
Supplementary Materials for Temporal Gaussian Mixture Layer for Videos

AJ Piergiovanni 1 Michael S. Ryoo 1

A. Implementation Details
As our base per-segment CNN, we use the I3D (Carreira
& Zisserman, 2017) network pretrained on the ImageNet
and Kinetics (Kay et al., 2017) datasets. I3D obtained state-
of-the-art results on segmented video tasks, and this allows
us to obtain reliable vt. We also use two-stream version of
InceptionV3 (Szegedy et al., 2016) pretrained on Imagenet
and Kinetics as our base per-frame CNN, and compared
them. We chose InceptionV3 as it is deeper than previous
two-stream CNNs such as (Simonyan & Zisserman, 2014;
Feichtenhofer et al., 2016). We extracted frames from the
videos at 25 fps, computed TVL1 (Zach et al., 2007) optical
flow, clipped to [−20, 20]. For InceptionV3, we computed
features for every 3 frames (8 fps). For I3D, every frame was
used as the input. I3D has a temporal stride of 8, resulting in
3 features per second (3 fps). By design, I3D has a temporal
resolution of 99 frames, so each feature is able to capture
up to 99 frames of temporal information.

We implemented our TGM layers as well as other baseline
layers in PyTorch. Our default setting was as follows: for
3-layer models, we set L = 10 for frame-based features
(i.e., InceptionV3) and L = 5 for segment-based features
(i.e., I3D), as each segment already contains some temporal
information. For 1-layer models, we set L = 30 for frame-
based features and L = 15 for segment-based features. We
set M = 16 and Cout = 80 and Cout = 65 for the last
TGM layer. We found these values to work well on a held
out portion of the training set of MultiTHUMOS. In all
models, we used one fully-connected layer at the end to
make the per-frame or per-segment classification.

We trained our models using the Adam (Kingma & Ba,
2014) optimizer with the learning rate set to 0.01. We de-
cayed the learning rate by a factor of 10 after every 10
training epochs. We trained our models for 50 epochs. We
plan to make all our source code and trained models publicly
available once the paper is published.

1Department of Computer Science, Indiana University. Corre-
spondence to: AJ Piergiovanni <ajpiergi@indiana.edu>, Michael
Ryoo <mryoo@indiana.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Table 1. Comparison of various values of M on MultiTHUMOS
and Charades using RGB I3D features. For these experiments, 1
layer was used with L = 15 and Cout = 16.

MultiTHUMOS Charades

M = 2 27.8 15.5
M = 4 33.1 16.2
M = 8 34.8 17.5
M = 16 36.1 17.5
M = 32 35.7 17.1
M = 64 35.8 17.3

Table 2. Comparison of values of Cout on MultiTHUMOS and
Charades using RGB I3D features. For these experiments, 1 layer
was used with L = 15 and M = 16.

MultiTHUMOS Charades

Cout = 1 33.5 16.2
Cout = 4 34.2 17.4
Cout = 8 35.5 17.5
Cout = 16 36.1 17.5
Cout = 32 36.0 17.2
Cout = 64 36.1 17.4
Cout = 80 36.1 17.5

B. Hyperparameter Experiments
We conducted a set of experiments to compare the effects of
the temporal duration, L, number of Gaussians, M , and the
number of output channels, Cout. For these experiments, we
only used the one-stream version of I3D with RGB inputs.

Effect of L: In Table 3, we compare different values of L.
For these experiments, we use M = 16 and Cout = 16. We
find that the 3-layer model with L = 5 performs the best.
With I3D features, this allows the model to capture up to 8
seconds of information. The average activity in MultiTHU-
MOS is 3.3 seconds long and the maximum is 14.7 seconds
long, and with this setting, the model is able to capture
enough temporal context to perform well. Larger values of
L capture too much temporal information, but due to the
Gaussian structure, it does not drastically harm performance.
Figure 3 shows that even with longer kernels, the Gaussians
learn to focus mostly on the center of the interval and cap-
ture the rough duration of the activities. Thus, having too
long intervals does not drastically harm performance, which

Supplementary Materials for Temporal Gaussian Mixture Layer for Videos

Table 3. Effect of L on MultiTHUMOS and Charades using only RGB I3D features. Note that the 3 TGM layer models have larger
temporal resolution than the 1 TGM layer models for the same values of L. We also compare to using standard one-layer 1-D conv layer
with different values of L.

MultiTHUMOS Charades
1 Layer 3 Layers 1-D Conv 1 Layer 3 Layers 1-D Conv

I3D Baseline 22.3 - - 15.3 - -
L = 3 30.2 31.7 26.6 15.5 16.1 15.5
L = 5 32.5 37.2 28.3 15.7 17.8 16.3
L = 10 34.5 35.4 31.7 16.1 18.2 16.6
L = 15 36.1 34.1 32.5 17.5 18.6 16.8
L = 30 32.5 33.9 26.5 18.1 18.9 12.1
L = 50 32.1 33.7 15.4 18.3 18.8 6.7

is in contrast to the standard 1-D convolution. Note that for
Charades, the temporal kernels are learned to capture much
longer temporal duration, as the average activity in charades
is 12.8 seconds and larger values of L perform better.

Figure 3 illustrates examples of the learned TGM kernels
of various lengths. The figure shows that the kernels focus
on short temporal intervals on MultiTHUMOS even if we
make the filters longer, as the activities are an average of
3.3 seconds long. On Charades, the TGM kernels learn
to capture much longer intervals, as the activities are an
average of 12.8 seconds long. We believe that this sug-
gests TGMs are learning to capture information from the
important necessary intervals.

In Table 3, we also report the results of using a standard
1-D conv. layer with different L values. The number of
parameters in our TGM layer is independent of L, however,
with the standard 1-D conv. layer, the number of parameters
increases as L increases. We find that increasing L with
1-D convolution helps for small values of L, but for L > 15,
the performance drastically drops, while TGM layers only
show a small decrease.

Effect of M : In Table 1, we compare different values of
M . For these experiments, we set L = 15 and Cout = 16.
We find that M = 16 performs best, suggesting that smaller
values of M restrict the possible temporal kernels too much.
We also observe that larger values of M performs slightly
worse than M = 16 (but not much), likely because they
introduce more parameters than needed. When M and L
have similar values, it allows the model to learn a sufficient
number of Gaussians and create a diverse range of temporal
kernels. When M is larger than L, it results in learning a
kernel similar to standard 1-D convolution.

Effect of Cout: In Table 2, we compare different values
of Cout. For these experiments, L = 15, we used 1-layer
and M = 16. We find that Cout performs best when set
to 16 or larger on these datasets. Larger values of Cout

Table 4. Comparison of the different forms of temporal convolution
on MultiTHUMOS using RGB I3D features. We set L = 15 and
used 1 layer models for these experiments.

Standard 1-D Convolution (Fig. 1a) 32.5
1-D Conv with 1 Gaussian (Fig. 1b) 28.6

1-D Conv with many Gaussians (Fig. 1c) 33.2
TC-Conv with unconstrained kernel (Fig. 2) 32.8

Our TGM Layer 36.1

seem to capture redundant information, as it does not lower
performance.

C. Comparison of Different Layer Forms
To confirm the various aspects of our design, we conducted
experiments comparing different types of temporal convolu-
tion. In Fig. 1a we illustrate the standard 1-D convolution,
taking D × T input and producing a C × T output, where
D is the number of input channels and C is the number
of output channels. In Fig. 1b, we illustrate the method
of applying a Gaussian mixture kernel as 1-D convolution.
Here, the Gaussian mixture kernel is shared by all D input
channels and we learn a C number of such kernels. In Fig.
1c, we illustrate the approach of applying a Gaussian mix-
ture kernel as 1-D convolution while learning D different
Gaussian mixtures. This is very similar to the standard 1-D
convolution, except that the filter values are constrained to
have the shape of Gaussian mixtures.

Fig. 2 illustrates one more baseline. This is similar to our
full TGM layer with the channel-combination (Fig. 4 in
main paper). However, in this baseline, instead of learning
Gaussian mixtures, we learn Cin · Cout number of 1 × L
kernels. The kernel values are left unconstrained. While
the TGM layer has 2 · M + Cin · Cout · M + Cin · Cout

parameters, this layer has L · Cin · Cout ·M + Cin · Cout,
which is more than the TGM layer.

In Table 4, we compare the results of the various above-

Supplementary Materials for Temporal Gaussian Mixture Layer for Videos

D

LT

D * =
T

1

1-D
Kernel

Input Output

* =

...

(a)

D

LT

D * =
T

1

TGMsInput Output

* =

...

(b)

D

LT

D * =
T

1

TGMsInput Output

* =

...

(c)

1
L

T

D * =

T

D

TGMsInput Output

* =

...

(d)

Figure 1. (a-c) Different forms of 1-D temporal convolutions which take a D× T input and produces a C × T output based on C number
of D × L kernels: (a) the standard 1-D convolution, (b) using Gaussian mixtures for 1-D convolution while sharing Gaussian mixtures
across input channels, and (c) using D different Gaussian mixtures for 1-D convolution. (d) Our TGM layer in its simplest form (i.e.,
1-layer case) applying the 1× L temporal kernel in a 2-D convolutional fashion, maintaining both time and feature axis.

T
D

Cin

Cin

Input 1-D Conv
Kernels

Representation
for each Cin

...

1 1

* =

Cin T

D

Cin

1 1

* =

Cin T

D

T

D

Cout

1x1 Convolution
to combine Cin

Concatenation of Cout
representations

......

1
L

...

T

D
*

*

...

=

T T

D

...

=

1
L

...

T

D
*

*

... ...

=

=

... ...

T T

D

Figure 2. A temporal convolutional layer with channel combination similar to Fig. 4 (in main paper). The difference is that this layer does
not learn Gaussian mixtures, but unconstrained 1-D temporal kernels.

mentioned layers on MultiTHUMOS using RGB I3D fea-
tures. We find that the Fig. 1b method performs poorly,
while the Fig. 1c method slightly outperforms the standard
1-D convolution. The Fig. 2 method is slightly better than
the standard 1-D convolution, but performs worse than Fig.
1c. However, none of these layers perform as well as our
TGM layer, confirming that both the design of learning
Gaussian mixtures and maintaining temporal channel axis
are important for activity detection.

D. Experiments on Additional Datasets
D.1. MLB-YouTube Dataset

D.1.1. DATASET

The MLB-YouTube dataset (Piergiovanni & Ryoo, 2018a)
consists of 20 baseball games from the 2017 MLB post-
season available on YouTube. This dataset consists of over
42 hours of video. For these experiments, we used the con-
tinuous video setting which have 2,126 1-2 minute long
clips. Each clip is densely annotated with the baseball ac-
tivities that occur. There are 8 activity classes: pitch, strike,
ball, swing, hit, foul, hit by pitch, and bunt. Examples of
some of these classes are shown in Fig. 4. Each continuous
clip contains on average of 7.2 activities, giving a total of

over 15,000 activity instances in the dataset.

What makes this dataset challenging is that the variation
between classes is very small. In ActivityNet (Heilbron
et al., 2015), for example, the difference between swimming
and brushing hair is drastic. The background, motion, and
even size of the person in the video is different. However,
in broadcast baseball videos, the difference between a ball
and a strike, or a swing and a bunt, are small. All actions
are recorded from the same camera angle as we can confirm
from Fig. 4.

D.1.2. RESULTS

In Table 5, we compare various approaches on this dataset.
Our TGM layers improve over the baseline by ∼6% (40.1 vs.
34.2). Additionally, we compare to methods using the super-
event representation (Piergiovanni & Ryoo, 2018b), which
previously achieved state-of-the-art performance on several
activity detection datasets. On this dataset, our approach
outperforms the super-event representation, and further the
concatenation of our TGM representation with such super-
event representation performs best by a significant margin
(∼13% compared to the baseline). This suggests that TGMs
and super-event capture different temporal information and
are both useful to the detection task.

Supplementary Materials for Temporal Gaussian Mixture Layer for Videos

MultiTHUMOS L=15 MultiTHUMOS L=30

Charades L=30Charades L=15

Figure 3. Illustration of several learned TGM kernels. On MultiTHUMOS, it learns to focus on shorter intervals to capture shorter events.
On Charades, the Gaussians have a larger σ value, resulting in filters that attend to longer temporal durations.

(a) (b) (c) (d) (e)

Figure 4. Examples of several of the activities in the MLB-YouTube dataset: (a) Pitch, (b) Hit, (c) Bunt, (d) Hit by pitch, (e) No activity.
This shows the difficulty of this dataset, as the difference between hit and bunt, swing and no swing are very small.

We further find that using multiple, standard temporal con-
volution layers leads to worse performance, likely due to
overfitting from the large number of parameters. While us-
ing multiple TGM layers improves performance, confirming
that the Gaussian structure and sparsity constraint benefits
model learning.

D.2. AVA

D.2.1. DATASET

AVA (Gu et al., 2017) is a large-scale video dataset contain-
ing of 80 atomic action classes in 57k video clips. These
clips are drawn from movies. Existing datasets, such as
Charades, have very specific actions that depend on objects,
such as holding a cup vs. holding a picture. In AVA, the ac-
tions are intentionally generic, such as sit, stand, hold, carry,
etc. Further, the AVA dataset is annotated with both spatial
and temporal locations of activities. Since we are interested
in temporal activity detection, we follow the setting of Pier-
giovanni & Ryoo (2018b) and label each frame with the
occurring activities while ignoring the spatial location. We

evaluate performance following the same method as Mul-
tiTHUMOS, Charades and MLB-YouTube by measuring
per-frame mAP.

D.2.2. RESULTS

In Table 6, we present the results of our model. We again
find that temporal convolution and LSTMs provide some
benefit over the baseline, but TGM layers further improve
performance. Again, combining the TGM, which captures
local temporal structure, with super-events which capture
global temporal structure, provides the best performance by
∼ 7.4%.

D.3. Context Gaiting

Context gating (Miech et al., 2017) is an layer designed to
capture relationships between network activations. However,
it is designed for segmented video clip classification, as it
originally takes a fixed-size input. Applying it to variable
length continuous videos in a sliding-window fashion is
possible, and we conducted this experiment with a window

Supplementary Materials for Temporal Gaussian Mixture Layer for Videos

Table 5. Result mAP on the MLB-YouTube dataset using InceptionV3 and I3D to obtain features. Our TGM layers significantly outperform
the baseline models.

Model Spatial Temporal Two-stream

Random 13.4 13.4 13.4

InceptionV3 31.2 31.8 31.9
InceptionV3 + LSTM 32.1 33.5 34.1

InceptionV3 + 1 temporal conv 32.8 34.4 35.2
InceptionV3 + 3 temporal conv 28.4 29.8 30.1

InceptionV3 + super-events 31.5 36.2 39.6
InceptionV3 + 1 TGM 32.4 36.3 37.4
InceptionV3 + 3 TGM 33.2 38.2 38.2

InceptionV3 + 3 TGM+super-events 34.6 42.4 42.9

I3D 33.8 35.1 34.2
I3D + LSTM 36.2 37.3 39.4

I3D + 1 temporal conv 37.3 38.6 39.9
I3D + 3 temporal conv 32.4 34.6 35.6

I3D + super-events 38.7 38.6 39.1
I3D + 1 TGM 35.5 37.5 38.5
I3D + 3 TGM 36.5 38.4 40.1

I3D + 3 TGM+super-events 39.4 46.0 47.1

Table 6. Results on AVA dataset with the temporal annotation-
only setting (i.e., frame classification without using bounding box
training labels).

mAP

Random 2.65
I3D baseline 7.5

I3D + 3 temporal conv. layers 7.9
I3D + LSTM 7.8

I3D + super-events(Piergiovanni & Ryoo, 2018b) 9.8
I3D + 1 TGMs 11.2
I3D + 3 TGMs 14.5

I3D + 3 TGMs + super-events 14.9

size of 30 (same temporal resolution as ours). When context
gating is applied on top of I3D features, it gives 35.8 on
MultiTHUMOS, lower than ours (44.3).

References
Carreira, J. and Zisserman, A. Quo vadis, action recogni-

tion? a new model and the kinetics dataset. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Feichtenhofer, C., Pinz, A., and Zisserman, A. Convolu-
tional two-stream network fusion for video action recogni-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1933–1941,
2016.

Gu, C., Sun, C., Vijayanarasimhan, S., Pantofaru, C., Ross,
D. A., Toderici, G., Li, Y., Ricco, S., Sukthankar, R.,
Schmid, C., and Malik, J. AVA: A video dataset of spatio-
temporally localized atomic visual actions. arXiv preprint
arXiv:1705.08421, 2017.

Heilbron, F. C., Escorcia, V., Ghanem, B., and Niebles,
J. C. Activitynet: A large-scale video benchmark for hu-
man activity understanding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 961–970, 2015.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier,
C., Vijayanarasimhan, S., Viola, F., Green, T., Back, T.,
Natsev, P., et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Supplementary Materials for Temporal Gaussian Mixture Layer for Videos

Miech, A., Laptev, I., and Sivic, J. Learnable pooling with
context gating for video classification. arXiv preprint
arXiv:1706.06905, 2017.

Piergiovanni, A. and Ryoo, M. S. Fine-grained activity
recognition in baseball videos. In CVPR Workshop on
Computer Vision in Sports, 2018a.

Piergiovanni, A. and Ryoo, M. S. Learning latent super-
events to detect multiple activities in videos. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018b.

Simonyan, K. and Zisserman, A. Two-stream convolutional
networks for action recognition in videos. In Advances
in Neural Information Processing Systems (NIPS), pp.
568–576, 2014.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. Rethinking the inception architecture for com-
puter vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
2818–2826, 2016.

Zach, C., Pock, T., and Bischof, H. A duality based ap-
proach for realtime tv-l 1 optical flow. In Joint Pattern
Recognition Symposium, pp. 214–223. Springer, 2007.

