
APPENDIX
SGD: General Analysis and Improved Rates

A. Elementary Results
In this section we collect some elementary results; some of them we use repeatedly.

Proposition A.1. Let φ : Rd → R be Lφ–smooth, and assume it has a minimizer x∗ on Rd. Then

‖∇φ(x)−∇φ(x∗)‖2 ≤ 2Lφ(φ(x)− φ(x∗)).

Proof. Lipschitz continuity of the gradient implies that

φ(x+ h) ≤ φ(x) + 〈∇φ(x), h〉+
Lφ
2
‖h‖2.

Now plugging h = − 1
Lφ
∇φ(x) into the above inequality, we get 1

2Lφ
‖∇φ(x)‖2 ≤ φ(x)− φ(x+ h) ≤ φ(x)− φ(x∗). It

remains to note that∇φ(x∗) = 0.

In this section we summarize some elementary results which we use often in our proofs. We do not claim novelty; we but
we include them for completeness and clarity.

Lemma A.2 (Double counting). Let ai,C ∈ R for i = 1, . . . , n and C ∈ C, where C is some collection of subsets of [n].
Then ∑

C∈C

∑
i∈C

ai,C =

n∑
i=1

∑
C∈C : i∈C

ai,C . (44)

Lemma A.3 (Complexity bounds). Let E > 0, 0 < ρ ≤ 1 and 0 ≤ c < 1. If k ∈ N satisfies

k ≥ 1

1− ρ log

(
E

(1− c)

)
, (45)

then
ρk ≤ (1− c)E. (46)

Proof. Taking logarithms and rearranging (46) gives

log

(
E

1− c

)
≤ k log

(
1

ρ

)
. (47)

Now using that log
(

1
ρ

)
≥ 1− ρ, for 0 < ρ ≤ 1 gives (45).

A.1. The iteration complexity (12) of Theorem 3.1

To analyse the iteration complexity, let ε > 0 and choosing the stepsize so that 2γσ2

µ ≤ 1
2ε, gives (11). Next we choose k so

that
(1− γµ)

k ‖r0‖2 ≤ 1

2
ε.

Taking logarithms and re-arranging the above gives

log

(
2‖r0‖2
ε

)
≤ k log

(
1

1− γµ

)
. (48)
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Now using that log
(

1
ρ

)
≥ 1− ρ, for 0 < ρ ≤ 1 gives

k ≥ 1

γµ
log

(
2‖r0‖2
ε

)
(11)
=

1

µ
max

{
2L, 4σ2

εµ

}
log

(
2‖r0‖2
ε

)
. (49)

Which concludes the proof.

B. Proof of Lemma 2.4
For brevity, let us write E[·] instead of ED[·]. Then

E‖∇fv(x)‖2 = E‖∇fv(x)−∇fv(x∗) +∇fv(x∗)‖2

≤ 2E‖∇fv(x)−∇fv(x∗)‖2 + 2E‖∇fv(x∗)‖2

≤ 4L[f(x)− f(x∗)] + 2E‖∇fv(x∗)‖2.

The first inequality follows from the estimate ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, and the second inequality follows from (7).

C. Proof of Theorem 3.1
Proof. Let rk = xk − x∗. From (6), we have

‖rk+1‖2 (6)
= ‖xk − x∗ − γ∇fvk(xk)‖2

= ‖rk‖2 − 2γ〈rk,∇fvk(xk)〉+ γ2‖∇fvk(xk)‖2.

Taking expectation conditioned on xk we obtain:

ED‖rk+1‖2 (5)
= ‖rk‖2 − 2γ〈rk,∇f(xk)〉

+ γ2ED‖∇fvk(xk)‖2
(2)
≤ (1− γµ)‖rk‖2 − 2γ[f(xk)− f(x∗)]

+ γ2ED‖∇fvk(xk)‖2.

Taking expectations again and using Lemma 2.4:

E‖rk+1‖2
(9)
≤ (1− γµ)E‖rk‖2 + 2γ2σ2

+ 2γ(2γL − 1)E[f(xk)− f(x∗)]

≤ (1− γµ)E‖rk‖2 + 2γ2σ2,

where we used in the last inequality that 2γL ≤ 1 since γ ≤ 1
2L . Recursively applying the above and summing up the

resulting geometric series gives

E‖rk‖2 ≤ (1− γµ)
k ‖r0‖2 + 2

∑k−1
j=0 (1− γµ)

j
γ2σ2

≤ (1− γµ)
k ‖r0‖2 + 2γσ2

µ . (50)

To obtain an iteration complexity result from the above, we use standard techniques as shown in Section A.1.

D. Proof of Theorem 3.2
Proof. Let γk := 2k+1

(k+1)2µ and let k∗ be an integer that satisfies γk∗ ≤ 1
2L . In particular this holds for

k∗ ≥ d4K − 1e.
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Note that γk is decreasing in k and consequently γk ≤ 1
2L for all k ≥ k∗. This in turn guarantees that (50) holds for all

k ≥ k∗ with γk in place of γ, that is

E‖rk+1‖2 ≤ k2

(k + 1)2
E‖rk‖2 +

2σ2

µ2

(2k + 1)2

(k + 1)4
. (51)

Multiplying both sides by (k + 1)2 we obtain

(k + 1)2E‖rk+1‖2 ≤ k2E‖rk‖2 +
2σ2

µ2

(
2k + 1

k + 1

)2

≤ k2E‖rk‖2 +
8σ2

µ2
,

where the second inequality holds because 2k+1
k+1 < 2. Rearranging and summing from t = k∗ . . . k we obtain:

k∑
t=k∗

[
(t+ 1)2E‖rt+1‖2 − t2E‖rt‖2

]
≤

k∑
t=k∗

8σ2

µ2
. (52)

Using telescopic cancellation gives

(k + 1)2E‖rk+1‖2 ≤ (k∗)2E‖rk∗‖2 +
8σ2(k − k∗)

µ2
.

Dividing the above by (k + 1)2 gives

E‖rk+1‖2 ≤ (k∗)2

(k + 1)2
E‖rk∗‖2 +

8σ2(k − k∗)
µ2(k + 1)2

. (53)

For k ≤ k∗ we have that (50) holds, which combined with (53), gives

E‖rk+1‖2 ≤ (k∗)2

(k + 1)2

(
1− µ

2L
)k∗
‖r0‖2

+
σ2

µ2(k + 1)2

(
8(k − k∗) +

(k∗)2

K

)
. (54)

Choosing k∗ that minimizes the second line of the above gives k∗ = 4dKe, which when inserted into (54) becomes

E‖rk+1‖2 ≤ 16dKe2
(k + 1)2

(
1− 1

2K

)4dKe

‖r0‖2

+
σ2

µ2

8(k − 2dKe)
(k + 1)2

≤ 16dKe2
e2(k + 1)2

‖r0‖2 +
σ2

µ2

8

k + 1
, (55)

where we have used that
(
1− 1

2x

)4x ≤ e−2 for all x ≥ 1.

E. Proof of Theorem 3.6
Proof. Since vi = vi(S) = 1(i∈S)

1
pi

. and since fi is Mi-smooth, the function

fv(x) =
1

n

n∑
i=1

fi(x)vi =
1

n

∑
i∈S

fi(x)

pi
, (56)
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is LS–smooth where

LS :=
1

n
λmax

(∑
i∈S

Mi

pi

)
.

We also define the following smoothness related quantities

Li :=
∑

C : i∈C

pC
pi
LC , Lmax := max

i
Li, and; Lmax = max

i∈[n]
λmax(Mi). (57)

Since the fi’s are convex and the sampling vector v ∈ Rd+ has positive elements, each realization of fv is convex and smooth,
thus it follows from equation (2.1.7) in Theorem 2.1.5 in (Nesterov, 2013) that

‖∇fv(x)−∇fv(y)‖2 ≤ 2LS (fv(x)− fv(y)− 〈∇fv(y), x− y〉) . (58)

Taking expectation in (58) gives

E[‖∇fv(x)−∇fv(y)‖2] ≤ 2
∑
C

pCLC
(
fv(C)(x)− fv(C)(y)− 〈∇fv(C)(y), x− y〉

)
(56)
= 2

∑
C

pCLC
∑
i∈C

1

npi
(fi(x)− fi(y)− 〈∇fi(y), x− y〉)

LemmaA.2
=

2

n

n∑
i=1

∑
C:i∈C

pC
1

pi
LC (fi(x)− fi(y)− 〈∇fi(y), x− y〉)

(18)

≤ 2

n

n∑
i=1

Lmax (fi(x)− fi(y)− 〈∇fi(y), x− y〉)

= 2Lmax (f(x)− f(y)− 〈∇f(y), x− y〉) .

Furthermore, for each i,

Li =
∑
C:i∈C

pC
pi
LC =

1

n

∑
C:i∈C

pC
pi
λmax

∑
j∈C

Mj

pj

 (59)

≤ 1

n

∑
C:i∈C

pC
pi

∑
j∈C

λmax(Mj)

pj

Lemma A.2
=

1

n

n∑
j=1

∑
C:i∈C & j∈C

pC
pipj

λmax(Mj)

=
1

n

n∑
j=1

Pij
pipj

λmax(Mj).

Hence,

Lmax ≤
1

n
max
i∈[n]

∑
j∈[n]

Pij
λmax(Mj)

pipj

 . (60)

Let y = x∗ and notice that ∇f(x∗) = 0, which gives (18). We prove (19) in the following slightly more comprehensive
Lemma F.1.

F. Bounds on the Expected Smoothness Constant L
Below we establish some lower and upper bounds on the expected smoothness constant L = Lmax. These bounds were
referred to in the main paper in Section 2.3. We also make use of notation introduced in Section 3.3.
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Lemma F.1. Assume that there exists τ ∈ [n] such that |S| = τ with probability 1. Let

Li := E [LS | i ∈ S] =
∑

C : i∈C

pC
pi
LC ,

and
L̄S :=

1

|S|
∑
i∈S
Li.

Then E
[
L̄S
]

= E [LS ]. Moreover,
L ≤ E

[
L̄S
]
≤ Lmax ≤ Lmax. (61)

Proof. Define MS := 1
n

∑
i∈S

Mi

pi
and note that f is 1

n

∑
i∈[n] Mi–smooth. Furthermore

E [MS ] =
1

n
E

[
n∑
i=1

Mi

pi
1(i∈S)

]
=

1

n

n∑
i=1

Mi

pi
E
[
1(i∈S)

]
=

1

n

∑
i∈[n]

Mi.

We will now establish the inequalities in (61) starting from left to the right.

(Part I L ≤ E [LS ]). Recalling that LS = λmax(MS) and by Jensen’s inequality,

L = λmax (E [MS ]) ≤ E [λmax(MS)] = E [LS ].

Furthermore

E
[
L̄S
]

= E

[
1

τ

∑
i∈S
Li
]

=
1

τ

∑
i

piLi

(57)
=

1

τ

∑
i

∑
C : i∈C

pCLi
Lemma A.2

=
1

τ

∑
C

∑
i∈C

pCLC

=
1

τ

∑
C

|C|pCLC =
∑
C

pCLC = E [LS ]

(Part II E
[
L̄S
]
≤ Lmax). We have that

L̄S =
1

|S|
∑
i∈S
Li ≤

1

|S|
∑
i∈S

max
i∈[n]
Li = Lmax.

(Part III Lmax ≤ Lmax). Finally, since

LC ≤
1

τ

∑
j∈C

Lj ≤ Lmax, (62)

we have that

Li
(57)+(62)
≤

∑
C : i∈C

pC
pi

1

τ

∑
j∈C

Lj
(62)
≤

∑
C : i∈C

pC
pi
Lmax = Lmax.

Consequently taking the maximum over i ∈ [n] in the above gives Lmax ≤ Lmax.

G. Proof of Proposition 3.7
Proof. First note that by combining (18) and (59) we have that

Lmax
(18)
= max

i∈[n]

{ ∑
C:i∈C

pC
pi
LC

}

(59)
= max

i∈[n]

 1

n

∑
C:i∈C

pC
pi
λmax

∑
j∈C

Mj

pj

 . (63)



SGD: General Analysis and Improved Rates

(i) By straight forward calculation from (63) and using that each set C is a singleton.

(ii) For every partition sampling we have that pi = pC if i ∈ C, hence

Lmax
(63)
= max

i∈[n]

 1

n

∑
C:i∈C

pi
pi
λmax

∑
j∈C

Mj

pC


(59)
=

1

n
max
i∈[n]

 ∑
C:i∈C

1

pC
λmax(

∑
j∈C

Mj)


=

1

n
max
C∈G

 1

pC
λmax(

∑
j∈C

Mj)

 .

H. Proof of Proposition 3.8
Proof. First, since fi is Li-smooth with Li = λmax(Mi) and convex, it follows from equation (2.1.7) in Theorem 2.1.5
in (Nesterov, 2013) that

‖∇fi(x)−∇fi(y)‖2 ≤ 2Li(fi(x)− fi(y)− 〈∇fi(y), x− y〉). (64)

Since f is L-smooth, we have

‖∇f(x)−∇f(y)‖2 ≤ 2L(f(x)− f(y)− 〈∇f(y), x− y〉). (65)

Noticing that

‖∇fv(x)−∇fv(y)‖2 =
1

n2

∥∥∥∥∥∑
i∈S

1

pi
(∇fi(x)−∇fi(y))

∥∥∥∥∥
2

=
∑
i,j∈S

〈
1

npi
(∇fi(x)−∇fi(y)),

1

npj
(∇fj(x)−∇fj(y))

〉
,

we have

E[‖∇fv(x)−∇fv(y)‖2] =
∑
C

pC
∑
i,j∈C

〈
1

npi
(∇fi(x)−∇fi(y)),

1

npj
(∇fj(x)−∇fj(y))

〉

=

n∑
i,j=1

∑
C:i,j∈C

pC

〈
1

npi
(∇fi(x)−∇fi(y)),

1

npj
(∇fj(x)−∇fj(y))

〉

=

n∑
i,j=1

Pij
pipj

〈
1

n
(∇fi(x)−∇fi(y)),

1

n
(∇fj(x)−∇fj(y))

〉
.

Now consider the case where Pij/(pipj) = c2 for i 6= j. Recalling that Pii = pi we have from the above that
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E[‖∇fv(x)−∇fv(y)‖2] =
∑
i 6=j

c2

〈
1

n
(∇fi(x)−∇fi(y)),

1

n
(∇fj(x)−∇fj(y))

〉
+

n∑
i=1

1

n2
1

pi
‖∇fi(x)−∇fi(y))‖22

=

n∑
i,j=1

c2

〈
1

n
(∇fi(x)−∇fi(y)),

1

n
(∇fj(x)−∇fj(y))

〉

+

n∑
i=1

1

n2
1

pi
(1− pic2) ‖∇fi(x)−∇fi(y))‖22

(64)
≤ c2 ‖∇f(x)−∇f(y)‖22

+2

n∑
i=1

1

n2
Li
pi

(1− pic2) (fi(x)− fi(y)− 〈∇fi(y), x− y〉)

(65)
≤ 2

(
c2L+ max

i=1,...,n

Li
npi

(1− pic2)

)
(f(x)− f(y)− 〈∇f(y), x− y〉).

Substituting y = x∗ and comparing the above to the definition of expected smoothness (7) we have that

L ≤ c2L+ max
i=1,...,n

Li
npi

(1− pic2) . (66)

(i) For independent sampling, we have that Pij = pipj for i 6= j, consequently c2 = 1. Thus (66) gives (22).

(ii) For τ -nice sampling, we have that Pij = τ(τ−1)
n(n−1) for j 6= i and Pii = pi = τ

n , hence c2 = n(τ−1)
τ(n−1) and (66)

gives (23).

I. Proof of Theorem 3.9
Proof.

σ2 = E[‖∇fv(x∗)‖2] = E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x∗)vi
∥∥∥∥∥
2
 =

1

n2
E

∥∥∥∥∥
n∑
i=1

∇fi(x∗)vi
∥∥∥∥∥
2
 =

1

n2
E

∥∥∥∥∥∑
i∈S

1

pi
hi

∥∥∥∥∥
2


=
1

n2
E

∥∥∥∥∥
n∑
i=1

1i∈S
1

pi
hi

∥∥∥∥∥
2
 =

1

n2
E

 n∑
i=1

n∑
j=1

1i∈S1j∈S〈
1

pi
hi,

1

pj
hj〉


=

1

n2

∑
i,j

Pij
pipj
〈hi, hj〉.

J. Proof of Proposition 3.10
Proof. (i) By straight calculation from (24).

(ii) For independent sampling S, Pij = pipj for i 6= j, hence,

σ2 =
1

n2

∑
i,j∈[n]

Pij
pipj
〈hi, hj〉 =

1

n2

∑
i,j∈[n]

〈hi, hj〉+
1

n2

∑
i∈[n]

(
1

pi
− 1

)
‖hi‖2

=
1

n2
‖∇f(x∗)‖2 +

1

n2

∑
i∈[n]

(
1

pi
− 1

)
‖hi‖2 =

1

n2

∑
i∈[n]

(
1

pi
− 1

)
‖hi‖2.
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(iii) For τ -nice sampling S, if τ = 1, it is obvious. If τ ≥ 1, then Pij =
Cτ−2
n−2

Cτn
for i 6= j, and pi = τ

n for all i. Hence,

σ2 =
1

n2

∑
i,j∈[n]

Pij
pipj
〈hi, hj〉

=
1

n2

∑
i6=j

τ(τ − 1)

n(n− 1)
· n

2

τ2
〈hi, hj〉+

1

n2

∑
i∈[n]

n

τ
‖hi‖2

=
1

nτ

∑
i 6=j

τ − 1

n− 1
〈hi, hj〉+

∑
i∈[n]

‖hi‖2


=
1

nτ

 ∑
i,j∈[n]

τ − 1

n− 1
〈hi, hj〉+

∑
i∈[n]

n− τ
n− 1

‖hi‖2


=
1

nτ
· n− τ
n− 1

∑
i∈[n]

‖hi‖2.

(iv) For partition sampling, Pij = pC if i, j ∈ C, and Pij = 0 otherwise. Hence,

σ2 =
1

n2

∑
i,j∈[n]

Pij
pipj
〈hi, hj〉 =

1

n2

∑
C∈G

∑
i,j∈C

1

pC
〈hi, hj〉 =

1

n2

∑
C∈G

1

pC
‖
∑
i∈C

hi‖2.

K. Importance sampling
K.1. Single element sampling

From (20) it is easy to see that the probabilities that minimize Lmax are pLi = Li/
∑
j∈[n] Lj , for all i, and consequently

Lmax = L. On the other hand the probabilities that minimize (25) are given by pσ
2

i = ‖hi‖/
∑
j∈[n] ‖hj‖, for all i, with

σ2 = (
∑
i∈[n] ‖hi‖/n)2 := σ2

opt.

Importance sampling. From pLi and pσ
2

i , we construct interpolated probabilities pi as follows:

pi = pi(α) = αpLi + (1− α)pσ
2

i , (67)

where α ∈ (0, 1). Then 0 < pi < 1 and from (20) we have

Lmax ≤
1

α
· 1

n
max
i∈[n]

Li
pLi (τ)

=
1

α
L.

Similarly, from (25) we have that σ2 ≤ 1
1−ασ

2
opt. Now by letting pi = pi(α), from (29) in Theorem 3.1, we get an upper

bound of the right hand side of (12):

max

{
2L

αµ
,

4σ2
opt

(1− α)εµ2

}
. (68)

By minimizing this bound in α we can get

α =
L

2σ2
opt/εµ+ L

, (69)

and then the upper bound (68) becomes

4σ2
opt

εµ2
+

2L

µ
≤ 2 max

{
2L

µ
,

4σ2
opt

εµ2

}
, (70)
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where the right hand side comes by setting α = 1/2. Notice that the minimum of the iteration complexity in (12) is not less

than max
{

2L
µ ,

4σ2
opt

εµ2

}
. Hence, the iteration complexity of this importance sampling(left hand side of (70)) is at most two

times larger than the minimum of the iteration complexity in (12) over pi.

K.2. Independent sampling

For the independent sampling S, in this section we will use the following upper bound on L given by

Lmax ≤ L+ maxi∈[n]
1−pi
pi

Li
n , (71)

from (22). Denote L := 1
n

∑n
i=1 Li.

Calculating pLi (τ). Minimizing the upper bound of Lmax in (71) boils down to minimizing maxi∈[n](
1
pi
− 1)Li, which

is not easy generally. Instead, as a proxy we obtain the probabilities pi by solving

min maxi∈[n]
Li
pi

s.t.
∑
i∈[n] pi = τ, 0 < pi ≤ 1,∀i. (72)

Let qi = Li∑
j∈[n] Lj

· τ for all i, and T = {i|qi > 1}. If T = ∅, it is easy to see pi = pLi (τ) = qi solves (72). Otherwise,

in order to solve (72), we can choose pi = pLi (τ) = 1 for i ∈ T , and qi ≤ pi = pLi (τ) ≤ 1 for i /∈ T such that∑
i∈[n] p

L
i (τ) = τ . By letting pi = pLi (τ), and noticing that ( 1

pi
− 1)Li = 0 for pi = 1, we have that

Lmax ≤ L+
1

n
· 1

τ

∑
j∈[n]

Lj = L+
1

τ
L. (73)

Calculating pσ
2

i (τ). For σ2, from (26), we need to solve

min
∑
i∈[n]

‖hi‖2
pi

s.t.
∑
i∈[n] pi = τ, 0 < pi ≤ 1,∀i. (74)

Let qi = ‖hi‖∑
j∈[n] ‖hj‖

· τ for all i, and let T = {i|qi > 1}. If T = ∅, it is easy to see that pi = pσ
2

i (τ) = qi solve (74).

Otherwise, it is a little complicated to find the optimal solution. For simplicity, if T 6= ∅, we choose pi = pσ
2

i (τ) = 1 for
i ∈ T , and qi ≤ pi = pσ

2

i (τ) ≤ 1 for i /∈ T such that
∑
i∈[n] p

σ2

i (τ) = τ . By letting pi = pσ
2

i (τ), from (26), we have

σ2 ≤ 1

n2

∑
i/∈T

(
‖hi‖

∑
j∈[n] ‖hj‖
τ

− ‖hi‖2
)

≤ 1

τ

(∑
i∈[n] ‖hi‖
n

)2

:= σ2
opt(τ).

Importance sampling. Since by (73) we have that Lmax ≤ L+ 1
τL and σ2 = σ2

opt(τ) are obtained by using the upper
bounds in (71) and (26), and the upper bounds are nonincreasing as pi increases, we get the following property.

Proposition K.1. If pi ≥ pLi (τ) for all i, then Lmax ≤ L+ 1
τL, and if pi ≥ pσ

2

i (τ), then σ2 ≤ σ2
opt(τ).

From Proposition K.1, we can get the following result.

Proposition K.2. For 0 < α < 1, let pi(α) satisfy{
1 ≥ pi(α) ≥ min{1, pLi (ατ) + pσ

2

i ((1− α)τ)}, ∀i,∑
i∈[n] pi(α) = τ.

(75)
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If pi = pi(α) where pi(α) satisfies (75), then we have

Lmax ≤ L+
1

ατ
L,

and

σ2 ≤ σ2
opt((1− α)τ) =

1

(1− α)τ
(

∑
i∈[n] ‖hi‖
n

)2.

Proof. First , we claim that pi(α) can be constructed to satisfy (75). Since 0 < pLi (α) ≤ 1 and 0 < pσ
2

i ((1− α)τ) ≤ 1, we
know

0 < min{1, pLi (ατ) + pσ
2

i ((1− α)τ)} ≤ 1,

for all i. Hence, we can first construct q̃i such that

1 ≥ q̃i ≥ min{1, pLi (ατ) + pσ
2

i ((1− α)τ)},

for all i. Furthermore, since
∑
i∈[n] p

L
i (ατ) = ατ and

∑
i∈[n] p

σ2

i ((1− α)τ) = (1− α)τ , we know
∑
i∈[n] q̃i ≤ τ . At last,

we increase some q̃i which is less than one to make the sum equal to τ , and hence, by letting pi(α) = q̃i, pi(α) satisfies (75).

From (75), we have pi = pi(α) ≥ pLi (ατ). Then by Proposition K.1, we have

Lmax ≤ L+
1

ατ
L.

We also have pi(α) ≥ pσ2

i ((1− α)τ), hence, by Proposition K.1, we get

σ2 ≤ σ2
opt((1− α)τ) =

1

(1− α)τ

(∑
i∈[n] ‖hi‖
n

)2

.

From (12) in Theorem 3.1, by letting pi = pi(α) in Proposition K.2, we get an upper bound of the right hand side of (12):

max

{
2(L+ 1

ατL)

µ
,

4σ2
opt((1− α)τ)

εµ2

}
.

By minimizing this upper bound, we get

α =
τ − a− L/L+

√
4τL/L+ (τ − a− L/L)2

2τ
, (76)

and the upper bound becomes
2(L+ 1

ατL)

µ

where a = 2(
∑
i∈[n] ‖hi‖
n )2/(εµL). So suboptimal probabilities

pi = min{1, pLi (ατ) + pσ
2

i ((1− α)τ)}, (77)

where α is given in Equation (76).

Partially biased sampling. In practice, we do not know ‖hi‖ generally. But we can use pLi (τ) and the uniform probability
τ
n to construct a new probability just as that in Proposition K.2. More specific, we have the following result.
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Table 1. Comparison of the upper bounds of Lmax and σ2 for τ -nice sampling, τ -partially biased independent sampling, and τ -uniform
independent sampling.

Lmax σ2

τ -NICE SAMPLING n
τ · τ−1n−1L+ 1

τ (1− τ−1
n−1 )Lmax

1
τ · n−τn−1 h̄

τ -UNIFORM IS L+ ( 1
τ − 1

n )Lmax ( 1
τ − 1

n )h̄

τ -PBA-IS L+ 2
τL ( 2

τ − 1
n )h̄

Proposition K.3. Let pi satisfy {
1 ≥ pi ≥ min{1, pLi ( τ2 ) + 1

2 · τn}, ∀i,∑
i∈[n] pi = τ.

(78)

Then we have

Lmax ≤
(
L+

2

τ
L

)
,

and

σ2 ≤
(

2

τ
− 1

n

)
· 1

n

∑
i∈[n]

‖hi‖2.

Proof. The proof for Lmax is the same as Proposition K.2. For σ2, from (26), since pi ≥ τ/2n, we have

σ2 =
1

n2

∑
i∈[n]

(
1

pi
− 1

)
‖hi‖2 ≤

1

n2

∑
i∈[n]

(
2n

τ
− 1

)
‖hi‖2 =

(
2

τ
− 1

n

)
· 1

n

∑
i∈[n]

‖hi‖2.

This sampling is very nice in the sense that it can maintain Lmax has nearly linear speed up when τ ≤ 2L/L, and meanwhile,
can acheive nearly linear speedup in σ2 by increasing τ . We can compare the upper bounds of Lmax and σ2 for this sampling,
τ -nice sampling, and τ -uniform independent sampling when 1 < τ = O(1) in the following table.

From Table 1, compared to τ -nice sampling and τ -uniform independent sampling, the iteration complexity of this τ -partially
biased independent sampling is at most two times larger, but could be about 2τ

n smaller in some extremely case where
Lmax ≈ nL̄ and 2L/µ dominates in (12).

L. Additional Experiments
L.1. From fixed to decreasing stepsizes: analysis of the switching time

Here we evaluate the choice of the switching moment from a constant to a decreasing step size according to (13) from
Theorem 3.2. We are using synthetic data that was generated in the same way as it had been in the Section 6 for the ridge
regression problem (n = 1000, d = 100). In particular we evaluate 4 different cases: (i) the theoretical moment of regime
switch at moment k as predicted from the Theorem, (ii) early switch at 0.3 × k, (iii) late switch at 0.7 × k and (iv) the
optimal k for switch, where the optimal k is obtained using one-dimensional numerical minimization of (54) as a function
of k∗.
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Figure 5. Performance of SGD with several minibatch strategies for ridge regression. On the left: the real data-set bodyfat from LIBSVM.
On the right: synthetic data.
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Figure 4. The first plot refers to situation when x0 is close to x∗ (for our data
∥∥r0∥∥2

=
∥∥x0 − x∗∥∥2 ≈ 1.0). The second one covers the

opposite case (
∥∥r0∥∥2 ≈ 864.6). Dotted verticals denote the moments of regime switch for the curves of the corresponding colour. The

blue curve refers to constant step size 1
2L . Notice that in the upper plot optimal and theoretical k are very close

According to Figure 4, when x0 is close to x∗, the moment of regime switch does not play a significant role in minimizing
the number of iteration except for a very early switch, which actually also leads to almost the same situation in the long run.
The case when x0 is far from x∗ shows that preliminary one-dimensional optimization makes sense and allows to reduce the
error at least during the early iterations.

L.2. More on minibatches

Figure 5 reports on the same experiment as that described in Section 6.2 (Figure 2) in the main body of the paper, but on
ridge regression instead of logistic regression, and using different data sets. Our findings are similar, and corroborate the
conclusions made in Section 6.2.
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L.3. Stepsize as a function of the minibatch size

In our last experiment we calculate the stepsize γ as a function of the minibatch size τ for τ -nice sampling using equation
(36). Figure 6 depicts three plots, for three synthetic data sets of sizes (n, d) ∈ {(50, 5), (100, 10), (500, 50)}. We consider
regularized ridge regression problems with λ = 1/n. Note that the stepsize is an increasing function of τ .
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Figure 6. Evolution of stepsize with minibatch size τ for τ nice sampling.


