APPENDIX
 SGD: General Analysis and Improved Rates

A. Elementary Results

In this section we collect some elementary results; some of them we use repeatedly.
Proposition A.1. Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be L_{ϕ}-smooth, and assume it has a minimizer x^{*} on \mathbb{R}^{d}. Then

$$
\left\|\nabla \phi(x)-\nabla \phi\left(x^{*}\right)\right\|^{2} \leq 2 L_{\phi}\left(\phi(x)-\phi\left(x^{*}\right)\right) .
$$

Proof. Lipschitz continuity of the gradient implies that

$$
\phi(x+h) \leq \phi(x)+\langle\nabla \phi(x), h\rangle+\frac{L_{\phi}}{2}\|h\|^{2} .
$$

Now plugging $h=-\frac{1}{L_{\phi}} \nabla \phi(x)$ into the above inequality, we get $\frac{1}{2 L_{\phi}}\|\nabla \phi(x)\|^{2} \leq \phi(x)-\phi(x+h) \leq \phi(x)-\phi\left(x^{*}\right)$. It remains to note that $\nabla \phi\left(x^{*}\right)=0$.

In this section we summarize some elementary results which we use often in our proofs. We do not claim novelty; we but we include them for completeness and clarity.
Lemma A. 2 (Double counting). Let $a_{i, C} \in \mathbb{R}$ for $i=1, \ldots, n$ and $C \in \mathcal{C}$, where \mathcal{C} is some collection of subsets of $[n]$. Then

$$
\begin{equation*}
\sum_{C \in \mathcal{C}} \sum_{i \in C} a_{i, C}=\sum_{i=1}^{n} \sum_{C \in \mathcal{C}: i \in C} a_{i, C} . \tag{44}
\end{equation*}
$$

Lemma A. 3 (Complexity bounds). Let $E>0,0<\rho \leq 1$ and $0 \leq c<1$. If $k \in \mathbb{N}$ satisfies

$$
\begin{equation*}
k \geq \frac{1}{1-\rho} \log \left(\frac{E}{(1-c)}\right) \tag{45}
\end{equation*}
$$

then

$$
\begin{equation*}
\rho^{k} \leq(1-c) E . \tag{46}
\end{equation*}
$$

Proof. Taking logarithms and rearranging (46) gives

$$
\begin{equation*}
\log \left(\frac{E}{1-c}\right) \leq k \log \left(\frac{1}{\rho}\right) . \tag{47}
\end{equation*}
$$

Now using that $\log \left(\frac{1}{\rho}\right) \geq 1-\rho$, for $0<\rho \leq 1$ gives (45).

A.1. The iteration complexity 12 of Theorem 3.1

To analyse the iteration complexity, let $\epsilon>0$ and choosing the stepsize so that $\frac{2 \gamma \sigma^{2}}{\mu} \leq \frac{1}{2} \epsilon$, gives 111. Next we choose k so that

$$
(1-\gamma \mu)^{k}\left\|r^{0}\right\|^{2} \leq \frac{1}{2} \epsilon .
$$

Taking logarithms and re-arranging the above gives

$$
\begin{equation*}
\log \left(\frac{2\left\|r^{0}\right\|^{2}}{\epsilon}\right) \leq k \log \left(\frac{1}{1-\gamma \mu}\right) . \tag{48}
\end{equation*}
$$

Now using that $\log \left(\frac{1}{\rho}\right) \geq 1-\rho$, for $0<\rho \leq 1$ gives

$$
\begin{align*}
k & \geq \frac{1}{\gamma \mu} \log \left(\frac{2\left\|r^{0}\right\|^{2}}{\epsilon}\right) \\
& \stackrel{\text { I1 }}{=} \frac{1}{\mu} \max \left\{2 \mathcal{L}, \frac{4 \sigma^{2}}{\epsilon \mu}\right\} \log \left(\frac{2\left\|r^{0}\right\|^{2}}{\epsilon}\right) \tag{49}
\end{align*}
$$

Which concludes the proof.

B. Proof of Lemma 2.4

For brevity, let us write $\mathbb{E}[\cdot]$ instead of $\mathbb{E}_{\mathcal{D}}[\cdot]$. Then

$$
\begin{aligned}
\mathbb{E}\left\|\nabla f_{v}(x)\right\|^{2} & =\mathbb{E}\left\|\nabla f_{v}(x)-\nabla f_{v}\left(x^{*}\right)+\nabla f_{v}\left(x^{*}\right)\right\|^{2} \\
& \leq 2 \mathbb{E}\left\|\nabla f_{v}(x)-\nabla f_{v}\left(x^{*}\right)\right\|^{2}+2 \mathbb{E}\left\|\nabla f_{v}\left(x^{*}\right)\right\|^{2} \\
& \leq 4 \mathcal{L}\left[f(x)-f\left(x^{*}\right)\right]+2 \mathbb{E}\left\|\nabla f_{v}\left(x^{*}\right)\right\|^{2} .
\end{aligned}
$$

The first inequality follows from the estimate $\|a+b\|^{2} \leq 2\|a\|^{2}+2\|b\|^{2}$, and the second inequality follows from (7).

C. Proof of Theorem 3.1

Proof. Let $r^{k}=x^{k}-x^{*}$. From (6), we have

$$
\begin{aligned}
\left\|r^{k+1}\right\|^{2} & \stackrel{6}{=}\left\|x^{k}-x^{*}-\gamma \nabla f_{v^{k}}\left(x^{k}\right)\right\|^{2} \\
& =\left\|r^{k}\right\|^{2}-2 \gamma\left\langle r^{k}, \nabla f_{v^{k}}\left(x^{k}\right)\right\rangle+\gamma^{2}\left\|\nabla f_{v^{k}}\left(x^{k}\right)\right\|^{2}
\end{aligned}
$$

Taking expectation conditioned on x^{k} we obtain:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left\|r^{k+1}\right\|^{2} \stackrel{\sqrt[5]{=}}{=} & \left\|r^{k}\right\|^{2}-2 \gamma\left\langle r^{k}, \nabla f\left(x^{k}\right)\right\rangle \\
& +\gamma^{2} \mathbb{E}_{\mathcal{D}}\left\|\nabla f_{v^{k}}\left(x^{k}\right)\right\|^{2} \\
\leq & (1-\gamma \mu)\left\|r^{k}\right\|^{2}-2 \gamma\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] \\
& +\gamma^{2} \mathbb{E}_{\mathcal{D}}\left\|\nabla f_{v^{k}}\left(x^{k}\right)\right\|^{2}
\end{aligned}
$$

Taking expectations again and using Lemma 2.4

$$
\begin{aligned}
\mathbb{E}\left\|r^{k+1}\right\|^{2} \leq & (1-\gamma \mu) \mathbb{E}\left\|r^{k}\right\|^{2}+2 \gamma^{2} \sigma^{2} \\
& +2 \gamma(2 \gamma \mathcal{L}-1) \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] \\
\leq & (1-\gamma \mu) \mathbb{E}\left\|r^{k}\right\|^{2}+2 \gamma^{2} \sigma^{2}
\end{aligned}
$$

where we used in the last inequality that $2 \gamma \mathcal{L} \leq 1$ since $\gamma \leq \frac{1}{2 \mathcal{L}}$. Recursively applying the above and summing up the resulting geometric series gives

$$
\begin{align*}
\mathbb{E}\left\|r^{k}\right\|^{2} & \leq(1-\gamma \mu)^{k}\left\|r^{0}\right\|^{2}+2 \sum_{j=0}^{k-1}(1-\gamma \mu)^{j} \gamma^{2} \sigma^{2} \\
& \leq(1-\gamma \mu)^{k}\left\|r^{0}\right\|^{2}+\frac{2 \gamma \sigma^{2}}{\mu} \tag{50}
\end{align*}
$$

To obtain an iteration complexity result from the above, we use standard techniques as shown in Section A.1.

D. Proof of Theorem 3.2

Proof. Let $\gamma_{k}:=\frac{2 k+1}{(k+1)^{2} \mu}$ and let k^{*} be an integer that satisfies $\gamma_{k^{*}} \leq \frac{1}{2 \mathcal{L}}$. In particular this holds for

$$
k^{*} \geq\lceil 4 \mathcal{K}-1\rceil
$$

SGD: General Analysis and Improved Rates

Note that γ_{k} is decreasing in k and consequently $\gamma_{k} \leq \frac{1}{2 \mathcal{L}}$ for all $k \geq k^{*}$. This in turn guarantees that 50) holds for all $k \geq k^{*}$ with γ_{k} in place of γ, that is

$$
\begin{equation*}
\mathbb{E}\left\|r^{k+1}\right\|^{2} \leq \frac{k^{2}}{(k+1)^{2}} \mathbb{E}\left\|r^{k}\right\|^{2}+\frac{2 \sigma^{2}}{\mu^{2}} \frac{(2 k+1)^{2}}{(k+1)^{4}} \tag{51}
\end{equation*}
$$

Multiplying both sides by $(k+1)^{2}$ we obtain

$$
\begin{aligned}
(k+1)^{2} \mathbb{E}\left\|r^{k+1}\right\|^{2} & \leq k^{2} \mathbb{E}\left\|r^{k}\right\|^{2}+\frac{2 \sigma^{2}}{\mu^{2}}\left(\frac{2 k+1}{k+1}\right)^{2} \\
& \leq k^{2} \mathbb{E}\left\|r^{k}\right\|^{2}+\frac{8 \sigma^{2}}{\mu^{2}}
\end{aligned}
$$

where the second inequality holds because $\frac{2 k+1}{k+1}<2$. Rearranging and summing from $t=k^{*} \ldots k$ we obtain:

$$
\begin{equation*}
\sum_{t=k^{*}}^{k}\left[(t+1)^{2} \mathbb{E}\left\|r^{t+1}\right\|^{2}-t^{2} \mathbb{E}\left\|r^{t}\right\|^{2}\right] \leq \sum_{t=k^{*}}^{k} \frac{8 \sigma^{2}}{\mu^{2}} \tag{52}
\end{equation*}
$$

Using telescopic cancellation gives

$$
(k+1)^{2} \mathbb{E}\left\|r^{k+1}\right\|^{2} \leq\left(k^{*}\right)^{2} \mathbb{E}\left\|r^{k^{*}}\right\|^{2}+\frac{8 \sigma^{2}\left(k-k^{*}\right)}{\mu^{2}}
$$

Dividing the above by $(k+1)^{2}$ gives

$$
\begin{equation*}
\mathbb{E}\left\|r^{k+1}\right\|^{2} \leq \frac{\left(k^{*}\right)^{2}}{(k+1)^{2}} \mathbb{E}\left\|r^{k^{*}}\right\|^{2}+\frac{8 \sigma^{2}\left(k-k^{*}\right)}{\mu^{2}(k+1)^{2}} \tag{53}
\end{equation*}
$$

For $k \leq k^{*}$ we have that (50) holds, which combined with (53), gives

$$
\begin{align*}
\mathbb{E}\left\|r^{k+1}\right\|^{2} & \leq \frac{\left(k^{*}\right)^{2}}{(k+1)^{2}}\left(1-\frac{\mu}{2 \mathcal{L}}\right)^{k^{*}}\left\|r^{0}\right\|^{2} \\
& +\frac{\sigma^{2}}{\mu^{2}(k+1)^{2}}\left(8\left(k-k^{*}\right)+\frac{\left(k^{*}\right)^{2}}{\mathcal{K}}\right) \tag{54}
\end{align*}
$$

Choosing k^{*} that minimizes the second line of the above gives $k^{*}=4\lceil\mathcal{K}\rceil$, which when inserted into (54) becomes

$$
\begin{align*}
\mathbb{E}\left\|r^{k+1}\right\|^{2} \leq & \frac{16\lceil\mathcal{K}\rceil^{2}}{(k+1)^{2}}\left(1-\frac{1}{2 \mathcal{K}}\right)^{4\lceil\mathcal{K}\rceil}\left\|r^{0}\right\|^{2} \\
& +\frac{\sigma^{2}}{\mu^{2}} \frac{8(k-2\lceil\mathcal{K}\rceil)}{(k+1)^{2}} \\
\leq & \frac{16\lceil\mathcal{K}\rceil^{2}}{e^{2}(k+1)^{2}}\left\|r^{0}\right\|^{2}+\frac{\sigma^{2}}{\mu^{2}} \frac{8}{k+1} \tag{55}
\end{align*}
$$

where we have used that $\left(1-\frac{1}{2 x}\right)^{4 x} \leq e^{-2}$ for all $x \geq 1$.

E. Proof of Theorem 3.6

Proof. Since $v_{i}=v_{i}(S)=\mathbf{1}_{(i \in S)} \frac{1}{p_{i}}$. and since f_{i} is \mathbf{M}_{i}-smooth, the function

$$
\begin{equation*}
f_{v}(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x) v_{i}=\frac{1}{n} \sum_{i \in S} \frac{f_{i}(x)}{p_{i}} \tag{56}
\end{equation*}
$$

is L_{S}-smooth where

$$
L_{S}:=\frac{1}{n} \lambda_{\max }\left(\sum_{i \in S} \frac{\mathbf{M}_{i}}{p_{i}}\right)
$$

We also define the following smoothness related quantities

$$
\begin{equation*}
\mathcal{L}_{i}:=\sum_{C: i \in C} \frac{p_{C}}{p_{i}} L_{C}, \quad \mathcal{L}_{\max }:=\max _{i} \mathcal{L}_{i}, \text { and; } \quad L_{\max }=\max _{i \in[n]} \lambda_{\max }\left(\mathbf{M}_{i}\right) \tag{57}
\end{equation*}
$$

Since the f_{i} 's are convex and the sampling vector $v \in \mathbb{R}_{+}^{d}$ has positive elements, each realization of f_{v} is convex and smooth, thus it follows from equation (2.1.7) in Theorem 2.1.5 in (Nesterov, 2013) that

$$
\begin{equation*}
\left\|\nabla f_{v}(x)-\nabla f_{v}(y)\right\|^{2} \leq 2 L_{S}\left(f_{v}(x)-f_{v}(y)-\left\langle\nabla f_{v}(y), x-y\right\rangle\right) \tag{58}
\end{equation*}
$$

Taking expectation in (58) gives

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\nabla f_{v}(x)-\nabla f_{v}(y)\right\|^{2}\right] \quad \leq 2 \sum_{C} p_{C} L_{C}\left(f_{v(C)}(x)-f_{v(C)}(y)-\left\langle\nabla f_{v(C)}(y), x-y\right\rangle\right) \\
& \stackrel{56}{=} 2 \sum_{C} p_{C} L_{C} \sum_{i \in C} \frac{1}{n p_{i}}\left(f_{i}(x)-f_{i}(y)-\left\langle\nabla f_{i}(y), x-y\right\rangle\right) \\
& \stackrel{\text { Lemma A.2 }}{=} \frac{2}{n} \sum_{i=1}^{n} \sum_{C: i \in C} p_{C} \frac{1}{p_{i}} L_{C}\left(f_{i}(x)-f_{i}(y)-\left\langle\nabla f_{i}(y), x-y\right\rangle\right) \\
& \stackrel{18}{\leq} \frac{2}{n} \sum_{i=1}^{n} \mathcal{L}_{\max }\left(f_{i}(x)-f_{i}(y)-\left\langle\nabla f_{i}(y), x-y\right\rangle\right) \\
&=2 \mathcal{L}_{\max }(f(x)-f(y)-\langle\nabla f(y), x-y\rangle) .
\end{aligned}
$$

Furthermore, for each i,

$$
\begin{align*}
& \mathcal{L}_{i}=\sum_{C: i \in C} \frac{p_{C}}{p_{i}} L_{C}=\frac{1}{n} \sum_{C: i \in C} \frac{p_{C}}{p_{i}} \lambda_{\max }\left(\sum_{j \in C} \frac{\mathbf{M}_{j}}{p_{j}}\right) \tag{59}\\
& \leq \frac{1}{n} \sum_{C: i \in C} \frac{p_{C}}{p_{i}} \sum_{j \in C} \frac{\lambda_{\max }\left(\mathbf{M}_{j}\right)}{p_{j}} \\
& \begin{array}{l}
\text { Lemma } A .2 \\
= \\
\frac{1}{n}
\end{array} \sum_{j=1}^{n} \sum_{C: i \in C \&} \frac{p_{C}}{p_{i} p_{j}} \lambda_{\max }\left(\mathbf{M}_{j}\right) \\
&=\frac{1}{n} \sum_{j=1}^{n} \frac{\mathbf{P}_{i j}}{p_{i} p_{j}} \lambda_{\max }\left(\mathbf{M}_{j}\right) .
\end{align*}
$$

Hence,

$$
\begin{equation*}
\mathcal{L}_{\max } \leq \frac{1}{n} \max _{i \in[n]}\left\{\sum_{j \in[n]} \mathbf{P}_{i j} \frac{\lambda_{\max }\left(\mathbf{M}_{j}\right)}{p_{i} p_{j}}\right\} \tag{60}
\end{equation*}
$$

Let $y=x^{*}$ and notice that $\nabla f\left(x^{*}\right)=0$, which gives 18 . We prove 19 in the following slightly more comprehensive Lemma. 1 .

F. Bounds on the Expected Smoothness Constant \mathcal{L}

Below we establish some lower and upper bounds on the expected smoothness constant $\mathcal{L}=\mathcal{L}_{\text {max }}$. These bounds were referred to in the main paper in Section 2.3 . We also make use of notation introduced in Section 3.3 .

Lemma F.1. Assume that there exists $\tau \in[n]$ such that $|S|=\tau$ with probability 1 . Let

$$
\mathcal{L}_{i}:=\mathbb{E}\left[L_{S} \mid i \in S\right]=\sum_{C: i \in C} \frac{p_{C}}{p_{i}} L_{C}
$$

and

$$
\overline{\mathcal{L}}_{S}:=\frac{1}{|S|} \sum_{i \in S} \mathcal{L}_{i}
$$

Then $\mathbb{E}\left[\overline{\mathcal{L}}_{S}\right]=\mathbb{E}\left[L_{S}\right]$. Moreover,

$$
\begin{equation*}
L \leq \mathbb{E}\left[\overline{\mathcal{L}}_{S}\right] \leq \mathcal{L}_{\max } \leq L_{\max } \tag{61}
\end{equation*}
$$

Proof. Define $\mathbf{M}_{S}:=\frac{1}{n} \sum_{i \in S} \frac{\mathbf{M}_{i}}{p_{i}}$ and note that f is $\frac{1}{n} \sum_{i \in[n]} \mathbf{M}_{i}$-smooth. Furthermore

$$
\mathbb{E}\left[\mathbf{M}_{S}\right]=\frac{1}{n} \mathbb{E}\left[\sum_{i=1}^{n} \frac{\mathbf{M}_{i}}{p_{i}} \mathbf{1}_{(i \in S)}\right]=\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{M}_{i}}{p_{i}} \mathbb{E}\left[\mathbf{1}_{(i \in S)}\right]=\frac{1}{n} \sum_{i \in[n]} \mathbf{M}_{i}
$$

We will now establish the inequalities in (61) starting from left to the right.
(Part I $L \leq \mathbb{E}\left[L_{S}\right]$). Recalling that $L_{S}=\lambda_{\max }\left(\mathbf{M}_{S}\right)$ and by Jensen's inequality,

$$
L=\lambda_{\max }\left(\mathbb{E}\left[\mathbf{M}_{S}\right]\right) \leq \mathbb{E}\left[\lambda_{\max }\left(\mathbf{M}_{S}\right)\right]=\mathbb{E}\left[L_{S}\right]
$$

Furthermore

$$
\begin{aligned}
\mathbb{E}\left[\overline{\mathcal{L}}_{S}\right] & =\mathbb{E}\left[\frac{1}{\tau} \sum_{i \in S} \mathcal{L}_{i}\right]=\frac{1}{\tau} \sum_{i} p_{i} \mathcal{L}_{i} \\
& \stackrel{\text { 57] }}{=} \frac{1}{\tau} \sum_{i} \sum_{C: i \in C} p_{C} L_{i} \stackrel{\text { Lemma A.2 }}{=} \frac{1}{\tau} \sum_{C} \sum_{i \in C} p_{C} L_{C} \\
& =\frac{1}{\tau} \sum_{C}|C| p_{C} L_{C}=\sum_{C} p_{C} L_{C}=\mathbb{E}\left[L_{S}\right]
\end{aligned}
$$

(Part II $\mathbb{E}\left[\bar{L}_{S}\right] \leq \mathcal{L}_{\text {max }}$). We have that

$$
\bar{L}_{S}=\frac{1}{|S|} \sum_{i \in S} \mathcal{L}_{i} \leq \frac{1}{|S|} \sum_{i \in S} \max _{i \in[n]} \mathcal{L}_{i}=\mathcal{L}_{\max }
$$

(Part III $\mathcal{L}_{\text {max }} \leq L_{\text {max }}$). Finally, since

$$
\begin{equation*}
L_{C} \leq \frac{1}{\tau} \sum_{j \in C} L_{j} \leq L_{\max } \tag{62}
\end{equation*}
$$

we have that

$$
\mathcal{L}_{i} \stackrel{[57]}{\leq} \sum_{C: i \in C} \frac{p_{C}}{p_{i}} \frac{1}{\tau} \sum_{j \in C} L_{j} \stackrel{\sqrt[62]]{\leq}}{C} \sum_{C: i \in C} \frac{p_{C}}{p_{i}} L_{\max }=L_{\max }
$$

Consequently taking the maximum over $i \in[n]$ in the above gives $\mathcal{L}_{\text {max }} \leq L_{\text {max }}$.

G. Proof of Proposition 3.7

Proof. First note that by combining (18) and 59 we have that

$$
\begin{align*}
\mathcal{L}_{\max } & \stackrel{18}{=} \max _{i \in[n]}\left\{\sum_{C: i \in C} \frac{p_{C}}{p_{i}} L_{C}\right\} \\
& \stackrel{59}{=} \max _{i \in[n]}\left\{\frac{1}{n} \sum_{C: i \in C} \frac{p_{C}}{p_{i}} \lambda_{\max }\left(\sum_{j \in C} \frac{\mathbf{M}_{j}}{p_{j}}\right)\right\} \tag{63}
\end{align*}
$$

(i) By straight forward calculation from (63) and using that each set C is a singleton.
(ii) For every partition sampling we have that $p_{i}=p_{C}$ if $i \in C$, hence

$$
\begin{aligned}
\mathcal{L}_{\max } & \stackrel{\boxed{63}}{=} \max _{i \in[n]}\left\{\frac{1}{n} \sum_{C: i \in C} \frac{p_{i}}{p_{i}} \lambda_{\max }\left(\sum_{j \in C} \frac{\mathbf{M}_{j}}{p_{C}}\right)\right\} \\
& \stackrel{59}{=} \frac{1}{n} \max _{i \in[n]}\left\{\sum_{C: i \in C} \frac{1}{p_{C}} \lambda_{\max }\left(\sum_{j \in C} \mathbf{M}_{j}\right)\right\} \\
& =\frac{1}{n} \max _{C \in \mathcal{G}}\left\{\frac{1}{p_{C}} \lambda_{\max }\left(\sum_{j \in C} \mathbf{M}_{j}\right)\right\}
\end{aligned}
$$

H. Proof of Proposition 3.8

Proof. First, since f_{i} is L_{i}-smooth with $L_{i}=\lambda_{\max }\left(\mathbf{M}_{i}\right)$ and convex, it follows from equation (2.1.7) in Theorem 2.1.5 in (Nesterov, 2013) that

$$
\begin{equation*}
\left\|\nabla f_{i}(x)-\nabla f_{i}(y)\right\|^{2} \leq 2 L_{i}\left(f_{i}(x)-f_{i}(y)-\left\langle\nabla f_{i}(y), x-y\right\rangle\right) \tag{64}
\end{equation*}
$$

Since f is L-smooth, we have

$$
\begin{equation*}
\|\nabla f(x)-\nabla f(y)\|^{2} \leq 2 L(f(x)-f(y)-\langle\nabla f(y), x-y\rangle) \tag{65}
\end{equation*}
$$

Noticing that

$$
\begin{aligned}
\left\|\nabla f_{v}(x)-\nabla f_{v}(y)\right\|^{2} & =\frac{1}{n^{2}}\left\|\sum_{i \in S} \frac{1}{p_{i}}\left(\nabla f_{i}(x)-\nabla f_{i}(y)\right)\right\|^{2} \\
& =\sum_{i, j \in S}\left\langle\frac{1}{n p_{i}}\left(\nabla f_{i}(x)-\nabla f_{i}(y)\right), \frac{1}{n p_{j}}\left(\nabla f_{j}(x)-\nabla f_{j}(y)\right)\right\rangle
\end{aligned}
$$

we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|\nabla f_{v}(x)-\nabla f_{v}(y)\right\|^{2}\right] & =\sum_{C} p_{C} \sum_{i, j \in C}\left\langle\frac{1}{n p_{i}}\left(\nabla f_{i}(x)-\nabla f_{i}(y)\right), \frac{1}{n p_{j}}\left(\nabla f_{j}(x)-\nabla f_{j}(y)\right)\right\rangle \\
& =\sum_{i, j=1}^{n} \sum_{C: i, j \in C} p_{C}\left\langle\frac{1}{n p_{i}}\left(\nabla f_{i}(x)-\nabla f_{i}(y)\right), \frac{1}{n p_{j}}\left(\nabla f_{j}(x)-\nabla f_{j}(y)\right)\right\rangle \\
& =\sum_{i, j=1}^{n} \frac{\mathbf{P}_{i j}}{p_{i} p_{j}}\left\langle\frac{1}{n}\left(\nabla f_{i}(x)-\nabla f_{i}(y)\right), \frac{1}{n}\left(\nabla f_{j}(x)-\nabla f_{j}(y)\right)\right\rangle
\end{aligned}
$$

Now consider the case where $\mathbf{P}_{i j} /\left(p_{i} p_{j}\right)=c_{2}$ for $i \neq j$. Recalling that $\mathbf{P}_{i i}=p_{i}$ we have from the above that

$$
\begin{aligned}
& \left.\mathbb{E}\left[\left\|\nabla f_{v}(x)-\nabla f_{v}(y)\right\|^{2}\right]=\sum_{i \neq j} c_{2}\left\langle\frac{1}{n}\left(\nabla f_{i}(x)-\nabla f_{i}(y)\right), \frac{1}{n}\left(\nabla f_{j}(x)-\nabla f_{j}(y)\right)\right\rangle+\sum_{i=1}^{n} \frac{1}{n^{2}} \frac{1}{p_{i}} \| \nabla f_{i}(x)-\nabla f_{i}(y)\right) \|_{2}^{2} \\
& =\sum_{i, j=1}^{n} c_{2}\left\langle\frac{1}{n}\left(\nabla f_{i}(x)-\nabla f_{i}(y)\right), \frac{1}{n}\left(\nabla f_{j}(x)-\nabla f_{j}(y)\right)\right\rangle \\
& \left.+\sum_{i=1}^{n} \frac{1}{n^{2}} \frac{1}{p_{i}}\left(1-p_{i} c_{2}\right) \| \nabla f_{i}(x)-\nabla f_{i}(y)\right) \|_{2}^{2} \\
& \stackrel{\text { (64) }}{\leq} c_{2}\|\nabla f(x)-\nabla f(y)\|_{2}^{2} \\
& +2 \sum_{i=1}^{n} \frac{1}{n^{2}} \frac{L_{i}}{p_{i}}\left(1-p_{i} c_{2}\right)\left(f_{i}(x)-f_{i}(y)-\left\langle\nabla f_{i}(y), x-y\right\rangle\right) \\
& \stackrel{\text { (6) }}{\leq} 2\left(c_{2} L+\max _{i=1, \ldots, n} \frac{L_{i}}{n p_{i}}\left(1-p_{i} c_{2}\right)\right)(f(x)-f(y)-\langle\nabla f(y), x-y\rangle) .
\end{aligned}
$$

Substituting $y=x^{*}$ and comparing the above to the definition of expected smoothness 7] we have that

$$
\begin{equation*}
\mathcal{L} \leq c_{2} L+\max _{i=1, \ldots, n} \frac{L_{i}}{n p_{i}}\left(1-p_{i} c_{2}\right) . \tag{66}
\end{equation*}
$$

(i) For independent sampling, we have that $\mathbf{P}_{i j}=p_{i} p_{j}$ for $i \neq j$, consequently $c_{2}=1$. Thus (66) gives (22).
(ii) For τ-nice sampling, we have that $\mathbf{P}_{i j}=\frac{\tau(\tau-1)}{n(n-1)}$ for $j \neq i$ and $\mathbf{P}_{i i}=p_{i}=\frac{\tau}{n}$, hence $c_{2}=\frac{n(\tau-1)}{\tau(n-1)}$ and 66$)$ gives (23).

I. Proof of Theorem 3.9

Proof.

$$
\begin{aligned}
\sigma^{2}=\mathbb{E}\left[\left\|\nabla f_{v}\left(x^{*}\right)\right\|^{2}\right] & =\mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(x^{*}\right) v_{i}\right\|^{2}\right]=\frac{1}{n^{2}} \mathbb{E}\left[\left\|\sum_{i=1}^{n} \nabla f_{i}\left(x^{*}\right) v_{i}\right\|^{2}\right]=\frac{1}{n^{2}} \mathbb{E}\left[\left\|\sum_{i \in S} \frac{1}{p_{i}} h_{i}\right\|^{2}\right] \\
& =\frac{1}{n^{2}} \mathbb{E}\left[\left\|\sum_{i=1}^{n} 1_{i \in S} \frac{1}{p_{i}} h_{i}\right\|^{2}\right]=\frac{1}{n^{2}} \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} 1_{i \in S} 1_{j \in S}\left\langle\frac{1}{p_{i}} h_{i}, \frac{1}{p_{j}} h_{j}\right\rangle\right] \\
& =\frac{1}{n^{2}} \sum_{i, j} \frac{\mathbf{P}_{i j}}{p_{i} p_{j}}\left\langle h_{i}, h_{j}\right\rangle .
\end{aligned}
$$

J. Proof of Proposition 3.10

Proof. (i) By straight calculation from (24).
(ii) For independent sampling $S, \mathbf{P}_{i j}=p_{i} p_{j}$ for $i \neq j$, hence,

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{n^{2}} \sum_{i, j \in[n]} \frac{\mathbf{P}_{i j}}{p_{i} p_{j}}\left\langle h_{i}, h_{j}\right\rangle=\frac{1}{n^{2}} \sum_{i, j \in[n]}\left\langle h_{i}, h_{j}\right\rangle+\frac{1}{n^{2}} \sum_{i \in[n]}\left(\frac{1}{p_{i}}-1\right)\left\|h_{i}\right\|^{2} \\
& =\frac{1}{n^{2}}\left\|\nabla f\left(x^{*}\right)\right\|^{2}+\frac{1}{n^{2}} \sum_{i \in[n]}\left(\frac{1}{p_{i}}-1\right)\left\|h_{i}\right\|^{2}=\frac{1}{n^{2}} \sum_{i \in[n]}\left(\frac{1}{p_{i}}-1\right)\left\|h_{i}\right\|^{2} .
\end{aligned}
$$

(iii) For τ-nice sampling S, if $\tau=1$, it is obvious. If $\tau \geq 1$, then $\mathbf{P}_{i j}=\frac{C_{n-2}^{\tau-2}}{C_{n}^{2}}$ for $i \neq j$, and $p_{i}=\frac{\tau}{n}$ for all i. Hence,

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{n^{2}} \sum_{i, j \in[n]} \frac{\mathbf{P}_{i j}}{p_{i} p_{j}}\left\langle h_{i}, h_{j}\right\rangle \\
& =\frac{1}{n^{2}} \sum_{i \neq j} \frac{\tau(\tau-1)}{n(n-1)} \cdot \frac{n^{2}}{\tau^{2}}\left\langle h_{i}, h_{j}\right\rangle+\frac{1}{n^{2}} \sum_{i \in[n]} \frac{n}{\tau}\left\|h_{i}\right\|^{2} \\
& =\frac{1}{n \tau}\left(\sum_{i \neq j} \frac{\tau-1}{n-1}\left\langle h_{i}, h_{j}\right\rangle+\sum_{i \in[n]}\left\|h_{i}\right\|^{2}\right) \\
& =\frac{1}{n \tau}\left(\sum_{i, j \in[n]} \frac{\tau-1}{n-1}\left\langle h_{i}, h_{j}\right\rangle+\sum_{i \in[n]} \frac{n-\tau}{n-1}\left\|h_{i}\right\|^{2}\right) \\
& =\frac{1}{n \tau} \cdot \frac{n-\tau}{n-1} \sum_{i \in[n]}\left\|h_{i}\right\|^{2} .
\end{aligned}
$$

(iv) For partition sampling, $\mathbf{P}_{i j}=p_{C}$ if $i, j \in C$, and $\mathbf{P}_{i j}=0$ otherwise. Hence,

$$
\sigma^{2}=\frac{1}{n^{2}} \sum_{i, j \in[n]} \frac{\mathbf{P}_{i j}}{p_{i} p_{j}}\left\langle h_{i}, h_{j}\right\rangle=\frac{1}{n^{2}} \sum_{C \in \mathcal{G}} \sum_{i, j \in C} \frac{1}{p_{C}}\left\langle h_{i}, h_{j}\right\rangle=\frac{1}{n^{2}} \sum_{C \in \mathcal{G}} \frac{1}{p_{C}}\left\|\sum_{i \in C} h_{i}\right\|^{2}
$$

K. Importance sampling

K.1. Single element sampling

From 20 it is easy to see that the probabilities that minimize $\mathcal{L}_{\text {max }}$ are $p_{i}^{\mathcal{L}}=L_{i} / \sum_{j \in[n]} L_{j}$, for all i, and consequently $\mathcal{L}_{\max }=\bar{L}$. On the other hand the probabilities that minimize 25 are given by $p_{i}^{\sigma^{2}}=\left\|h_{i}\right\| / \sum_{j \in[n]}\left\|h_{j}\right\|$, for all i, with $\sigma^{2}=\left(\sum_{i \in[n]}\left\|h_{i}\right\| / n\right)^{2}:=\sigma_{o p t}^{2}$.

Importance sampling. From $p_{i}^{\mathcal{L}}$ and $p_{i}^{\sigma^{2}}$, we construct interpolated probabilities p_{i} as follows:

$$
\begin{equation*}
p_{i}=p_{i}(\alpha)=\alpha p_{i}^{\mathcal{L}}+(1-\alpha) p_{i}^{\sigma^{2}} \tag{67}
\end{equation*}
$$

where $\alpha \in(0,1)$. Then $0<p_{i}<1$ and from 20) we have

$$
\mathcal{L}_{\max } \leq \frac{1}{\alpha} \cdot \frac{1}{n} \max _{i \in[n]} \frac{L_{i}}{p_{i}^{\mathcal{L}}(\tau)}=\frac{1}{\alpha} \bar{L}
$$

Similarly, from 25 we have that $\sigma^{2} \leq \frac{1}{1-\alpha} \sigma_{o p t}^{2}$. Now by letting $p_{i}=p_{i}(\alpha)$, from 29 in Theorem 3.1, we get an upper bound of the right hand side of (12):

$$
\begin{equation*}
\max \left\{\frac{2 \bar{L}}{\alpha \mu}, \frac{4 \sigma_{o p t}^{2}}{(1-\alpha) \epsilon \mu^{2}}\right\} \tag{68}
\end{equation*}
$$

By minimizing this bound in α we can get

$$
\begin{equation*}
\alpha=\frac{\bar{L}}{2 \sigma_{o p t}^{2} / \epsilon \mu+\bar{L}}, \tag{69}
\end{equation*}
$$

and then the upper bound 68 becomes

$$
\begin{equation*}
\frac{4 \sigma_{o p t}^{2}}{\epsilon \mu^{2}}+\frac{2 \bar{L}}{\mu} \leq 2 \max \left\{\frac{2 \bar{L}}{\mu}, \frac{4 \sigma_{o p t}^{2}}{\epsilon \mu^{2}}\right\} \tag{70}
\end{equation*}
$$

where the right hand side comes by setting $\alpha=1 / 2$. Notice that the minimum of the iteration complexity in 12 is not less than $\max \left\{\frac{2 \bar{L}}{\mu}, \frac{4 \sigma_{o p t}^{2}}{\epsilon \mu^{2}}\right\}$. Hence, the iteration complexity of this importance sampling(left hand side of 70) is at most two times larger than the minimum of the iteration complexity in (12) over p_{i}.

K.2. Independent sampling

For the independent sampling S, in this section we will use the following upper bound on \mathcal{L} given by

$$
\begin{equation*}
\mathcal{L}_{\max } \leq L+\max _{i \in[n]} \frac{1-p_{i}}{p_{i}} \frac{L_{i}}{n}, \tag{71}
\end{equation*}
$$

from 22. Denote $\bar{L}:=\frac{1}{n} \sum_{i=1}^{n} L_{i}$.
Calculating $p_{i}^{\mathcal{L}}(\tau)$. Minimizing the upper bound of $\mathcal{L}_{\text {max }}$ in 71 boils down to minimizing $\max _{i \in[n]}\left(\frac{1}{p_{i}}-1\right) L_{i}$, which is not easy generally. Instead, as a proxy we obtain the probabilities p_{i} by solving

$$
\begin{array}{ll}
\min & \max _{i \in[n]} \frac{L_{i}}{p_{i}} \tag{72}\\
\text { s.t. } & \sum_{i \in[n]} p_{i}=\tau, 0<p_{i} \leq 1, \forall i .
\end{array}
$$

Let $q_{i}=\frac{L_{i}}{\sum_{j \in[n]} L_{j}} \cdot \tau$ for all i, and $T=\left\{i \mid q_{i}>1\right\}$. If $T=\emptyset$, it is easy to see $p_{i}=p_{i}^{\mathcal{L}}(\tau)=q_{i}$ solves 72. Otherwise, in order to solve 72, we can choose $p_{i}=p_{i}^{\mathcal{L}}(\tau)=1$ for $i \in T$, and $q_{i} \leq p_{i}=p_{i}^{\mathcal{L}}(\tau) \leq 1$ for $i \notin T$ such that $\sum_{i \in[n]} p_{i}^{\mathcal{L}}(\tau)=\tau$. By letting $p_{i}=p_{i}^{\mathcal{L}}(\tau)$, and noticing that $\left(\frac{1}{p_{i}}-1\right) L_{i}=0$ for $p_{i}=1$, we have that

$$
\begin{equation*}
\mathcal{L}_{\max } \leq L+\frac{1}{n} \cdot \frac{1}{\tau} \sum_{j \in[n]} L_{j}=L+\frac{1}{\tau} \bar{L} \tag{73}
\end{equation*}
$$

Calculating $p_{i}^{\sigma^{2}}(\tau)$. For σ^{2}, from 26, we need to solve

$$
\begin{array}{ll}
\text { min } & \sum_{i \in[n]} \frac{\left\|h_{i}\right\|^{2}}{p_{i}} \tag{74}\\
\text { s.t. } & \sum_{i \in[n]} p_{i}=\tau, 0<p_{i} \leq 1, \forall i .
\end{array}
$$

Let $q_{i}=\frac{\left\|h_{i}\right\|}{\sum_{j \in[n]}\left\|h_{j}\right\|} \cdot \tau$ for all i, and let $T=\left\{i \mid q_{i}>1\right\}$. If $T=\emptyset$, it is easy to see that $p_{i}=p_{i}^{\sigma^{2}}(\tau)=q_{i}$ solve 74 . Otherwise, it is a little complicated to find the optimal solution. For simplicity, if $T \neq \emptyset$, we choose $p_{i}=p_{i}^{\sigma^{2}}(\tau)=1$ for $i \in T$, and $q_{i} \leq p_{i}=p_{i}^{\sigma^{2}}(\tau) \leq 1$ for $i \notin T$ such that $\sum_{i \in[n]} p_{i}^{\sigma^{2}}(\tau)=\tau$. By letting $p_{i}=p_{i}^{\sigma^{2}}(\tau)$, from 26, we have

$$
\begin{aligned}
\sigma^{2} & \leq \frac{1}{n^{2}} \sum_{i \notin T}\left(\frac{\left\|h_{i}\right\| \sum_{j \in[n]}\left\|h_{j}\right\|}{\tau}-\left\|h_{i}\right\|^{2}\right) \\
& \leq \frac{1}{\tau}\left(\frac{\sum_{i \in[n]}\left\|h_{i}\right\|}{n}\right)^{2}:=\sigma_{o p t}^{2}(\tau)
\end{aligned}
$$

Importance sampling. Since by (73) we have that $\mathcal{L}_{\max } \leq L+\frac{1}{\tau} \bar{L}$ and $\sigma^{2}=\sigma_{o p t}^{2}(\tau)$ are obtained by using the upper bounds in (71) and (26), and the upper bounds are nonincreasing as p_{i} increases, we get the following property.

Proposition K.1. If $p_{i} \geq p_{i}^{\mathcal{L}}(\tau)$ for all i, then $\mathcal{L}_{\text {max }} \leq L+\frac{1}{\tau} \bar{L}$, and if $p_{i} \geq p_{i}^{\sigma^{2}}(\tau)$, then $\sigma^{2} \leq \sigma_{o p t}^{2}(\tau)$.
From Proposition K.1, we can get the following result.
Proposition K.2. For $0<\alpha<1$, let $p_{i}(\alpha)$ satisfy

$$
\left\{\begin{array}{l}
1 \geq p_{i}(\alpha) \geq \min \left\{1, p_{i}^{\mathcal{L}}(\alpha \tau)+p_{i}^{\sigma^{2}}((1-\alpha) \tau)\right\}, \quad \forall i, \tag{75}\\
\sum_{i \in[n]} p_{i}(\alpha)=\tau
\end{array}\right.
$$

If $p_{i}=p_{i}(\alpha)$ where $p_{i}(\alpha)$ satisfies 75), then we have

$$
\mathcal{L}_{\max } \leq L+\frac{1}{\alpha \tau} \bar{L}
$$

and

$$
\sigma^{2} \leq \sigma_{o p t}^{2}((1-\alpha) \tau)=\frac{1}{(1-\alpha) \tau}\left(\frac{\sum_{i \in[n]}\left\|h_{i}\right\|}{n}\right)^{2}
$$

Proof. First, we claim that $p_{i}(\alpha)$ can be constructed to satisfy 75 . Since $0<p_{i}^{\mathcal{L}}(\alpha) \leq 1$ and $0<p_{i}^{\sigma^{2}}((1-\alpha) \tau) \leq 1$, we know

$$
0<\min \left\{1, p_{i}^{\mathcal{L}}(\alpha \tau)+p_{i}^{\sigma^{2}}((1-\alpha) \tau)\right\} \leq 1
$$

for all i. Hence, we can first construct \tilde{q}_{i} such that

$$
1 \geq \tilde{q}_{i} \geq \min \left\{1, p_{i}^{\mathcal{L}}(\alpha \tau)+p_{i}^{\sigma^{2}}((1-\alpha) \tau)\right\}
$$

for all i. Furthermore, since $\sum_{i \in[n]} p_{i}^{\mathcal{L}}(\alpha \tau)=\alpha \tau$ and $\sum_{i \in[n]} p_{i}^{\sigma^{2}}((1-\alpha) \tau)=(1-\alpha) \tau$, we know $\sum_{i \in[n]} \tilde{q}_{i} \leq \tau$. At last, we increase some \tilde{q}_{i} which is less than one to make the sum equal to τ, and hence, by letting $p_{i}(\alpha)=\tilde{q}_{i}, p_{i}(\alpha)$ satisfies (75). From 75), we have $p_{i}=p_{i}(\alpha) \geq p_{i}^{\mathcal{L}}(\alpha \tau)$. Then by Proposition K.1, we have

$$
\mathcal{L}_{\max } \leq L+\frac{1}{\alpha \tau} \bar{L}
$$

We also have $p_{i}(\alpha) \geq p_{i}^{\sigma^{2}}((1-\alpha) \tau)$, hence, by PropositionK.1. we get

$$
\sigma^{2} \leq \sigma_{o p t}^{2}((1-\alpha) \tau)=\frac{1}{(1-\alpha) \tau}\left(\frac{\sum_{i \in[n]}\left\|h_{i}\right\|}{n}\right)^{2}
$$

From (12) in Theorem 3.1, by letting $p_{i}=p_{i}(\alpha)$ in Proposition K.2, we get an upper bound of the right hand side of 12):

$$
\max \left\{\frac{2\left(L+\frac{1}{\alpha \tau} \bar{L}\right)}{\mu}, \frac{4 \sigma_{o p t}^{2}((1-\alpha) \tau)}{\epsilon \mu^{2}}\right\}
$$

By minimizing this upper bound, we get

$$
\begin{equation*}
\alpha=\frac{\tau-a-\bar{L} / L+\sqrt{4 \tau \bar{L} / L+(\tau-a-\bar{L} / L)^{2}}}{2 \tau} \tag{76}
\end{equation*}
$$

and the upper bound becomes

$$
\frac{2\left(L+\frac{1}{\alpha \tau} \bar{L}\right)}{\mu}
$$

where $a=2\left(\frac{\sum_{i \in[n]}\left\|h_{i}\right\|}{n}\right)^{2} /(\epsilon \mu L)$. So suboptimal probabilities

$$
\begin{equation*}
p_{i}=\min \left\{1, p_{i}^{\mathcal{L}}(\alpha \tau)+p_{i}^{\sigma^{2}}((1-\alpha) \tau)\right\} \tag{77}
\end{equation*}
$$

where α is given in Equation 76.
Partially biased sampling. In practice, we do not know $\left\|h_{i}\right\|$ generally. But we can use $p_{i}^{\mathcal{L}}(\tau)$ and the uniform probability $\frac{\tau}{n}$ to construct a new probability just as that in Proposition K. 2 . More specific, we have the following result.

Table 1. Comparison of the upper bounds of $\mathcal{L}_{\text {max }}$ and σ^{2} for τ-nice sampling, τ-partially biased independent sampling, and τ-uniform independent sampling.

	$\mathcal{L}_{\max }$	σ^{2}
τ-NICE SAMPLING	$\frac{n}{\tau} \cdot \frac{\tau-1}{n-1} L+\frac{1}{\tau}\left(1-\frac{\tau-1}{n-1}\right) L_{\max }$	$\frac{1}{\tau} \cdot \frac{n-\tau}{n-1} \bar{h}$
τ-UNIFORM IS	$L+\left(\frac{1}{\tau}-\frac{1}{n}\right) L_{\max }$	$\left(\frac{1}{\tau}-\frac{1}{n}\right) \bar{h}$
τ-PBA-IS	$L+\frac{2}{\tau} \bar{L}$	$\left(\frac{2}{\tau}-\frac{1}{n}\right) \bar{h}$

Proposition K.3. Let p_{i} satisfy

$$
\left\{\begin{array}{l}
1 \geq p_{i} \geq \min \left\{1, p_{i}^{\mathcal{L}}\left(\frac{\tau}{2}\right)+\frac{1}{2} \cdot \frac{\tau}{n}\right\}, \quad \forall i \tag{78}\\
\sum_{i \in[n]} p_{i}=\tau
\end{array}\right.
$$

Then we have

$$
\mathcal{L}_{\max } \leq\left(L+\frac{2}{\tau} \bar{L}\right)
$$

and

$$
\sigma^{2} \leq\left(\frac{2}{\tau}-\frac{1}{n}\right) \cdot \frac{1}{n} \sum_{i \in[n]}\left\|h_{i}\right\|^{2}
$$

Proof. The proof for $\mathcal{L}_{\text {max }}$ is the same as PropositionK.2. For σ^{2}, from 26, since $p_{i} \geq \tau / 2 n$, we have

$$
\sigma^{2}=\frac{1}{n^{2}} \sum_{i \in[n]}\left(\frac{1}{p_{i}}-1\right)\left\|h_{i}\right\|^{2} \leq \frac{1}{n^{2}} \sum_{i \in[n]}\left(\frac{2 n}{\tau}-1\right)\left\|h_{i}\right\|^{2}=\left(\frac{2}{\tau}-\frac{1}{n}\right) \cdot \frac{1}{n} \sum_{i \in[n]}\left\|h_{i}\right\|^{2}
$$

This sampling is very nice in the sense that it can maintain $\mathcal{L}_{\text {max }}$ has nearly linear speed up when $\tau \leq 2 \bar{L} / L$, and meanwhile, can acheive nearly linear speedup in σ^{2} by increasing τ. We can compare the upper bounds of $\mathcal{L}_{\text {max }}$ and σ^{2} for this sampling, τ-nice sampling, and τ-uniform independent sampling when $1<\tau=\mathcal{O}(1)$ in the following table.

From Table 1. compared to τ-nice sampling and τ-uniform independent sampling, the iteration complexity of this τ-partially biased independent sampling is at most two times larger, but could be about $\frac{2 \tau}{n}$ smaller in some extremely case where $L_{\text {max }} \approx n \bar{L}$ and $2 \mathcal{L} / \mu$ dominates in 12 .

L. Additional Experiments

L.1. From fixed to decreasing stepsizes: analysis of the switching time

Here we evaluate the choice of the switching moment from a constant to a decreasing step size according to (13) from Theorem 3.2. We are using synthetic data that was generated in the same way as it had been in the Section 6 for the ridge regression problem ($n=1000, d=100$). In particular we evaluate 4 different cases: (i) the theoretical moment of regime switch at moment k as predicted from the Theorem, (ii) early switch at $0.3 \times k$, (iii) late switch at $0.7 \times k$ and (iv) the optimal k for switch, where the optimal k is obtained using one-dimensional numerical minimization of 54) as a function of k^{*}.

Figure 5. Performance of SGD with several minibatch strategies for ridge regression. On the left: the real data-set bodyfat from LIBSVM. On the right: synthetic data.

Figure 4. The first plot refers to situation when x^{0} is close to x^{*} (for our data $\left\|r^{0}\right\|^{2}=\left\|x^{0}-x^{*}\right\|^{2} \approx 1.0$). The second one covers the opposite case $\left(\left\|r^{0}\right\|^{2} \approx 864.6\right)$. Dotted verticals denote the moments of regime switch for the curves of the corresponding colour. The blue curve refers to constant step size $\frac{1}{2 \mathcal{L}}$. Notice that in the upper plot optimal and theoretical k are very close

According to Figure 4, when x^{0} is close to x^{*}, the moment of regime switch does not play a significant role in minimizing the number of iteration except for a very early switch, which actually also leads to almost the same situation in the long run. The case when x^{0} is far from x^{*} shows that preliminary one-dimensional optimization makes sense and allows to reduce the error at least during the early iterations.

L.2. More on minibatches

Figure 5 reports on the same experiment as that described in Section 6.2 (Figure 2) in the main body of the paper, but on ridge regression instead of logistic regression, and using different data sets. Our findings are similar, and corroborate the conclusions made in Section 6.2.

SGD: General Analysis and Improved Rates

L.3. Stepsize as a function of the minibatch size

In our last experiment we calculate the stepsize γ as a function of the minibatch size τ for τ-nice sampling using equation (36). Figure 6 depicts three plots, for three synthetic data sets of sizes $(n, d) \in\{(50,5),(100,10),(500,50)\}$. We consider regularized ridge regression problems with $\lambda=1 / n$. Note that the stepsize is an increasing function of τ.

Figure 6. Evolution of stepsize with minibatch size τ for τ nice sampling.

