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1. Residual Minimization
Lemma 1 (in the main paper) also suggests another
possible function for minimization, namely Φ(x) =

1
2

2∑
i=1

‖∇ifi(x)‖2. We can state a result that is analogous to

Theorem 1.

Theorem 4. The global minimizers of Φ(x) are all first-
order NE points, i.e., {x? |Φ(x?) = 0} = SSNP . If the
individual functions fi are convex then the global minimiz-
ers of Φ(x) are precisely the set SNE .

Denote by F (x) =

[
∇1f1(x)
∇2f2(x)

]
the vector function of the

first-order stationary conditions for each of the players. So
Φ(x) = 1

2‖F (x)‖2. The gradient of Φ(x) is given by

∇Φ(x) = ∇F (x)F (x)

=

[
∇2

11f1(x) ∇2
12f2(x)

∇2
21f1(x) ∇2

22f2(x)

] [
∇1f1(x)
∇2f2(x)

]
.

(1)

The Hessian of the function Φ(x) is

∇2Φ(x) =

 n∑
j=1

Fj(x)∇2Fj(x) +∇F (x)∇F (x)T

 .

(2)

Consider the gradient descent iteration for minimizing Φ(x)
with stepsize ρ > 0

xk+1 = xk − ρ∇Φ(xk). (3)

We can state the following convergence result for the gradi-
ent descent iterations.

Theorem 5. Suppose ∇Φ(x) is LΦ-Lipschitz continuous.
Let ρ = 1

LΦ
. Then, the {xk} generated by (3) con-

verges sublinearly to x? a first-order critical point of Φ(x),
∇Φ(x?) = 0. If Φ(x) ≤ 1

2µ‖∇Φ(x)‖2 then the sequence
{xk} converges linearly to a x? ∈ SSNP .

Proof. From Lipschitz continuity of∇Φ(x)

Φ(xk+1) ≤Φ(xk) +∇Φ(xk)T (xk+1 − xk)

+
LΦ

2
‖xk+1 − xk‖2

≤Φ(xk, )− ρ(1− ρLΦ

2
)‖∇Φ(x)‖2

≤Φ(xk)− 1

2LΦ
‖∇Φ(x)‖2.

(4)

Telescoping the sum and k = 0, ...,K obtain

Φ(xK+1) ≤ Φ(x0)− 1

2LΦ

K∑
k=0

‖Φ(xK)‖2. (5)

Since Φ(x) is bounded below by 0 we have that

1

2LΦ

K∑
k=0

‖∇Φ(xK)‖2 ≤ Φ(x0)− Φ(xK+1) ≤ Φ(x0)

=⇒ 1

2LΦ
min

k∈{0,...,K}
‖∇Φ(xk)‖2 ≤ Φ(x0)

K + 1
.

This proves the claim on sublinear convergence to a
first-order stationary point of Φ(x). Suppose Φ(x) ≤
1

2µ‖∇Φ(x)‖2 holds. Substituting in (4) obtain

Φ(xk+1) ≤
(

1− µ

LΦ

)
Φ(x) (6)

which proves the claim on linear convergence.

In the following we provide specific conditions under which
the bound Φ(x) ≤ 1

2µ‖∇Φ(x)‖2 holds.

• Suppose the function fi are quadratic then the discus-
sion following Theorem 3 applies.

• Suppose the function F (x) is strongly monotone,
(F (x)− F (x̂))T (x− x̂) ≥ β‖x− x̂‖2. This implies
that the fi(x) are β-strongly convex. Then, it follows
that ∇F (x) � βIn for all x ∈ Rn. This also provides
the following bound

‖∇Φ(x; η)‖2 ≥ (β)2‖F (x)‖2 = 2β2Φ(x). (7)

Hence, µ = β2.
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2. Additional Experiments
In this Section, we present more empirical results for the
four different games that were discussed in the main pa-
per which help understand the convergence behavior of the
proposed method. More concretely, the results validate the
results for convergence rate and the quality of solutions for
the different games discussed in the main paper.

2.1. Convergence Rate for Bilinear and Quadratic
Games:

We provide plots that suggest linear convergence rate for
bilinear and strongly-convex quadratic games as was de-
scribed in the main paper. For both cases we use 20-d
variables for both players which are initialized arbitrarily.
From the plots shown in Figure 1, we observe that V func-
tion decays linearly to close to zero and then it slows down
as the gradient of V starts to vanish (suggested by Theorem
2 in the main paper). It is noted that the guarantees for linear
convergence are for the V function (and not for ∇f ) and
thus we skip plots for∇f .
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Figure 1. Convergence rate for bilinear and convex quadratic
games using the GNI method. Left: Decay of V function for
Bilinear Game. Right: Decay of V function for Strongly-convex
Quadratic Game.

2.2. Two-Player Quadratic Games:

We describe an experiment for non-convex two-player
quadratic games with indefinite Q matrices for both players.
We show the decay of the gradient and the V function for
the GNI formulation. The other optimization algorithms are
seen to be diverging for the indefinite cases (as was shown in
the main text) and thus are not shown here. We used 50−d
data, the same stepsizes η = maxi(‖Qi‖) and ρ = 0.01 for
GNI. The methods are initialized randomly from N(0, I).
For clarification, we show the plot on log scale. As can be
observed from the plots in Figure 2, ∇f goes to zero as V
goes to zero.

2.3. Dirac Delta GAN:

In this section, we show another experiment for the Dirac
Delta GAN that was discussed in the main text. All the
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Figure 2. Convergence of GNI method for non-convex quadratic
game setting shown on a semi-log plot for clarity. Left: Decay of
V function. Right: Decay of the ∇f .
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Figure 3. Convergence of GNI against other methods on the Dirac-
Delta GAN. Left: Convergence of different methods seen by the
decay of ∇f . Right: Trajectory of the two players to the optima.

parameters for all optimizers are kept constant as in the
main text for Dirac Delta GAN. In Figure 3, we see the
convergence of ∇f as well as the trajectories followed by
the two players to the NE. All the methods converge to the
same optima- however, the GNI converges faster than any
other method. As observed in the convex quadratic case,
we see all descent methods following the same trajectory
except for the GNI and Adam. However, it was observed
that the GNI and the other algorithms do not converge to
the same solution when initialized arbitrarily. To investigate
this, we perform an experiment where the game was ini-
tialized randomly from 1000 initial conditions in a square
region in [−4, 4]× [−4, 4]. The error from the ground truth
was computed after 10000 iterations or up on convergence
(the minimum of two). Results of the experiment are shown
as a table in Figure 4. It is observed that the game doesn’t
converge to the known ground truth for the game– Adam is
able to get closest to the ground truth while GNI converges
to a stationary Nash point much faster than all other algo-
rithms. This behavior could be explained by recalling that
GNI is using V function to descend and thus, converges to
the closest stationary Nash point where V vanishes.

2.4. Linear GAN:

We also show some additional results for the Linear GAN
which suggests convergence of the proposed method to a
NE. The second derivative of the objective function for both
the players is positive semidefinite (see Equation (23) in the
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Algorithm GNI Adam ExGrad Grad OMD ExPol

Mean Error 2.11 0.64 2.17 2.18 1.87 1.87
Mean number of Iterations 77 3048 10000 10000 10000 10000

Figure 4. Error Statistics for GNI compared against other techniques for the Dirac Delta GAN

main paper) indicating all stationary points are minimas. In
the following plots in Figure 5, we show the convergence of
the V function and the ||∇f || for the GNI formulation. We
observe very fast convergence for both the V and the ||∇f ||
indicating convergence to a SNP. Additionally, since all
SNPs are NEs in this particular setting, the GNI converges
to a NE.

0 50 100 150 200

Iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
(x

)

0 50 100 150 200

Iterations

0

1

2

3

4

5

6

7

8

9

10

||
 f

||

Figure 5. Convergence of V function and ||∇f || for the Linear
GAN discussed in the main paper. Left: Decay of V function.
Right: Decay of the ∇f .


