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Supplementary Material

We define here some notation in addition to that of Section 3
in the main text. We denote by `i the per-instance loss,

L1(w) =
1

n

n∑
i=1

`i(w
ᵀxi), (35)

`i(u) = −yi log σ(u)− (1− yi) log(1− σ(u))− `∗i ,
(36)

where `∗i are constants chosen such that the minimum of `i
is 0, namely `∗i = −yi log yi − (1− yi) log(1− yi).

Slightly abusing notation, we write L(τ) = L1(w(τ)) =
L(W1(τ), . . . ,WN (τ)) for the objective value at time τ .

Finally, for a full-rank matrix A ∈ Rd×m (m ≥ 1), we
denote by PA ∈ Rd×d the matrix of projection onto the
span of A,

PA =

{
I, m ≥ d,

A(AᵀA)−1Aᵀ, m < d.
(37)

A. Properties of the Cross-Entropy Loss
Theorem A.1 (Gradient). The gradient of the cross-entropy
loss (35) takes the form

∇L1(w) =
1

n

n∑
i=1

(σ(wᵀxi)− yi) · xi. (38)

It always lies in the data span,∇L1(w) ∈ span(X).

Proof. Straightforward calculation.

Theorem A.2 (Global minima). The global minimum of the
cross-entropy loss (35) is 0 and the set of global minimisers
is {

w ∈ Rd : Xᵀw = Xᵀw∗
}
. (39)

Proof. We know that L1 ≥ 0 and L1(w∗) = 0, so 0 is
the optimal objective value, and the set of global optima
consists of all w such that L1(w) = 0. The last condition
is equivalent to ∀i : `i(w) = 0, which in turn is equivalent
to ∀i : σ(wᵀxi) = σ(wᵀ

∗xi). By monotonicity of σ, this
is further equivalent to ∀i : wᵀxi = wᵀ

∗xi, which is a
restatement of (39).

Theorem A.3 (Restricted strong convexity). Assume X is
full-rank. For any sublevel set W =

{
w : L1(w) ≤ l

}
,

there exists µ > 0 such that

L1(v) ≥ L1(w) +∇L1(w)ᵀ(v−w) +
µ

2
‖v −w‖2

(40)

for all w,v ∈W such that v −w ∈ span(X).

Proof. Consider the 2nd-order Taylor expansion of L1

around w,

L1(v) = L1(w) +∇L1(w)ᵀ(v −w)

+
1

2
(v −w)ᵀ[∇2L1(w̄)](v −w), (41)

where ∇2L1(w̄) is the Hessian of L1 evaluated at w̄, a
point lying between v and w. A straightforward calculation
shows that the Hessian takes the form

∇2L1(w̄) = XDw̄Xᵀ, (42)

where

Dw̄ = diag[σ(w̄ᵀx1)(1− σ(w̄ᵀx1)),

. . . , σ(w̄ᵀxn)(1− σ(w̄ᵀxn))]. (43)

We will now show that there is a constant ω > 0 such that

σ(w̄ᵀxi)(1− σ(w̄ᵀxi)) ≥ ω (44)

for all w̄ ∈ W and i ∈ {1, . . . , n}, so that we can claim
Dw̄ � ωI, or consequently ∇2L1(w̄) � ωXXᵀ.

Let w ∈ W. The bound on L1(w) implies a bound on
`i(w

ᵀxi) for all i,

`i(w
ᵀxi) ≤ nL1(w) ≤ nl. (45)

Because `i is convex and `i(u) → ∞ as u → ±∞, we
know that `−1

i ((−∞, nl]) is a bounded interval, and the
finite union ∪ni=1`

−1
i ((−∞, nl]) is also a bounded interval,

whose size depends only on nl and the data. Hence, there
exists K > 0 such that wᵀxi ∈ [−K,K] for all w ∈ W

and i ∈ {1, . . . , n}. The existence of ω > 0 satisfying (44)
follows.

Now, let us apply∇2L1(w) � ωXXᵀ to lower-bound (41):

L1(v) ≥ L1(w) +∇L1(w)ᵀ(v −w)

+
ω

2
(v −w)ᵀXXᵀ(v −w). (46)
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Consider two cases. If n ≥ d, XXᵀ is full-rank and
XXᵀ � λminI holds, where λmin > 0 is the smallest
eigenvalue of XXᵀ. Combined with (46), this proves the
claim for n ≥ d and µ = ωλmin.

If n < d, XᵀX is full rank. We can use the assumption
v −w ∈ span(X) to deduce

‖v −w‖2 = ‖PX(v −w)‖2

= (v −w)ᵀX(XᵀX)−1Xᵀ(v −w)

≤ λmax(v −w)ᵀXXᵀ(v −w),

(47)

where λmax > 0 is the largest eigenvalue of (XᵀX)−1.
Combined with (46), this proves the claim for n < d and
µ = ω/λmax.

Corollary A.1 (Restricted Polyak-Lojasiewicz). Assume X
is full-rank. For any sublevel set W =

{
w : L1(w) ≤ l

}
,

there exists c > 0 such that

cL1(w) ≤ 1

2

∥∥∇L1(w)
∥∥2

(48)

for all w ∈W.

Proof. Let w ∈ W. (If W is empty, the claim is trivially
true.) Theorem A.3 applied to W implies that for some
µ > 0,

L1(v) ≥ L1(w)+∇L1(w)ᵀ(v−w)+
µ

2
‖v −w‖2 (49)

for all v ∈ W ∩ V where V = {v : v −w ∈ span(X)}.
Taking minv∈W∩V on both sides, then relaxing part of the
constraint on the right-hand side yields

min
v∈W∩V

L1(v)

≥ min
v∈W∩V

L1(w) +∇L1(w)ᵀ(v −w) +
µ

2
‖v −w‖2

≥ min
v∈V

L1(w) +∇L1(w)ᵀ(v −w) +
µ

2
‖v −w‖2.

(50)

Now, the minimum on the left-hand side is equal to 0 and
is attained at v = w + PX(w∗ −w), as can be seen from
Theorem A.2. For the right-hand side, we can substitute v =
w + Xa for a ∈ Rn and find the unconstrained minimum
with respect to a. We get

0 ≥ L1(w)− 1

2µ
∇L1(w)ᵀX(XᵀX)−1Xᵀ∇L1(w)

≥ L1(w)− λmax

2µ

∥∥∇L1(w)
∥∥2
,

(51)

where λmax > 0 is the largest eigenvalue of X(XᵀX)−1Xᵀ.
This yields the result with c = µ/λmax.

B. Proof of Theorem 1
We will prove a supporting lemma, and then the theorem.

Lemma B.1. Assume the student is a directly parameterised
linear classifier (N = 1) initialised at zero, w(0) = 0.
Then, w(τ) ∈ span(X) for τ ∈ [0,∞).

Proof. Let q ∈ Rd be any vector orthogonal to the span of
X. It suffices to show that qᵀw(τ) = 0. For that, notice
that qᵀw(0) = 0 and

d

dτ
(qᵀw(τ)) = −qᵀ∇L1(w(τ)) = 0, (52)

where the last equality follows from the fact that
∇L1(w(τ)) ∈ span(X) (Theorem A.1). The claim fol-
lows.

Theorem 1. Assume the student is a directly parameterised
linear classifier (N = 1) with weight vector initialised at
zero, w(0) = 0. Then, the student’s weight vector fulfills
almost surely

w(t)→ ŵ, (5)

for t→∞, with

ŵ =

{
w∗, n ≥ d,

X(XᵀX)−1Xᵀw∗, n < d.
(6)

Proof. Recall the time-derivative of L,

L′(τ) = −
∥∥∇L1(w(τ))

∥∥2
. (53)

The data matrix X is almost surely (wrt. X ∼ Pnx )
full-rank, we can therefore apply Corollary A.1 to W ={
w : L1(w) ≤ L1(0)

}
and w(τ) to lower-bound the gra-

dient norm on the right-hand side of (53). We obtain
L′(τ) ≤ −cL(τ) for some c > 0 and all τ ∈ [0,∞), or
equivalently,

(logL(τ))′ ≤ −c. (54)

Integrating over [0, t] yields L(t) ≤ L(0) · e−ct, which
proves global convergence in the objective: L(t) → 0 as
t→∞.

Now invoke Theorem A.3 with W as above, v = w(t) and
w = ŵ (we know that both w(τ), ŵ ∈ W ∩ span(X),
partly by Lemma B.1):

L(t) ≥ µ

2
‖w(t)− ŵ‖2. (55)

Since L(t)→ 0 as t→∞, the theorem follows.
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C. Proof of Theorem 2
Theorem 2. Let ŵ be defined as in Theorem 1. Assume the
student is a deep linear network, initialized such that for
some ε > 0,

‖w(0)‖ < min
{
‖ŵ‖, εN

(
ε2‖ŵ‖−

2
N + ‖ŵ‖2−

2
N

)−N
2
}
,

(11)

L1(w(0)) < L1(0), (12)
Wj+1(0)ᵀWj+1(0) = Wj(0)Wj(0)ᵀ (13)

for j = 1, . . . , N − 1. Then, for n ≥ d, student’s weight
vector fulfills almost surely

w(t)→ ŵ, (14)

and for n < d,
‖w(t)− ŵ‖ ≤ ε, (15)

for all t large enough.

For the proof, we will need a result by (Arora et al., 2018),
which characterises the induced flow on w(τ) when running
gradient descent on the component matrices Wi.

Lemma C.1 ((Arora et al., 2018, Claim 2)). If the balanced-
ness condition (13) holds, then

∂w(τ)

∂τ
= −‖w(τ)‖

2(N−1)
N

(
∇L1(w(τ))+

(N − 1) ·Pw(τ)∇L1(w(τ))
)
. (56)

Proof of Theorem 2. Similarly to the case N = 1, we start
by looking at the time-derivative of L,

L′(τ) =∇L1(w(τ))ᵀ
(
∂w(τ)

∂τ

)
=− ‖w(τ)‖

2(N−1)
N

(∥∥∇L1(w(τ))
∥∥2

+(N − 1) ·
∥∥Pw(τ)∇L1(w(τ))

∥∥2
)

≤− ‖w(τ)‖
2(N−1)

N ·
∥∥∇L1(w(τ))

∥∥2
.

(57)

It is non-positive, so w(τ) stays within the L(0)-sublevel
set throughout optimisation,

w(τ) ∈W =
{
w : L1(w) ≤ L(0)

}
. (58)

Also, W is convex and by Assumption (12) it does not
contain 0. We can therefore take δ > 0 to be the distance
between W and 0, and it follows that ‖w(τ)‖ ≥ δ for
τ ∈ [0,∞).

Now, noting that X is almost surely full-rank, apply Corol-
lary A.1 to W and w(τ) to upper-bound the right-hand side
of (57),

L′(τ) ≤ −cδ
2(N−1)

N L(τ). (59)

Letting c̃ = cδ
2(N−1)

N , we get (logL(τ))′ ≤ −c̃ and conse-
quently L(t) ≤ L(0) · e−c̃t. This proves convergence in the
objective, L(t)→ 0 as t→∞.

To prove convergence in parameters, we decompose the
‘error’ w(τ) − ŵ into orthogonal components and bound
each of them separately,

‖w(τ)− ŵ‖2 = ‖PX(w(τ)− ŵ)‖2

+ ‖PQ(w(τ)− ŵ)‖2, (60)

where the columns of Q ∈ Rd×(d−n) orthogonally comple-
ment those of X. If n ≥ d, we simply bound the first term
and disregard the second one.

To bound the first term, invoke Theorem A.3 with W, v =
PXw(τ) and w = PXŵ. One can check that L1(PXu) =
L1(u) for all u ∈ Rd, so PXw(τ) ∈W and our use of the
theorem is legal. We obtain

L(τ) ≥ µ

2
‖PX(w(τ)− ŵ)‖2. (61)

Since L(τ)→ 0, it follows that

‖PX(w(τ)− ŵ)‖2 → 0 (62)

as τ →∞.

For the second term, notice that ŵ ∈ span(X), so PQŵ

vanishes and we are left with ‖PQw(τ)‖2. Denote this
quantity q(τ). Its time derivative is

q′(τ) = 2(PQw(τ))ᵀ
(
∂w(τ)

∂τ

)
=− 2‖w(τ)‖

2(N−1)
N

(
w(τ)ᵀPQ∇L1(w(τ))+

(N − 1)

‖w(τ)‖2
·w(τ)ᵀPQw(τ) ·w(τ)ᵀ∇L1(w(τ))

)
=− 2q(τ)(N − 1)‖w(τ)‖−2/N

w(τ)ᵀ∇L1(w(τ)),

(63)

where we have used the fact that ∇L1(w(τ)) ∈ span(X)
(Theorem A.1) and Q is orthogonal to X. Rearranging, we
obtain

d

dτ

(
log q(τ)

2(N − 1)

)
= −‖w(τ)‖−2/N ·w(τ)ᵀ∇L1(w(τ)).

(64)
It turns out that the right-hand side expression is integrable
in yet another way, namely

d

dτ

(
1

2N
log ‖w(τ)‖2

)
=

− ‖w(τ)‖−2/N ·w(τ)ᵀ∇L1(w(τ)). (65)
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Equating the two and integrating over [0, t] yields

log
q(t)

q(0)
=
N − 1

N
· log

‖w(t)‖2

‖w(0)‖2
, (66)

which implies

q(t)

‖w(t)‖2
≤
(
‖w(0)‖
‖w(t)‖

)2/N

, (67)

because q(0) ≤ ‖w(0)‖2.

We now bound the norm of w(t). Starting from an orthog-
onal decomposition similar to (60) and applying (62) with
(67), we get

‖w(t)‖2 =‖PXw(t)‖2 + ‖PQw(t)‖2

lim sup
t→∞

‖w(t)‖2 ≤‖ŵ‖2 + ‖w(0)‖
2
N lim sup

t→∞
‖w(t)‖2−

2
N .

(68)

Denote ν := lim supt→∞ ‖w(t)‖. By the same or-
thogonal decomposition, we also know that ν2 ≥
lim supt→∞ ‖PXw(t)‖2 = ‖ŵ‖2 > 0, so we can divide
both sides above by ν2,

1 ≤ ‖ŵ‖
2

ν2
+
‖w(0)‖2/N

ν2/N
=: f(ν). (69)

On the right-hand side, we now have a decreasing function
of ν that goes to zero as ν →∞. However, evaluated at our
specific ν, it is lower-bounded by 1, implying an implicit
upper bound for ν.

How do we find this bound? Suppose we find some constant
K such that f(K) ≤ 1. Then, because f is decreasing, it
must be the case that ν ≤ K. One such candidate for K is

K = ‖ŵ‖ ·

(
1− ‖w(0)‖2/N

‖ŵ‖2/N

) −N
2(N−1)

. (70)

(Here we have used condition (11): ‖w(0)‖ < ‖ŵ‖.) To
check that indeed f(K) ≤ 1, start from the inequality

(‖ŵ‖/K)
2(N−1)

N +
‖w(0)‖2/N

‖ŵ‖2/N
= 1

≤

(
1− ‖w(0)‖2/N

‖ŵ‖2/N

) −1
N−1

= (‖ŵ‖/K)−
2
N . (71)

Taking the leftmost and rightmost expression and multiply-
ing by (‖ŵ‖/K)2/N yields

f(K) =
‖ŵ‖2

K2
+
‖w(0)‖2/N

K2/N
≤ 1. (72)

Hence,

lim sup
t→∞

‖w(t)‖ ≤ ‖ŵ‖ ·

(
1− ‖w(0)‖2/N

‖ŵ‖2/N

) −N
2(N−1)

.

(73)

Finally, let us turn back to our original goal of bounding
‖w(τ)− ŵ‖2. With (60), (62), (67) and (73), we now know
that

lim sup
t→∞

‖w(τ)− ŵ‖2 (74)

≤ ‖w(0)‖
2
N ‖ŵ‖

2(N−1)
N

(
1− ‖w(0)‖

2
N

‖ŵ‖
2
N

)−1

(75)

=
‖ŵ‖2+2/N

‖ŵ‖2/N − ‖w(0)‖2/N
− ‖ŵ‖2. (76)

Hence, if we initialise close enough to zero, as specified by
condition (11), we can ensure that

lim sup
t→∞

‖w(τ)− ŵ‖2 < ε2. (77)

This concludes the proof.

D. Theorem 3 for Approximate Distillation
We extend Theorem 3 to the setting where the student learns
the solution ŵ = X(XᵀX)−1Xᵀw∗ only ε-approximately,
as is the case for deep linear networks initialised as in Theo-
rem 2. When n ≥ d, the teacher’s weight vector is recovered
exactly and the transfer risk is zero, even when the student
is deep. The following theorem therefore only covers the
case n < d.

Theorem D.1 (Risk bound for approximate distillation).
Let n < d. For any training set X ∈ Rd×n, let ĥX(x) =
1{ŵᵀ

ε x ≥ 0} be a linear classifier whose weight vector is
ε-close to the distillation solution ŵ, i.e. ‖ŵε − ŵ‖ ≤ ε,
where ε is a positive constant such that ε ≤ 1

2‖ŵ‖. Define

δ :=
√

2πε
‖ŵ‖ . Then, it holds for any β ∈ [0, π/2− δ] that

E
X∼P⊗n

x

[
R
(
ĥX
∣∣Px,w∗

)]
≤ p(β) + p(π/2− δ − β)n.

(78)

The result is very similar to Theorem 3 in the main text, the
only difference is the constant δ which compensates for the
imprecision in learning ŵ by pushing the bound up (recall
that p is decreasing). However, as ε goes to zero, so does δ
and we recover the original bound.

For the proof, we start with a tool for controlling the angle
between ŵ and ŵε. Recall that the angle is defined as

α(w,v) = cos−1

(
wᵀv

‖w‖ · ‖v‖

)
(79)
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for w,v ∈ Rd \ {0}.
Lemma D.1. Let w,v ∈ Rd be such that ‖w − v‖ ≤ ε,

where ε ≤ 1
2‖w‖. Then α(w,v) ≤

√
2πε
‖w‖ .

Proof of Lemma D.1. The first step is to lower-bound the
inner product wᵀv. To that end, we expand and rearrange
‖w − v‖2 ≤ ε2 to obtain

2wᵀv ≥ ‖w‖2 + ‖v‖2 − ε2. (80)

Now use the triangle relation ‖v‖ ≥ ‖w‖ − ε squared to
lower-bound the right-hand side of (80) and get

2wᵀv ≥ 2‖w‖2 − 2ε‖w‖, (81)

which implies

wᵀv

‖w‖ · ‖v‖
≥ ‖w‖ − ε

‖v‖
≥ ‖w‖ − ε
‖w‖+ ε

≥ 1− 2ε

‖w‖
. (82)

Thus,

1− 2ε

‖w‖
≤ wᵀv

‖w‖ · ‖v‖
= cos(α(w,v)). (83)

The left-hand side is by assumption non-negative, so we
have α(w,v) ∈ [−π/2, π/2]. On this domain,

cosx ≤ 1− x2

π
, (84)

which lets us deduce

1− 2ε

‖w‖
≤ 1− α(w,v)2

π
. (85)

Rearranging yields the result.

Proof of Theorem D.1. We decompose the expected risk as
follows:

E
X∼Pn

x

[
R
(
ĥX
∣∣Px,w∗

)]
= P

X∼Pn
x

x∼Px

[wᵀ
∗x · ŵᵀ

ε x < 0] =

=

∫
x:ᾱ(w∗,x)≥β

P
X∼Pn

x

[wᵀ
∗x · ŵᵀ

ε x < 0|x] dPx

+

∫
x:ᾱ(w∗,x)<β,wᵀ

∗x>0

P
X∼Pn

x

[ŵᵀ
ε x < 0|x] dPx

+

∫
x:ᾱ(w∗,x)<β,wᵀ

∗x<0

P
X∼Pn

x

[ŵᵀ
ε x > 0|x] dPx.

(86)

Let us fix some x for which ᾱ(w∗,x) < β and wᵀ
∗x > 0;

for this x we have α(w∗,x) = ᾱ(w∗,x). Consider the

situation where ᾱ(w∗,xi) < π/2− β− δ for some i. Then
by the triangle inequality, Lemma D.1 and Lemma 1,

α(ŵε,x) ≤ α(ŵε, ŵ) + α(w∗, ŵ) + α(w∗,x) (87)
≤ δ + ᾱ(w∗,xi) + ᾱ(w∗,x) (88)
< π/2, (89)

which implies ŵᵀ
ε x > 0, i.e. a correct prediction (same

as the teacher’s). Conversely, an error can occur only if
ᾱ(w∗,xi) ≥ π/2− δ− β for all i. Because xi are indepen-
dent, we have

P
X∼Pn

x

[ŵᵀ
ε x < 0|x : ᾱ(w∗,x) < β, wᵀ

∗x > 0]

≤ P
X∼Pn

x

[∀i : ᾱ(w∗,xi) ≥ π/2− δ − β]

= p(π/2− δ − β)n.

(90)

By a symmetric argument, one can show that

P
X∼Pn

x

[ŵᵀ
ε x > 0|x : ᾱ(w∗,x) < β, wᵀ

∗x < 0]

≤ p(π/2− δ − β)n. (91)

Combining (86), (90) and (91) yields the result.


