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Abstract
Tractable probabilistic models obviate the need
for unreliable approximate inference approaches
and as a result often yield accurate query an-
swers in practice. However, most tractable models
that achieve state-of-the-art generalization perfor-
mance (measured using test set likelihood score)
use latent variables. Such models admit poly-
time marginal (MAR) inference but do not admit
poly-time (full) maximum-a-posteriori (MAP) in-
ference. To address this problem, in this paper,
we propose a novel approach for inducing cutset
networks, a well-known tractable, highly inter-
pretable representation that does not use latent
variables and admits linear time MAR as well as
MAP inference. Our approach addresses a major
limitation of existing techniques that learn cut-
set networks from data in that their accuracy is
quite low as compared to latent variable models
such as ensembles of cutset networks and sum-
product networks. The key idea in our approach
is to construct deep cutset networks by not only
learning them from data but also compiling them
from a more accurate latent tractable model. We
show experimentally that our new approach yields
more accurate MAP estimates as compared with
existing approaches and significantly improves
the test set log-likelihood score of cutset networks
bringing them closer in terms of generalization
performance to latent variable models.

1. Introduction
A fundamental shortcoming of probabilistic graphical mod-
els (PGMs) (Pearl, 1988) such as Bayesian and Markov
networks is that probabilistic inference—the process used
to answer queries—on most models used in practice is in-
tractable. This is not surprising since even the most basic
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inference task of computing the marginal probability of a
variable given observations or evidence—posterior marginal
estimation—is #P-hard (Roth, 1996). To circumvent this
issue, one can either use approximate inference in lieu of
exponential time exact inference approaches or learn mod-
els such that exact inference is tractable, namely takes time
that is polynomial in the number of parameters. Both ap-
proaches are widely used in practice and each has their own
pros and cons. Tractable models are desirable because the
user can always recover accurate, reliable answers accord-
ing to the model. This is a major plus over the approximate
inference approach (e.g., sampling, belief propagation, etc.)
because the latter often exhibits high variability; different
runs and algorithms often yield widely different query an-
swers. However, tractable models typically have slightly
worse test set log-likelihood scores, namely they generalize
poorly, as compared to arbitrary latent PGMs. Therefore
improving the accuracy/fit of tractable models is an active
area of research (Rahman & Gogate, 2016a;b; Di Mauro
et al., 2016; 2017; Rashwan et al., 2016; Liang et al., 2017).

An often overlooked and one of the earliest goals of PGM
research is learning interpretable models (Pearl, 1988; Dar-
wiche, 2009). By interpretable models, we mean PGMs
whose random variables, dependencies (structure) and pa-
rameters are interpretable. To this end, sparse Bayesian
networks having no latent variables are interpretable but
Markov networks are not because parameters of the latter
are not interpretable. Interpretability is desirable, especially
in interactive settings (Kulesza et al., 2015) and explainable
AI applications (Gunning, 2017) such as activity recognition
and medical diagnosis because it helps explain the model,
specifically its assumptions to the user. This allows the user
to update the model if the assumptions are wrong based
on his/her prior knowledge. When the interpretable model
is also tractable, it helps explain why a model made a par-
ticular decision as opposed to a different one to the user.
Thus, learning tractable interpretable models is an impor-
tant research endeavor, especially for building high quality
explainable AI systems (Gunning, 2017).

In this paper, we focus on a particular class of tractable,
interpretable models called cutset networks (Rahman et al.,
2014). At a high level, these networks represent how a cutset
conditioning method (Pearl, 1988) that takes advantage of
determinism (Gogate, 2009), dynamic orderings, context-
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specific independence (Boutilier et al., 1996) and similar
probability values (Chavira & Darwiche, 2008) would ap-
proximate an intractable PGM. Graphically, a cutset network
is an OR tree (Dechter & Mateescu, 2007) in which each
node is labeled with a random variable and each edge is la-
beled with the conditional probability of the child given an
assignment of values from the root to the parent. The leaves
of the cutset network are tree Bayesian networks defined
over the variables not present on the path between the root
and the leaf and therefore can be learned efficiently using
the Chow-Liu algorithm (Chow & Liu, 1968).

Although simple and efficient to learn, a major shortcom-
ing of cutset networks is that their test set log-likelihood
score is worse, often by a significant amount, as compared
to arbitrary PGMs. To alleviate this shortcoming, (Rahman
& Gogate, 2016a; Di Mauro et al., 2016) proposed to learn
mixtures of cutset networks (i.e., introduce a latent variable)
by using various approaches such as the expectation maxi-
mization algorithm, Bagging, random forests and Boosting.
Latent variables are also employed to improve generaliza-
tion performance by other, related tractable models such as
sum-product networks (SPNs) (Poon & Domingos, 2011)
and ensembles of probabilistic sentential decision diagrams
(Kisa et al., 2014; Liang et al., 2017) . Unfortunately, despite
improved generalization performance, in presence of latent
variables (full) maximum-a-posteriori (MAP) inference is
no longer tractable (while marginal inference (MAR) is still
tractable). As a result, application designers have to use
unreliable approximate inference approaches to compute
MAP estimates on these models. In other words, existing
tractable models use latent variables to trade the accuracy
of MAP inference with the accuracy of MAR inference.

The main contribution of this paper is to propose a new
method for improving the accuracy of cutset networks with-
out using latent variables. We propose a two-step, anytime
approach. In the first step, we learn a tractable model having
latent variables from data. In the second step, we take a
generic, heuristic algorithm for learning the structure and
parameters of cutset networks and replace the empirical
statistics computed from data alone by a convex combina-
tion of the empirical statistics and the statistics computed
from a latent tractable model (compilation). The key rea-
son for using latent tractable models instead of Markov and
Bayesian networks is that sufficient statistics can be inferred
efficiently and accurately in the former (by performing poly-
time exact inference). Although, our approach is simple, it
is quite powerful. In particular, we prove that the accuracy
of cutset networks constructed using our approach will in-
crease over time. We demonstrate via experiments on 20
benchmark datasets that our new method achieves test set
log-likelihood scores that are only slightly inferior to state-
of-the-art latent models while substantially outperforming
the latter as well as existing methods that induce tractable

models having no latent variables for MAP inference.

2. Related Work
Our work is related to work in the classification community
by (Towell & Shavlik, 1994; Craven, 1996) who proposed
to learn accurate, interpretable decision trees by overfitting
a decision tree to a highly accurate deep neural network.
Our work is different in that we are interested in modeling
probability distributions that can solve much harder tasks
such as structured prediction and posterior marginal infer-
ence. Our work is also related to the work on approximate
compilation approaches (Gogate & Dechter, 2008; Lowd
& Domingos, 2010; Gogate & Dechter, 2012; Friedman &
Van den Broeck, 2018) that seek to construct an approxi-
mate tractable model from an intractable graphical model.
The difference is that the aforementioned approaches do
not use data and often learn tractable models having latent
variables. Another line of work that is related to our work is
work on learning tractable models without latent variables
directly from data (Rahman et al., 2014; Lowd & Domingos,
2008; Rahman & Gogate, 2016b). Our work is different in
that we leverage more accurate latent models to improve the
performance of non-latent models.

3. Notation and Background
We assume that all random variables used in this paper are
Boolean or binary valued. Note that we make this assump-
tion for simplicity of exposition and the techniques pre-
sented in this paper can be easily extended to multi-valued
random variables. Let X = fX1; : : : ; Xng denote the set
of n Boolean variables where each variable Xi 2 X takes
values from the domain f0; 1g. Let x denote an assignment
of values to all variables in X. We will denote the assign-
ment Xi = 1 by xi and Xi = 0 by xi. Given a subset U of
X, we denote by xU as the projection of x on U.

3.1. Bayesian Networks

Bayesian networks (BNs) (Pearl, 1988; Darwiche, 2009)
are often used in practice to represent and reason about
uncertainty. At a high level, they can be understood as a
compact graphical representation of a joint probability dis-
tribution over a large number of random variables. Formally,
a Bayesian network, denoted by B is a triple hX; G;Pi
where G = (V;E) is a directed acyclic graph such that
V has one node for each variable in X, E is a set of di-
rected edges, and P is a set of conditional probability tables
(CPTs). Each CPT Pi 2 P is defined as Pi(Xijpa(Xi))
where pa(Xi) is the set of parents of Xi in G. A Bayesian
network represents the following probability distribution
PB(x) =

Qn
i=1 Pi(xfXigjxpa(Xi)). Since the size of each

CPT is exponential in the number of its parents, in practice,
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Figure 1.An example cutset network de�ned over the set of vari-
ablesf X 1 ; X 2 ; X 3 ; X 4 ; X 5 ; X 6g.

for computational reasons, we assume that the number of
parents is bounded by a constant.

The two key tasks in Bayesian networks are learning the
structure and parameters from data and inference. We focus
on two typical inference tasks in this paper: marginal infer-
ence (MAR) given evidence and full maximum-a-posteriori
(MAP) inference.1 It is well known that most tasks of inter-
est in practice can be reduced to either MAR or MAP. Let
the variables be partitioned into three (possibly empty) sets:
evidence (or observed), non-evidence (or unobserved) and
latent (or hidden). MAR is de�ned as �nding the marginal
probability distribution over each or a small subset of non-
evidence variables given evidence while MAP is de�ned as
�nding the most probable assignment to all non-evidence
(unobserved) variables given evidence. Both tasks are at
least NP-hard and are computationally infeasible in practice.
We say that a Bayesian network, and a probabilistic model in
general, is MAR-tractable (MAP-tractable) when the MAR
(MAP) task can be solved in time that scales polynomi-
ally with the number of variables. Examples of tractable
Bayesian networks include tree Bayesian networks (Chow-
Liu trees (Chow & Liu, 1968)), bounded treewidth Bayesian
networks (Elidan & Gould, 2008) and networks having
polynomial-sized arithmetic circuits (Darwiche, 2000).

3.2. Cutset Networks

Cutset networks (CNs) combine tree Bayesian networks
with OR trees (probabilistic decision trees) (Dechter & Ma-
teescu, 2007). Graphically, they can be depicted using a
rooted OR tree with a tree Bayesian network at each leaf
of the OR tree. Formally, a CNCis a pairhO; T i whereO
is an OR Tree havingL leaves andT is a collection ofL
tree Bayesian networks attached to each of theL leaves. An
OR tree is a rooted binary tree in which internal nodes are
labeled with variables and each of the two edges emanating
from a node represents conditioning of the variable with an
appropriate value (either0 or 1). We follow the convention

1Full MAP inference is also called most probable explanation
(MPE) inference in the Bayesian network literature.

that the left branch of a node labeled byX i representsx i

while the right branch representsx i . Each edge is labeled
with the conditional probability of the variable taking the
value given an assignment of values from the root to the par-
ent node.Crepresents the following probability distribution

PC(x) =

 
Y

(v i ;v j )2 path O (x )

pi;j

!
�

Tl (x ) (xV (T l ( x ) ) )
�

(1)

wherepathO (x) is a unique path (sequence of edges) from
the root to the leaf inO corresponding to the assignment
x, pi;j is the conditional probability attached to the edge
between nodesvi andvj , l (x) is the index of the leaf node
alongpathO (x), Tl (x ) is the tree Bayesian network inT
at indexl(x) andV(Tl (x ) ) denotes the subset of variables
over whichTl (x ) is de�ned.

Example 1. Figure 1 shows an example cutset network
de�ned over six variablesf X 1; : : : ; X 6g. The probabil-
ity of the assignment(0; 1; 1; 1; 0; 1) to the six variables
(whereX 1 is assigned to0, X 2 is assigned to1, etc.) equals
0:3 � 0:8 � P(X 3 = 1 ; X 4 = 1 ; X 5 = 0 ; X 6 = 1 jX 1 =
0; X 2 = 1) where0:3 equals the probabilityP(X 1 = 0)
(left branch of root node labeled byX 1), 0:8 equals the con-
ditional probabilityP(X 2 = 1 jX 1 = 0) (right branch of
X 2) respectively andP(X 3 = 1 ; X 4 = 1 ; X 5 = 0 ; X 6 =
1jX 1 = 0 ; X 2 = 1) is computed from the tree Bayesian
networkT3 (right child of the OR node labeled byX 2).

A key feature of cutset networks is that they are both MAP-
tractable and MAR-tractable (Rahman et al., 2014; Dechter
& Mateescu, 2007) assuming that all variables in the OR
tree as well as all tree Bayesian networks inT are known or
observed (namely when the network has no latent variables).
Other examples of tractable models that are both MAP- and
MAR-tractable include bounded treewidth Bayesian net-
works (Bach & Jordan, 2002), Bayesian networks having
polynomial sized arithmetic circuits (Lowd & Domingos,
2008) and probabilistic sentential decision diagrams (Liang
et al., 2017). Another important feature of cutset networks is
that their parameters have well-de�ned probabilistic seman-
tics, i.e., they are interpretable and as a result enable smooth,
reliable human-machine interaction (Gunning, 2017).

CNs can be learned from data by adapting typical top-down
decision tree induction techniques for selecting a variable at
each OR tree node and then using the Chow-Liu algorithm
(Chow & Liu, 1968) for learning a tree Bayesian network at
each leaf node when a pre-de�ned termination condition is
satis�ed. However, despite advances in learning algorithms
(Vergari et al., 2015; Di Mauro et al., 2015), CNs are less
accurate than arbitrary, intractable Bayesian networks.

To address this problem, (Di Mauro et al., 2015; Rahman &
Gogate, 2016a;b) proposed using latent sum-product mix-
tures of cutset networks. In numerous empirical studies, it
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has been shown that these networks achieve state-of-the-art
test set log-likelihood scores. However, a key issue with
these latent models is that they sacri�ce MAP-tractability2

while maintaining MAR-tractability.

4. Inducing Accurate Cutset Networks: A
Novel Approach

The main goal of this paper is to improve the accuracy of
cutset networks while maintaining both MAP and MAR
tractability. Our main intuition is the following. Improving
the model �t, measured using test set log-likelihood score,
of MAR tractable models also substantially improves their
MAR inference accuracy. In particular, numerous previ-
ous studies (Rooshenas & Lowd, 2014; Gens & Domingos,
2013) have shown that given two models, sayM 1 (e.g.,
SPNs) andM 2 (e.g., BNs), such that: (1)M 1 is MAR-
tractable; (2)M 2 is MAR-intractable; and (3)M 2 is slightly
better thanM 1 in terms of model �t, posterior marginal
estimates obtained by performing exact inference onM 1 are
far superior to those obtained by performing approximate
inference onM 2 when bothM 1 andM 2 are given the same
amount of (reasonably bounded) time. We hope to achieve
similar results for MAP inference, namely by improving the
�t of MAP-tractable cutset networks (i.e., networks with-
out latent variables), we hope to signi�cantly improve the
quality of their MAP estimates.

Next, we present our new method for learning accurate cut-
set networks. The key idea is to �rst learn a highly accurate
tractable model with latent variables from data. We will de-
note this model byQ. We then combine statistics computed
by performing exact marginal inference onQ with the ones
empirically estimated from data to induce a cutset network.
The main intuition behind this new approach is that we are
unable to learn deep, accurate cutset networks in high di-
mensions from data alone because the variance increases
with increasing depth. In particular, as we increase the depth
d of a cutset network by one, the suf�cient statistics used
to estimate the remaining network at depthd + 1 are not
as reliable as the ones at depthd because the former are
based on roughly half the number of training examples as
compared to the latter. Therefore, to improve the accuracy
of deep cutset networks we need to reduce the variance
using an artifact other than the training data. In this paper,
we propose to useQ, an auxiliary latent tractable model to
achieve this objective.

Algorithm 1 describes the main steps in our approach. We
call the algorithm LC-CN which stands for Learn/Compile
Cutset Networks. The algorithm takes as input a dataset

2MAP inference in latent models is also called marginal MAP
(MMAP) inference. MMAP is substantially harder because the
latent variables need to be marginalized out before performing
maximization (Liu & Ihler, 2013; Park & Darwiche, 2004).

Algorithm 1 LC-CN (D ,Q)
Input : Training examplesD de�ned over a set of vari-

ablesX and a tractable latent model representing
a distributionQ

Output : A Cutset network
1 begin
2 Compute pairwise marginal distributionP(X i ; X j ) for

all pairs(X i ; X j ) from Q andD (see Eq. (4)).
3 if the termination condition is satis�edthen
4 return ChowLiuTree(P)
5 else

// Variable selection Heuristic
6 UseP to computeScore(X ) for each variableX

using Eq. (3).
7 X i = variable with the highest Score.
8 Create a new internal nodeo labeled byX i

9 Let l andr be the left and right child nodes ofo
respectively.

10 Label(o; l) = P(x i )
11 l = LC-CN(D jx i ; Qjx i ).
12 Label(o; r) = P(x i )
13 r = LC-CN(D jx i ; Qjx i ).
14 return o
15 end

D de�ned over a collection of observed variablesX and a
tractable latent model representing a distributionQ (learned
from D). The algorithm builds a cutset network via a top-
down decision-tree style induction. At each recursive call,
it outputs a Chow-Liu tree (steps 2-3) if the termination
condition is met. Otherwise, it heuristically selects a variable
X i to condition on (steps 6-7) and then recurses on the0
and1 value assignments toX i (steps 9-13).

Variable Selection Heuristic. Following previous work
(Rahman et al., 2014; Di Mauro et al., 2015), we propose
to use pairwise mutual information score to select the vari-
ableX i in steps 6 and 7. This scoring function is based on
the following intuition. Ideally, we should condition on a
variable having strong dependencies with other variables,
since conditioning on that variable would help us reach the
termination condition faster. In other words, the condition-
ing operation is highly likely to yield a sparse, tree-like
Bayesian network having fewer dependencies (edges). A
popular approach for measuring dependence between two
sets of variables is the mutual information scoreI :

I (X ; Y ) =
X

x

X

y

P(x; y ) log
�

P(x; y )
P(x)P(y )

�
(2)

However, estimating mutual information between a variable
X i and the remaining variablesX nf X i g is computationally
intractable because we need to sum over exponential num-
ber of combinations. Therefore, we approximate it using
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the following, computationally ef�cient, pairwise mutual
information score and select a variable having the largest
score (breaking ties arbitrarily).

Score(X i ) =
X

j :j 6= i

I (X i ; X j ) (3)

A key sub-step in computingScore(X i ) is computing the
marginal distributionP(X i ; X j ) for all pairs of variables.
When cutset networks are learned from data, we estimate
P(X i ; X j ) from data. Namely, counts of(X i = a; X j = b)
wherea; b 2 f 0; 1g in the data is the suf�cient statistic.
Since these counts will exhibit high variance as the depth
increases, we propose to estimateP(X i ; X j ) by combining
the counts with estimates computed from the latent tractable
model. More formally, we use

P(X i ; X j ) = �Q (X i ; X j ) + (1 � � )S(X i ; X j ) (4)

where� 2 [0; 1] is a constant (hyper-parameter),Q(X i ; X j )
is computed from the distributionQ represented by the la-
tent tractable model andS(X i ; X j ) is the empirical distri-
bution computed from the data counts. In general, comput-
ing Q(X i ; X j ) is NP-hard. However, on tractable models,
computingQ(X i ; X j ) is poly-time and thus ef�cient. The
hyper-parameter� controls the relative importance ofS and
Q. When� = 0 , P equalsS and the latent model is not
used. Similarly, when� = 1 , P equalsQ and the data is
ignored. In other words, the cutset network islearned from
data when� = 0 andcompiled from Q when� = 1 . In
practice,� can be set using the validation set.

Note that the Chow-Liu algorithm also uses pairwise mu-
tual information to construct a tree Bayesian network. We
propose to useP(X i ; X j ) (see Eq.(4)) to compute pairwise
mutual information for use in the Chow-Liu algorithm.

After selecting a variableX i having the highest score, the
algorithm conditions on it by creating an internal nodeo
in the OR tree (step 8) and then recursively builds its left
and right subtrees (steps 10–13). In the algorithm, the no-
tationD jx i (similarly D jx i ) denotes the dataset obtained
by deleting all examples in whichX i equals0 (similarly 1)
and then removing the column forX i . Also, the notation
Qjx i (similarly Qjx i ) denotes the conditional distribution
obtained by settingX i to 1 (similarly 0) in Q. Finally in step
14, the algorithm returns the new internal nodeo constructed
in steps 6-13.

Termination Condition . Algorithm 1 can be easily mod-
i�ed to yield an anytime scheme by carefully setting the
termination condition. In particular, we can perform an it-
erative deepening search by using a parameter and progres-
sively increasing or decreasing the value of the parameter
until a user-de�ned time bound is reached. One option is
to use a bound on the maximum depth of the OR tree as
a parameter and terminate the recursion when the bound

is reached. A second option is to stop the recursion when
the KL divergence betweenQ andP at a particular node is
bounded by a small constant� . In our experiments, we use
the former approach.

Theoretical Properties of LC-CN. Next we formally de-
scribe the anytime properties of Algorithm 1 in Theorem 1.
Speci�cally, the theorem shows that under the assumption
that the latent tractable model (its distributionQ) is a more
accurate approximation of the data generating distribution
than the cutset network learned from data, the accuracy of
the cutset network output by LC-CN can only increase or
remain the same with increasing depth.
Theorem 1. Let � = 1 and Rd denote the distribution
associated with the cutset network output by Algorithm LC-
CN having maximum depthd, thenD(Q; Rd) � D (Q; R j )
wherej � d andD(Q; R) denotes the KL divergence be-
tween the distributionsQ andR.

Proof of Theorem 1 is presented in the supplementary mate-
rial. Theorem 1 shows that learning deep cutset networks is
a good idea because as the depth increases their performance
will approach that of a superior latent model (Q).

We conclude this section by showing that each recursive step
of LC-CN has only polynomial time complexity. In other
words, LC-CN is a general-purpose, scalable algorithm for
learning cutset networks.
Proposition 1. The time complexity of Algorithm LC-CN is
O(n2 � V � (I + N )) wheren is the number of variables,
V is the number of nodes in the cutset network,I is the
inference complexity to computeQ(X i ; X j ), andN is the
number of training examples.

5. Experiments

5.1. Setup

We evaluated the performance of cutset networks along
two dimensions: (1) Model �t measured using the test set
log-likelihood score and (2) MAP estimation quality mea-
sured using the log-likelihood of the MAP assignment. We
used 20 benchmark datasets used in numerous prior studies
(Rooshenas & Lowd, 2014; 2013; Gens & Domingos, 2013;
Vergari et al., 2015) to evaluate our new algorithm. All the
datasets are de�ned over binary valued variables with the
number of variables ranging from 16 to 1556 (see Table 1).

We used mixtures of Chow-Liu trees (MTs) (Meila & Jordan,
2000) and bags of cutset networks (BCNs) as our choice
of latent tractable models (Q) in Algorithm 1. Although
any tractable model could have been used in Algorithm
1, for example SPNs, we chose MTs and BCNs because
they admit faster inference and learning algorithms and on
many datasets are as accurate as state-of-the-art methods.
Moreover, since the complexity of each recursive call to our




