}^{\top} \mathbf{x}>0 \mid \mathbf{x}: \bar{\alpha}\left(\mathbf{w}_{*}, \mathbf{x}\right)<\beta, \mathbf{w}_{*}^{\top} \mathbf{x}<0\right] \\
\leq p(\pi / 2-\delta-\beta)^{n} \tag{91}
\end{array}
$$

Combining (86), (90) and (91) yields the result.

