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Abstract
Data augmentation (DA) is commonly used dur-
ing model training, as it significantly improves
test error and model robustness. DA artificially
expands the training set by applying random noise,
rotations, crops, or even adversarial perturbations
to the input data. Although DA is widely used,
its capacity to provably improve robustness is not
fully understood. In this work, we analyze the
robustness that DA begets by quantifying the mar-
gin that DA enforces on empirical risk minimiz-
ers. We first focus on linear separators, and then a
class of nonlinear models whose labeling is con-
stant within small convex hulls of data points.
We present lower bounds on the number of aug-
mented data points required for non-zero margin,
and show that commonly used DA techniques may
only introduce significant margin after adding ex-
ponentially many points to the data set.

1. Introduction
Modern machine learning has ushered in a plethora of ad-
vances in data science and engineering, which leverage mod-
els with millions of tunable parameters and achieve unprece-
dented accuracy on many vision, speech, and text prediction
tasks. For state-of-the-art performance, model training in-
volves stochastic gradient descent (SGD), combined with
regularization, momentum, data augmentation, and other
heuristics. Several empirical studies (Zhang et al., 2016;
Zantedeschi et al., 2017) observe that among these methods,
data augmentation plays a central role in improving the test
error performance and robustness of these models.

Data augmentation (DA) expands the training set with ar-
tificial data points. For example, Krizhevsky et al. (2012)
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augmented ImageNet using translations, horizontal reflec-
tions, and altered intensities of the RGB channels of im-
ages in the training set. Others have augmented datasets
by adding labels to sparsely annotated videos (Misra et al.,
2015; Kuznetsova et al., 2015; Prest et al., 2012). Another
important class of data augmentation methods are referred
to broadly as adversarial training. Such methods use adver-
sarial examples (Szegedy et al., 2013; Madry et al., 2017)
to enlarge the training set. Many works have since shown
that by training models on these adversarial examples, we
can increase the robustness of learned models (Bastani et al.,
2016; Carlini & Wagner, 2017; Szegedy et al., 2013; Good-
fellow et al., 2014). Recently, (Ford et al., 2019) studied
the use of additive Gaussian DA in ensuring robustness of
learned classifiers. While they showed the approach can
have some limited success, ensuring robustness to adversar-
ial attacks requires augmenting the data set with Gaussian
noise of particularly high variance.

The high-level motivation of DA is clear: a reliable model
should be trained to predict the same class even if an image
is slightly perturbed. Despite its empirical effectiveness, rel-
atively few works theoretically analyze the performance and
limitations of DA. Bishop (1995) shows that training with
noise is equivalent to Tikhonov regularization in expectation.
Wager et al. (2013) show that training generalized linear
models while randomly dropping features is approximately
equivalent to `2-regularization normalized by the inverse
diagonal Fisher information matrix. Dao et al. (2018) study
data augmentation as feature-averaging and variance regu-
larization, using a Markov process to augment the dataset.
Wong & Kolter (2018) provide a provable defense against
bounded `∞-attacks by training on a convex relaxation of
the “adversarial polytope,” which is also a form of DA.

We take a different path by analyzing how DA impacts the
margin of a classifier, i.e., the minimum distance from the
training data to its decision boundary. We focus on margin
since it acts as a proxy for both generalization (Shalev-
Shwartz & Ben-David, 2014) and worst-case robustness.
In particular, we analyze how much data augmentation is
necessary in order to ensure that any empirical risk mini-
mization algorithm achieves positive, or even large, margin.
To the best of our knowledge, no existing work has explicitly
analyzed data augmentation through the lens of margin.
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1.1. Contributions

We consider the following empirical risk minimization
(ERM) problem:

A(S) = argmin
f∈F

{
n∑
i=1

`(f(xi), yi)

}

where S = {(xi, yi)}ni=1 is the training set, xi ∈ Rd
are the feature vectors, and yi ∈ {−1,+1} their labels.
F is the set of classifiers we are optimizing over, and
`(f(x), y) = 1{f(x) 6=y} is the 0/1 loss quantifying the dis-
crepancy between the predicted label f(x) and the truth.

For the purpose of better generalization and robustness, we
often desire an ERM solution with large margin. A classifier
f has margin ε with respect to some p-norm, if (x, y) ∈ S
then for any δ ∈ Rd with ‖δ‖p ≤ ε, f(x) = f(x+ δ) = y.
While margin can be explicitly enforced through constraints
or regularization for linear classifiers, doing so efficiently
and provably for general classifiers remains a challenging
open problem. Since data augmentation has had success in
offering better robustness in practice, we ask the following
question:

Can data augmentation guarantee non-zero margin?

That is, can we use an augmented data set Saug, such that by
applying any ERM to it, the output classifier A(Saug) has
some margin? Figure 1 provides a sketch of this problem
for linear classification.

Augmented point, Class 1
Augmented point, Class 2

Margin, Class 2

Margin, Class 1

Figure 1. A linearly separable data set with two data points, each
in its own class, and two input dimensions. If we wish to guarantee
a positive margin for all feasible linear separators, i.e., all linear
ERMs, we need to augment the training set with additional data
points. Otherwise, a linear separator exists with zero margin.

Lower bounds on the number of augmentations. We
first consider linear classification of linearly separable data.
We develop lower bounds on the number of augmented data
points needed to guarantee that any linear separator of the
augmented data has positive margin with respect to the origi-
nal data set. We show that in d dimensions, d+1 augmented

data points are necessary for any data augmentation strat-
egy to achieve positive margin. Moreover, there is some
strategy that achieves the best possible margin with only
d+ 1 augmented points. However, if the augmented points
are formed by bounded perturbations of the training set, we
need at least as many augmented data points as true training
points to ensure positive margin.

Upper bounds for additive random perturbations. In
practice, many data augmentation methods employ random
perturbations, including random crops, rotations, and addi-
tive noise. As a first step towards analyzing these methods,
we focus on the setting that the augmented data set is formed
by adding spherical random noise to the original training
data. We specifically quantify how the dimension of the
data, the number of augmentations per data point, and their
norm can impact the worst-case margin. Our results show
that if the norm of the additive noise is proportional to the
margin, then the number of augmented data points must be
exponential to ensure a constant factor approximation of the
best possible margin. However, if the norm of the additive
noise is carefully chosen, then polynomially many augmen-
tations are sufficient to guarantee that any sperateor of the
augmented data set has margin that is a constant fraction of
the max margin of the original data set.

Nonlinear classification and margin. Finally, we extend
our results to nonlinear classifiers that assign the same label
within small convex hulls of the training data. We provide
lower bounds on the number of augmentations needed for
such “respectful” classifiers to achieve positive margin, and
also analyze their margin under random DA methods. De-
spite respectful classifiers being significantly more general
than linear ones, we show that their worst-case margin after
augmentation can be comparable to that of linear classifiers.

1.2. Related Work

DA is closely related to robust optimization methods (Xu
et al., 2009; Caramanis et al., 2012; Sinha et al., 2018; Wong
& Kolter, 2018). While DA aims at improving model robust-
ness via finitely many perturbations of the input data, robust
optimization methods solve robust versions of ERM, which
typically involve worst-case perturbations over infinite sets.
Our work has particularly strong connections to Xu et al.
(2009), which shows that regularized SVMs are equivalent
to robust versions of linear classification. Our results can
be viewed as attempting to train robust models without the
need to perform robust optimization.

Our work may also be viewed as quantifying the robustness
of classifiers trained with DA against adversarial (i.e., worst-
case) perturbations. Many recent works have analyzed the
robustness of various classifiers to adversarial perturbations
from a geometric perspective. Fawzi et al. (2016) introduce
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a notion of semi-random noise and study the robustness
of classifiers to this noise in terms of the curvature of the
decision boundary. Moosavi-Dezfooli et al. (2018) also re-
late the robustness of a classifier to the local curvature of
its decision boundary, and provide an empirical analysis
of the curvature of decision boundaries of neural networks.
Fawzi et al. (2018a) relate the robustness of a classifier to its
empirical risk and show that guaranteeing worst-case robust-
ness is much more difficult than robustness to random noise.
Franceschi et al. (2018) provide a geometric characteriza-
tion of the robustness of linear and “locally approximately
flat” classifiers. Their results analyze the relation between
the robustness of a classifier to noise and its robustness to
adversarial perturbations.

2. Margin via Data Augmentation
Our work aims to quantify the potential of DA to guarantee
margin for generic ERMs. We first examine linear clas-
sification on linearly separable data, and then extend our
results to nonlinear classification. Although we can find
max-margin linear classifiers efficiently through quadratic
programming (Shalev-Shwartz & Ben-David, 2014), gener-
alizing this to nonlinear classifiers has proved difficult; if
this was a simple task for neural networks, the problem of
adversarial examples would be non-existent. Hence linear
classification serves as a valuable entry point for our study
of data agumentation.

We first introduce some notation. Let A,B ⊆ Rd, x, y ∈
Rd, and r ≥ 0. Let d(x, y) denote the `2 distance between
x, y, and let d(A,B) = infx∈A,y∈B d(x, y). Define Ar :=
{z ∈ Rd | d(z,A) ≤ r}. Let |A|,

∫
(A), and conv(A)

denote the cardinality, interior, and convex hull of A. Let
Sd−1 denote the unit sphere in Rd, and for r > 0 let rSd−1
denote the sphere of r.

Let S ⊆ Rd × {±1} be our training set. For (x, y) ∈ S,
x is the feature vector, and y ∈ {±1} is the label. For any
such S, we define

X+ = {x | (x, 1) ∈ S}, X− = {x | (x,−1) ∈ S}. (2.1)

Linear classification. We next recall some background
on linear classification. As in Section 1.1, we assume we
have access to an algorithmA that solves the ERM problem
over the set of linear classifiers.

A linear classifier is a function of the form h(x) =
sign(〈w, x〉 + b), for w ∈ Rd, b ∈ R. We often identify
h with the hyperplane H = {x | 〈w, x〉 + b = 0}. We
say that h linearly separates S if ∀x ∈ X+, h(x) ≥ 0 and
∀x ∈ X−, h(x) ≤ 0. If such h exists, S is linearly separa-
ble. LetH(S) denote the set of linear separators of S.

Margin. Suppose S is linearly separable. The margin of
a linear separator h ∈ H(S) is defined as follows:

Definition 1. The margin of a linear separator h(x) =
sign(〈w, x〉+ b) with associated hyperplane H is

γh(S) = inf
(x,y)∈S

d(x,H) = inf
(x,y)∈S

|〈w, x〉+ b|
‖w‖2

.

We define γh(S) = −∞ if h does not linearly separate S.

If S is linearly separable, there is a linear classifier h∗ cor-
responding to (w∗, b∗) with maximal margin γ∗. This clas-
sifier is the most robust linear classifier with respect to
bounded `2 perturbations of samples in S.

In this work, we analyze the margin of ERMs that are trained
without any explicit margin constraints or regularization.
Let S denote the true dataset. To achieve margin, we create
an artificial dataset S′. We then assume we have access
to an algorithm that outputs (if possible) a linear separator
h of the augmented dataset Saug := S ∪ S′. We define
X ′±, X

aug
± analogously to X± in (2.1).

We will analyze the margin of h with respect to the true
training data S. If S is linearly separable and we add no
artificial points, then some h ∈ H(S) must have 0 margin.
If S′ is designed properly, one might hope that Saug is still
linearly separable and that any h ∈ H(Saug) has positive
margin with respect to S. The following notion formalizes
this idea, illustrated in Figure 2.

Definition 2. The worst-case margin of a linear separator
of Saug with respect to the original data S is defined as

α(S, S′) = min
h∈H(Saug)

γh(S).

We define this to be −∞ ifH(Saug) = ∅.

We are generally interested in the following question:

Question. How do we design S′ so that α(S, S′) is as large
as possible?

In Section 3.1, we analyze how large S′ must be to ensure
that α(S, S′) is positive. We show that |S′| > d is neces-
sary to ensure positive worst-case margin. Moreover, if S′ is
formed via bounded perturbations of S, we need |S′| ≥ |S|
to guarantee positive margin. In Section 3.2, we analyze
the setting where S′ is formed by spherical random pertur-
bations of S of radius r, a technique that mirrors random
noise perturbations used in practice. We show that if r is
not well-calibrated, exponentially many perturbations are
required to achieve a margin close to γ∗. However, if r is set
correctly, then it suffices to have |S′| polynomial in n and
d to ensure that any linear separator of Saug will achieve
margin close to γ∗ on S. In Section 4, we generalize this
notion to a class of nonlinear classifiers, which we refer to as



Does Data Augmentation Lead to Positive Margin?

(a) (b) (c)

Figure 2. Solid dots represent the true data points and hollow dots represent artificial data points. Convex hulls of the true and augmented
data are represented by solid and dashed lines, respectively. Classifiers are shown in blue. (a) Without DA, we may obtain a zero margin
classifier. (b) Carefully chosen augmentations can guarantee positive margin. (c) Large augmentations may violate linear separability.

“respectful” classifiers, and derive analogous results to those
described above. We show that this class includes classifiers
of general interest, such as nearest neighbors classifiers.

3. Linear Classifiers
3.1. How Much Augmentation Is Necessary?

Suppose S is linearly separable with max-margin γ∗. We
wish to determine the required size of S′ to ensure that
α(S, S′) > 0. We first show that to achieve a positive worst-
case margin, the total number of perturbations must exceed
the ambient dimension.
Theorem 1. If |S′| < d+ 1, then α(S, S′) ≤ 0.

Therefore, we need to augment by at least d + 1 points to
ensure positive margin. We now wish to understand what
margin is possible using data augmentation. We have the
following lemma.
Lemma 1. Let γ∗ be the maximum margin on S. For all
S′ ⊆ Rd, α(S, S′) ≤ γ∗.

In fact, if we know the max-margin hyperplane, then d+ 1
points are sufficient to achieve α(S, S′) = γ∗.
Theorem 2. Let S be linearly separable with max-margin
γ∗. Then ∃S′ such that |S′| = d+ 1 and α(S, S′) = γ∗.

The augmentation method in the proof (see Section B.3)
requires explicit knowledge of the maximum-margin hy-
perplane. In practice, most augmentation methods avoid
such global computations, and instead apply bounded per-
turbations to the true data. Recall that for A ⊆ Rd,
Ar = {x|d(x,A) ≤ r}. For S ⊆ Rd × {±1}, we define

Sr =

(
(X+)r × {1}

)⋃(
(X−)r × {−1}

)
. (3.1)

If S′ is formed from S by perturbations of size at most r,
then S′ ⊆ Sr. The following result shows that if S′ ⊆ Sr,
then |S′| ≥ |S| is necessary to guarantee that α(S, S′) > 0.

Theorem 3. Fix (n,m) ∈ N2 and r > 0. Then ∃S ⊆ Rd
with |X+| = n and |X−| = m, such that if S′ ⊆ Sr, and
|X ′+| < n, then α(S, S′) = 0.

Figure 3 provides an illustration. Given r, we choose X+

to lie on a parabola P such that the tangent lines at these
points are at distance at least r from other points. We choose
X− to be far enough below the x-axis so that these tangent
lines linearly separate X+ from Xaug

− . Suppose we do not
augment some point s ∈ X+. Then the tangent at that point
linearly separates X+ from Xaug

− , while being at distance 0
away from s. Thus, we need augmentations at every point
in X+ to guarantee positive margin.

Figure 3. Points in X+ lie on the the parabola P defined by y =
9x2. The tangent at each point s ∈ X+ does not intersect the
ball of radius r around any other point in X+. We choose X−
to have points far enough below the x-axis so that the tangents at
X+ separate X ′+ from any X ′− ⊆ (X−)r . Points in X+ and their
r-balls are in red, their tangents are in blue, and X− is in black.

3.2. Random Perturbations

We now analyze the setting where S′ is formed by ran-
dom perturbations of S. Our results reveal a fundamen-
tal trade-off between the size of perturbations, number of
perturbations, margin achieved, and whether or not linear
separability is maintained. If we construct many large per-
turbations, we may violate linear separability, but if we use
too few perturbations that are too small in size, we may only
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achieve small margin guarantees.

In the rest of this section, we assume that each point in S′

is of the form (x + z, y) where (x, y) ∈ S and z is drawn
uniformly at random from rSd−1, the sphere of radius r.
Due to the construction of S′, the following lemma about
the inner products of random points on the sphere Sd−1 will
be useful throughout.

Lemma 2. Let a be a unit vector and z be generated uni-
formly at random from the sphere of radius γ. Then with
probability at least 1− e−dε2/2γ2

, 〈a, z〉 ≤ ε.

For further reference, see Chapter 3 of (Vershynin, 2011).

Upper bounds on margin. By Theorem 1, we know that
|S′| ≥ d+ 1 is necessary to achieve positive margin on S.
Since S′ ⊆ Sr, we must have α(S, S′) ≤ r. In general, we
hope that high probability, α(S, S′) ≈ r. We show below
that the margin and perturbation size can be close only if
|S′| is exponential in d. The result follows using results on
the measure of spherical cap densities to bound the distance
between S and the max-margin hyperplane.

Theorem 4. For all δ ∈ (0, 1), with probability at least
1− δ, we have

α(S, S′) ≤

(√
2 ln(|S′|) + 2 ln(1/δ)

d

)
r.

This result shows that to achieve minimum-margin close to
r, we need the number of perturbations to be exponential
in d. Thus, if r ≈ γ∗, we require exponentially many
augmentations. However, by making r much larger than γ∗,
we may be able to achieve a large margin, provided linear
separability is maintained.

Maintaining linear separability. We now show that if r
is too large, the augmented sets will often not be linearly
separable. Specifically, we show that when S just has two
points, if r = Ω(

√
dγ∗) and |X ′+| = Ω(d), then linear

separability is violated with high probability. For Theorem
5, suppose S = {(x1, 1), (x2,−1)}where d(x1, x2) = 2γ∗

(i.e., the max-margin is γ∗).

Theorem 5. If |X ′+| ≥ 16d and r ≥ 8e2
√
2d

π3/2 γ∗, with prob-
ability at least 1− 2e−d/6, Saug is not linearly separable.

To prove this, we first show that with high probability, there
are Ω(d) points in X ′+ labeled −1 by the max-margin clas-
sifier. We then use estimates of when random points on
the sphere are contained in a hemisphere to show that with
high probability, the convex hull of the these points contains
x2. This analysis can be extended directly to the setting
where X+ and X− are contained in balls of sufficiently
small radius compared to

√
dγ∗.

On the other hand, we show that if r is slightly smaller than√
dγ∗, linear separability holds with high probability.

Theorem 6. Suppose S is linearly separable and |S′| ≤
N . If r ≤ β−1/2

√
d/ log(N)γ∗ for β > 1, then with

probability at least 1−N1−β , Saug is linearly separable.

A short proof sketch is as follows: Let w∗ be a unit vector
orthogonal to the max-margin hyperplaneH∗. Suppose (x+
z, y) ∈ S′ where (x, y) ∈ S and z is sampled uniformly on
the sphere of radius r. By Lemma 2, with high probability
〈w∗, x + z〉 will be close to 〈w∗, x〉, and so x, x + z will
fall on the same side of H∗. The result then follows by a
union bound.

Theorems 5 and 6 together imply that if r = Ω(
√
dγ∗), we

cannot hope to maintain linear separability. Instead, setting
r = O(

√
d/ logNγ∗), we will maintain linear separability

with high probability. We will use the latter result in the
next section to show that for such r, we can actually provide
lower bounds on the adversarial margin α(S, S′) achieved.

Lower bounds on margin. By Theorem 4, we know that
if r ≈ γ∗, we need N to be exponential in d to achieve a
margin close to γ∗. By Theorem 6, we can set r to be as
large as O(

√
d/ logNγ∗) and maintain linear separability.

We might hope that in this latter setting, we can achieve
a margin close to γ∗ with substantially fewer points than
when r ≈ γ∗.

Suppose S′ is formed by taking N perturbations of each
point in S = {(xi, yi)}i∈[n]. Formally, for i ∈ [n], j ∈ [N ]

let z(j)i be drawn uniformly at random from rSd−1. Then,

S′ = {(xi + z
(j)
i , yi)}i∈[n],j∈[N ]. (3.2)

We show following theorem:

Theorem 7. Suppose S is linearly separable with max-
margin γ∗. Let S′ be as in (3.2). There is a universal con-
stant C such that if N ≥ Cd and r ≤ β−1/2

√
d/ logNγ∗

for β > 1, then with probability at least 1−ne−d−nN1−β ,
we have

α(S, S′) ≥ 1

2
√

2

√
log(N/d)

d
r.

Taking r = β−1/2
√
d/ logNγ∗ and β sufficiently large,

we can ensure that the worst-case margin among linear sep-
arators is a constant fraction of the max-margin. Thus, with
high probability, we can achieve a constant approximation
of the best possible margin with |S′| = O(nd2). While
Theorems 1 and 3 indicate that |S′| should grow linearly in
n and d, determining whether O(nd2) is tight for some S is
an open problem.

Remark 1. Theorem 7 can be extended to the setting where
we only take perturbations of each point in a τ -cover of X+
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andX−. Recall thatA is a τ -cover ofB if ∀x ∈ B, ∃x′ ∈ A
where d(x, x′) ≤ ε. The same result (with the constant 2

√
2

replaced by 4
√

2) holds when S′ is formed according to
(3.2), but with S replaced byA+×{1}∪A−×{−1} where
A+, A− are τ -covers of X+, X− for

τ =
1

4
√

2

√
log(N/d)

d
r. (3.3)

Thus, we only need |S′| = O(md2) perturbations, where
m = max{|X+|, |X−|}. When S is highly clustered, this
could result in a much smaller sample complexity, asm may
be much smaller than n.

To give a sketch of the proof, suppose (0, 1) ∈ S. Thus, S′

contains N points of the form (zi, 1) where zi ∼ rSd−1.
We wish to guarantee that any linear separator, with as-
sociated hyperplane H , has some margin at 0. Consider
K = conv({zi}i∈[N ]). Since each zi has label 1, we know
that H cannot intersect the interior of K. Then, if 0 is in the
interior of K, then H has positive margin at 0. In fact, we
extract a strengthening of this from the proof of Lemma 3.1
of (Alonso-Gutierrez, 2008):

Lemma 3. Let z1, . . . , zN be drawn uniformly at random
on rSd−1. Let K = conv(z1, . . . , zN ). Then there exists a
constant C > 0 such that if N ≥ Cd, then

P

(
1

2
√

2

√
log(N/d)

d
Br(0) 6⊆ K

)
≤ e−d.

Thus, with high probability Bρ(0) ⊆ K where ρ =

Ω(
√

log(N/d)/dr). The margin of H at 0 is therefore
at least ρ. Applying Theorem 6, we derive Theorem 7. A
pictorial explanation of the proof is given in Figure 4.

Figure 4. A pictorial explanation of the proof of Theorem 7. Sup-
pose X ′+ is drawn uniformly at radius r from X+. With r as
in the theorem statement, with high probability X ′+ will not pre-
vent linear separability of Saug. Moreover, with high probability
conv(X ′+) will contain a ball of radius ρ around each point in X+.
This then implies that any h ∈ H(Saug) has margin at least ρ.

4. Nonlinear Classifiers
We now consider more general binary-valued classifiers.
Given S ⊆ Rd × {±1}, a classifier f : Rd → {±1} sep-
arates S if f(x) = y for all (x, y) ∈ S. Let R(S) denote
the collection of separators of S. IfR(S) is non-empty, we
say that S is separable. Given f : Rd → {±1}, we define a
generalization of the notion of margin in 1.

Definition 3. If f ∈ R(S), its margin on S is given by

γf (S) := min
(x,y)∈S

d(x, f−1(−y)).

We define γf (S) = −∞ if f /∈ R(S).

Suppose we have a function class F and we wish to find an
ERM of the 0−1 loss on S (more generally, any nonnegative
loss function where `(f(x), y) = 0 iff f(x) = y). The set
of ERMs is simplyR(S) ∩ F .

To find ERMs with positive margin, we will again form a
perturbed dataset S′, and then find some ERM of Saug =
S ∪ S′. We define the margin of f with respect to S and S′

as follows.

Definition 4. The margin γf (S, S′) of f with respect to
S, S′ is defined by γf (S, S′) = γf (S) if f ∈ R(Saug) and
−∞ otherwise.

If Saug is separable and F is sufficiently expressive, one
can always find an ERM with zero margin. Instead, we will
restrict to a collection of functions that is expressive, but
still have meaningful margin guarantees. We refer to these
as respectful functions.

Respectful classifiers. If x1, x2 ∈ Rd are sufficiently
close and have the same label, it is reasonable to expect
a well-behaved classifier to assign the same label to every
point between x1 and x2. In fact, (Fawzi et al., 2018b)
shows that empirically, state-of-the-art deep nets often re-
main constant on straight lines connecting different points
of the same class. For a linear classifier f labels all points in
A as 1, we know that f assigns 1 to the entire set conv(A).
With this in mind, we give the following definition:

Definition 5. A function f : Rd → {±1} is respect-
ful of S if ∀x ∈ conv(X+), f(x) = 1 and ∀x ∈
conv(X−), f(x) = −1.

Intuitively, f must respect the operation of taking convex
hulls of points with the same label. However, assigning all
of conv(X+) and conv(X−) the same label is a relatively
strict condition. To relax this condition, we define a class of
functions that are respectful only on small clusters of points.
Recall the notion of a circumradius:

Definition 6. The circumradius R(A) of a set A ⊆ Rd is
the radius of the smallest ball containing A.
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Figure 5. Suppose that R(X+) ≤ ε. The classifier with a blue
decision boundary is not ε-respectful of S, but the classifier with a
green decision boundary is ε-respectful of S.

We now define ε-respectful classifiers:

Definition 7. For ε ∈ [0,∞], we say that a classifier f :
Rd → {±1} is ε-respectful of S if ∀A ⊆ X+ such that
R(A) ≤ ε, and ∀x ∈ conv(A), f(x) = 1; and ∀B ⊆ X−
such that R(B) ≤ ε, and ∀x ∈ conv(B), f(x) = −1. Let
Rε(S) denote the set of ε-respectful classifiers.

An illustration is provided in Figure 5. Note that the set of
separators of S is simply R0(S), and the set of respectful
classifiers is R∞(S). Smaller values of ε lead to more
expressive function classesRε(S). We now show that this
definition includes some function classes of interest:

Example 1 (Linear Classifiers). Recall thatH(S) is the set
of linear separators of S. It is straightforward to see that
such functions are respectful of S, soH(S) ⊆ R∞(S). By
the hyperplane separation theorem (see Lemma 5), we have
H(S) 6= ∅ if and only if R∞(S) 6= ∅. In general, H(S) is
a proper subset ofR∞(S).

Example 2 (Nearest Neighbor). Let fNN denote the 1-
nearest neighbor classifier on S: For x ∈ Rd, we have
fNN (x) = 1 if d(x,X+) ≤ d(x,X−), and fNN (x) = −1

otherwise. For ε ∈ [0, d(X+,X−)
2 ), we can argue that

fNN ∈ Rε(S), as follows: Suppose x ∈ conv(A) where
A ⊆ X+ and R(A) ≤ ε. Then d(x,X+) ≤ ε. For all
u ∈ X−, we have d(u,X+) ≥ d(X+, X−), so d(x, u) >
d(X+,X−)

2 . Hence, fNN (x) = 1.

We now consider the following adversarial problem. Given
S, we form a perturbed version S′. An adversary can pick
an ε-respectful classifier f ∈ R(Saug). The smaller the
value of ε, the more powerful the adversary. We hope that no
matter which f the adversary chooses, the value of γf (S, S′)
is not too small.

We first provide bounds on how large S′ must be to ensure
a positive margin, and then derive results for random per-
turbations when S is (non)-linearly separable. Our results
are versions of Theorem 7 for respectful classifiers. Finally,
we will show that for respectful classifiers, our bounds for
random perturbations are tight up to constants for some S.

4.1. How Much Augmentation Is Necessary?

We first show that for any ε ∈ [0,∞], we must have |S′| >
2d in order to achieve a positive margin.

Theorem 8. Suppose S is separable. If |X ′+| ≤ d or
|X ′−| ≤ d, then for any ε ∈ [0,∞], either Rε(Saug) = ∅,
or ∃f ∈ Rε(Saug) such that γf (S, S′) = 0.

Suppose we limit ourselves to bounded perturbations of S,
so that S′ ⊆ Sr for some r > 0. We will show that in this
setting, we may need as many as |S|(d+ 1) perturbations
to guarantee a positive margin.

Theorem 9. For all n ≥ 1 and ε, r ∈ (0,∞), there is
some S of size n such that if |S′| ≤ |S|(d+ 1), then ∃f ∈
Rε(Saug) such that γf (S, S′) = 0.

Next, we consider the problem of ensuring a positive margin
with bounded perturbations. The following lemma shows
that if ε < r, there is some S such that the adversary can
find a zero margin classifier for any S′ ⊆ Sr.
Lemma 4. For any ε ∈ (0,∞) and r > ε, there is S
such that for any S′ ⊆ Sr, ∃f ∈ Rε(Saug) such that
γf (S, S′) = 0.

Therefore, for S′ ⊆ Sr, to ensure that any f ∈ Rε(Saug)
has positive margin, we need r ≤ ε, |S′| ≥ 2d + 2, and
|S′| ≥ |S|(d+ 1). In fact, these three conditions are suffi-
cient to ensure positive margin.

Theorem 10. For any S, if ε ∈ (0,∞] and r ≤ ε, then
∃S′ ⊆ Sr with |S′| = |S|(d+1), such that ∀f ∈ Rε(Saug),
γf (S, S′) > 0.

While this theorem does not guarantee thatRε(Saug) 6= ∅,
we will show in Lemma 9 that if S′ ⊆ Sr for r ≤ ε <
d(X+,X−)

4 , thenRε(Saug) is guaranteed to be nonempty.

4.2. Random Perturbations

We now analyze how random perturbations affect the margin
of ε-respectful classifiers. Just as in the linear setting, we
focus on the case where the points in S′ are of the form
(x+ z, y) where z is drawn uniformly at random from the
sphere of radius r. We provide lower bounds on the margin
that are analogous to the linear setting, and show that our
margin bounds are tight up to constants in some settings.

Linearly separable data. We first show that when S is
linearly separable and we perform random augmentations,
the results in Section 3.2 still hold, even though the adver-
sary is allowed to select classifiers in the larger setR∞.

Theorem 11. Let S′ be generated as in (3.2). There
is a universal constant C such that if N ≥ Cd and
r ≤ β−1/2

√
d/ logNγ∗ for β > 1, then with probabil-

ity at least 1 − ne−d − nN1−β , we have R∞(S) 6= ∅.
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Furthermore, ∀f ∈ R∞(Saug), we have

γf (S, S′) ≥ 1

2
√

2

√
log(N/d)

d
r.

The proof uses a generalization of Theorem 7 to respectful
functions. We show in Theorem 13 that this bound is tight
up to constants under certain assumptions on S.

As in the linear case, a perturbation radius of r = O(
√
dγ∗)

is necessary to maintain separability. Suppose S =
{(x1, 1), (x2,−1)} with d(x1, x2) = 2γ∗ and S′ is as in
(3.2). Applying the hyperplane separation theorem and The-
orem 5, we have the following result:

Theorem 12. If N ≥ 16d and r ≥ 8e2
√
2d

π3/2 γ∗, then

P(R∞(Saug) = ∅) ≥ 1− 2e−d/6.

In short, spherical random data augmentation behaves simi-
larly when the adversary selects linear classifiers or classi-
fiers in R∞(Saug), both in terms of margin achieved and
upper bounds on perturbation size to maintain separability.

Nonlinearly separable data. When S consists of more
than two points, the margin obtained by some f ∈ Rε(S)
may be much larger than the max-margin linear classifier.
Moreover,Rε(S) may be non-empty even though S is not
linearly separable. Thus, we would like to derive versions
of the results in Section 3.2 for settings where S may not
be linearly separable, butRε(S) 6= ∅. In fact, ifRε(S) 6= ∅
and we generate S′ as in (3.2), we can derive the following
theorem, comparable to Theorem 7 above:

Theorem 13. If r ≤ ε, then there is a universal constant C
such that ifN ≥ Cd, then with probability at least 1−ne−d,
∀f ∈ Rε(Saug),

γf (S, S′) ≥ 1

2
√

2

√
log(N/d)

d
r.

Furthermore, if ε < d(X+,X−)
4 thenRε(Saug) 6= ∅.

The first part of the proof proceeds similarly to that of Theo-
rem 7, using the definition of ε-respectful classifiers. For the
second, we use nearest neighbor classifiers (as in Example
2) to construct ε-respectful classifiers of Saug.

Although r ≤ ε < d(X+,X−)
4 is sufficient to guarantee that

Rε(Saug) 6= ∅, this may be overly conservative. Whereas
Theorems 11 and 12 provide a characterization of the range
on r for whichR∞(Saug) is non-empty with high probabil-
ity, a tighter characterization for ε <∞ remains open.

Upper bounds on margin. Finally, we show that for cer-
tain S, the margin bounds in Theorems 11 and 13 are tight

up to constants. While it is as yet unknown whether The-
orem 7 is asymptotically tight, the increased expressive
capability of respectful classifiers allows us to exhibit up-
per bounds on the worst-case margin matching the lower
bounds above. Suppose S = {(x1, 1), (x2,−1)}, and S′ is
generated as in (3.2). We have the following result:
Theorem 14. Fix ε ∈ [0,∞] and r > 0. There are absolute
constants C1, C2 such that if N > d and Rε(Saug) 6= ∅,
then with probability at least 1 − 2e−C2d log(N/d), ∃f ∈
Rε(Saug) such that

γf (S, S′) ≤
√
C1

log(2N/d)

d
r. (4.1)

The proof relies on estimates of the inradius of random con-
vex polytopes from (Alonso-Gutierrez, 2008). The theorem
can also be extended to settings where X+ and X− are not
singletons. Suppose we can decompose X+ and X− into
clusters {Ai}ki=1 and {Bj}lj=1 such that each cluster has
size at most m, circumradius at most O(

√
log(N/d)/dr),

and the distance between any two clusters is Ω(ε). If S′

is generated as in (3.2), then with high probability there is
some f ∈ Rε(Saug) satisfying (4.1) where N is replaced
by mN .

5. Conclusion and Open Problems
Data augmentation is commonly used in practice, since
it significantly improves test error and model robustness.
In this work, we have analyzed the performance of data
augmentation through the lens of margin. We have demon-
strated how data augmentation can guarantee positive mar-
gin for unconstrained empirical risk minimizers. For both
linear and nonlinear “respectful” classifiers, we provided
lower bounds on the number of points needed to ensure pos-
itive margin, and analyzed the margin attained by additive
spherical data augmentation.

There are several interesting open problems that we plan
to tackle in the future. First, it would be interesting to
theoretically analyze practical state-of-the-art augmenta-
tion methods, such as random crops, flips, and rotations.
Such perturbations often fall outside our framework, as they
are not bounded in the `2 norm. Another fruitful direc-
tion would be to examine the performance of adaptive data
augmentation techniques. For example, robust adversarial
training, (such as in (Madry et al., 2017)), can be viewed as
a form of adaptive data augmentation. By taking a data aug-
mentation viewpoint, we hope to derive theoretical benefits
of using adversarial training methods. One final direction
would be to develop improved augmentation methods. In
particular, we would like methods that can exploit domain
knowledge and the geometry of the underlying problem in
order to find models with better robustness and generaliza-
tion properties.
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A. Mathematical Background
We first give some definitions related to convex geometry
that we will use in the following proofs. For the following,
we will consider sets in Rd under the `2 topology. Let
S ⊆ Rd, and let Sc denote its complement.
Definition 8. The convex hull of a set S is the intersection
of all convex sets containing S.
Definition 9. A point x is in the interior of S if there is
an open ball centered at x completely contained in S. The
collection of interior points of S is denoted int(S).
Definition 10. A point x is on the boundary of S if every
ball centered at x has non-empty intersection with S and
Sc. The collection of boundary points is denoted ∂S.

By definition, d(x, Sc) > 0 iff x ∈ int(S), and d(x, Sc) =
0 otherwise. Given a, b ∈ Rd, we will let d(a, b) denote
their `2 distance. Similarly, for A,B ⊆ Rd, we will let
d(A,B) = infa∈A,b∈B d(a, b). For a ∈ Rd, we will use
d(a,B) to denote d({a}, B). Given r ≥ 0, we let Ar =
{x ∈ Rd|d(x,A) ≤ r}, and Br(x) = {z ∈ Rd|d(x, z) ≤
r}.

We will also make use of the hyperplane separation theorem,
originally due to Minkowski. For a more detailed reference,
see (Boyd & Vandenberghe, 2004).
Lemma 5. Let A,B be two disjoint convex subsets of Rd.
Then there exists some non-zero v ∈ Rd and c ∈ R such
that 〈x, v〉 ≥ c and 〈y, v〉 ≤ c for all x in A and y in B.

B. Proof of Results in Section 3.1
B.1. Proof of Lemma 1

Proof. If Saug is not linearly separable, then α(S, S′) =
−∞ and the result follows. Thus, suppose Saug is linearly
separable. Then let h ∈ H(Saug) correspond to the hyper-
plane H . Since S ⊆ Saug, h ∈ H(S). By definition,

α(S, S′) ≤ min
(x,y)∈S

d(x,H) ≤ min
(x,y)∈S

d(x,H∗) = γ∗.

where H∗ is the hyperplanes defined by the max-margin
classifier of S.

B.2. Proof of Theorem 1

To prove this we will first prove the following lemma.
Lemma 6. Suppose u1, . . . , un, v1, . . . , vm are vectors in
Rd with n,m ≥ 1 and m < d. Suppose there is a vector
z 6= 0 such that 〈ui, z〉 ≥ 0, 〈vj , z〉 ≥ 0 for all i and
j. Then there is a vector z′ 6= 0 such that 〈ui, z′〉 ≥ 0,
〈vj , z′〉 ≥ 0 for all i and j and there is some i such that
〈ui, z′〉 = 0.

Proof. We induct on n. Suppose n = 1. If the vectors
u1, v1, . . . , vm do not span Rd, then there is a non-zero

vector z such that 〈u1, z〉 = 0 and 〈vj , z〉 = 0 for all j,
completing the proof. Otherwise, we may assume that m =
d − 1 and u1 is not in the span of v1, . . . , vd−1. Thus,
the matrix Q whose rows are uT1 , v

T
1 , . . . , v

T
d−1 is a d × d

matrix of rank d. Therefore, there is some non-zero z such
that Qz = [0, 1, . . . , 1]T . The vector z satisfies the desired
conditions.

Suppose the result holds for n = k−1, and we have vectors
u1, . . . , uk, v1, . . . , vm such that m < d. Let A denote the
set of x ∈ Rd such that 〈x, ui〉, 〈x, vj〉 ≥ 0 for 1 ≤ i ≤
k, 1 ≤ j ≤ m. Let B denote the set of x ∈ Rd such that
〈x, ui〉, 〈x, vj〉 ≥ 0 for 1 ≤ i ≤ k − 1, 1 ≤ j ≤ m. By
assumption, we know that there is some z ∈ A such that
z 6= 0. By the inductive hypothesis, we know there is a
non-zero vector w ∈ B and l such that 1 ≤ l ≤ k − 1 and
〈w, ui〉 = 0.

Let H = {x ∈ Rd | 〈x, uk〉 = 0}, H+ = {x ∈
Rd | 〈x, uk〉 ≥ 0}. If w ∈ H+, then we are done. Oth-
erwise, 〈w, uk〉 < 0. Since w /∈ H+ and z ∈ H+, there is
some λ ∈ [0, 1] such that the point zλ = (1 − λ)w + λz
satisfies zλ ∈ H . Since B is a closed convex set, we know
that zλ ∈ B. Therefore, zλ ∈ B ∩ H ⊆ A. Moreover,
〈zλ, uk〉 = 0. It therefore suffices to show that zλ 6= 0.
Since z, w 6= 0, this can occur if and only if w = −cz
for some c > 0. But since z, w ∈ B, this would imply
that 〈z, ui〉 = 0 for 1 ≤ i ≤ k − 1. In particular, z then
would satisfy the assumptions of the theorem, completing
the proof.

We can now prove Theorem 1.

Proof of Theorem 1. If Saug is not linearly separable, then
α(S, S′) = −∞. Otherwise, there is some w ∈ Rd, b ∈ R
such that for all (x, y) ∈ Saug, y(〈w, x〉+ b) ≥ 0.

Suppose S = {(xi, yi)}ni=1 and let ui = (yixi, yi) ∈ Rd+1.
Analogously, suppose S′ = {(x′j , y′j)}mj=1 and let vj =

(y′jx
′
j , y
′
j) ∈ Rd+1.

By construction, y〈w, x〉 + b ≥ 0 for all (x, y) ∈ Saug iff
z = (w, b) ∈ Rd+1 satisfies the following two conditions:

∀i ∈ [n], 〈ui, z〉 ≥ 0 (B.1)

∀j ∈ [m], 〈vj , z〉 ≥ 0 (B.2)

Since Saug is linearly separable, there is some non-zero
vector z ∈ Rd+1 satisfying (B.1) and (B.2). Since |S′| <
d+ 1, we can apply Lemma 6 to the vectors {ui}i∈[n] and
{vj}j∈[n]. Therefore, there is a non-zero vector z ∈ Rd+1

satisfying (B.1) and (B.2), and such that there is some [i] ∈
S such that 〈z, ui〉 = 0.
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Let z1:d ∈ Rd be the vector of its first d coordinates, and let
c denote its last coordinate. Therefore, yi〈z1:d, xi〉+ c = 0,
which implies that (z1:d, c) has zero margin at (xi, yi). It
now suffices to show that (z1:d, c) corresponds to a non-zero
linear separator of Saug. By construction of (B.1), (B.2),
we know that for all (x, y) ∈ Saug, y〈z1:d, x〉+ c ≥ 0.

It therefore suffices to show that z1:d 6= 0 to show that
(z1:d, c) is actually a well-defined linear separator of Saug.
If z1:d = 0, then for any (x, y) ∈ S, y〈z, ux〉+ c = c ≥ 0.
Since X+, X− are both non-empty, this implies that c = 0,
so z = 0, giving us a contradiction. Hence, (z1:d, c) ∈
H(Saug) and has zero margin on S, so α(S, S′) ≤ 0.

B.3. Proof of Theorem 2

Proof. Let H∗ be the maximum margin separating hyper-
plane of S. Let z1, . . . , zd be in general position on H∗

and let zd+1 lie in the interior of their convex hull. Let
S′ = {(z1, 1), . . . , (zd, 1), (zd+1,−1)}. By construction,
the max-margin classifier (w∗, b∗) of S satisfies y(〈w∗, x〉+
b) ≥ 0 for all (x, y) ∈ Saug and satisfies γ(w∗,b∗)(S) = γ∗.

Now, suppose that (w, b) is a linear separator of Saug whose
associated hyperplane H is not equal to H∗. Since ∀i ∈
[d], 〈w, zi〉+ b ≥ 0, and z1, . . . , zd uniquely determine H∗,
there must be some j ∈ [d] such that 〈w, zj〉+ b > 0. Since
the zj are in general position and zd+1 is in their interior,
this then implies that 〈w, zd+1〉 + b > 0. This contradicts
(w, b) being a linear separator of Saug. Therefore, (w, b) is
a linear separator of Saug iff its associated hyperplane is
H∗, in which case it has margin γ∗.

B.4. Proof of Theorem 3

Proof. First assume r = 1. We will construct S such
that we need augmentation at every point of S to ensure
α(S, S′) > 0. Below, we give the construction and analysis
in R2.

We will construct X+ by taking points on the parabola
x2 = x21 that are sufficiently far apart. The first point of
X+ is chosen to be the point (s0, s

2
0) such that s0 = 3.

Now, the i-th point of X+ is chosen to be (si, s
2
i ) such that

si = 2si−1 + 4.

Next, we calculate the tangent line ti to the curve x2 = x21 at
the ith point. This is given by the equation x2 = 2six1−s2i .
Now, the distance between ti and any point (sj , s

2
j ) for

j 6= i from X+ is given by

d(ti, sj) =

(
s2j + s2i

2si
− sj

)
sin (θ)

where θ = tan−1(2si) is the slope of the tangent. Because
all si > 2 by construction, sin θ > 1/2.

Thus, the distance from any point sj with j 6= i to ti satisfies

d(ti, sj) >
1

2

(
s2j + s2i

2si
− sj

)
≥ 1.

The last inequality is true because we chose si = 2si−1 + 4.
Thus, the tangent at any point lies at a distance more than 1
from other points.

We select X− to be any set of points far enough down the
y axis such that these tangents linearly separate X+ and
(X−)r. Therefore, these tangents linearly separate X+ and
X− ∪ X ′− for any X ′− ⊆ (X−)r. In particular, X ′− can
be of any size, even infinite. Now, suppose that |X ′+| < n.
Therefore, there is some i such that X ′+ is of the form

X ′+ =
{
x+ z | x ∈ X+, x 6= (si, s

2
i )
}
.

In other words, we augment X+ without adding any pertur-
bations around the ith point (si, s

2
i ). It is easy to see that

the tangent at (si, s
2
i ) will still linearly separate Xaug

+ and
Xaug
− . Moreover, this tangent has α(S, S′) = 0 because the

point (si, s
2
i ) ∈ X+ lies on it.

Thus, this proves that in R2, there exist sets X+ and X−
with |X+| = n, |X−| = m, such that we need |X ′+| ≥ n
to guarantee a positive α(S, S′). For r > 1, we can modify
the above construction by spacing out the points si more. If
we want to do this in d > 2 dimensions, we can either take
points of the form siej + sied where ei is the i-th standard
basis vector. An analogous argument holds.

C. Proof of Results in Section 3.2
C.1. Proof of Theorem 4

Proof. Fix S. If it is not not linearly separable, then the
result is immediate. Otherwise, there is some maximum-
margin classifier (w∗, b∗) with maximum margin γ∗. With-
out loss of generality, we can rescale (w∗, b∗) so that
‖w∗‖2 = 1, in which case we have that for all (x, y) ∈ S,
y(〈w∗, x〉+ b∗) ≥ γ∗.

If ε ≥ γ∗, then α(S, S′) ≤ ε by Lemma 1, in which case
the theorem holds immediately. Otherwise, suppose 0 ≤
ε < γ∗.

Let |S′| = N . By assumption, the i-th point in S′ is of
the form (xi + zi, yi) where xi ∈ X+ ∪ X−, zi is drawn
uniformly at random from the sphere of radius r, and yi ∈
{1,−1}. Suppose that there is an ε > 0 such that for all
i ∈ [N ], the following holds:

yi〈w∗, zi〉 ≥ −ε (C.1)

We will show that if (C.1) holds for all i ∈ [N ], then
α(S, S′) ≤ ε. Define b′ = b∗ − γ∗ + ε. For any (x, y) ∈ S,
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we then have

y(〈w∗, x〉+ b′) = y(〈w∗, x〉+ b∗)− yγ∗ + yε

≥ (1− y)γ∗ + yε

≥ ε.
(C.2)

The second equation holds since (x, y) ∈ S and by defini-
tion of (w∗, b∗), and the third holds because γ∗ ≥ ε and
y = ±1.

Assume that (C.1) holds for all i ∈ [N ]. For any such i, we
then have

yi(〈w∗, xi + zi〉+ b′)

= yi(〈w∗, xi〉+ b′) + yi(〈w∗, zi〉)
≥ 0

(C.3)

where the last inequality holds by (C.2) and (C.1). Taken
together, (C.2) and (C.3) imply that if (C.1) holds for all
i ∈ [N ], then (w∗, b′) linearly separates Saug, with margin
at least ε on S.

Thus, to show that α(S, S′) ≤ ε, it suffices to show that
(C.1) holds. By Lemma 2 and the union bound, with proba-
bility at least 1−Ne−dε2/2r2 , we have that for all i, (C.1)
holds. Setting 1−Ne−dε2/2r2 equal to 1− δ and solving
for ε, we derive the desired result.

C.2. Proof of Theorem 5

We first prove an auxiliary lemma.

Lemma 7. Fix some unit vector a. Suppose we sample
z1, . . . , zN independently and uniformly at random on the
sphere of radius r = 8e2γ∗

√
2d

π3/2 . If N ≥ 16d, then with
probability at least 1 − e−9(d−1)/8, at least 3d of the zi
satisfy 〈a, zi〉 ≥ 2γ∗.

Proof of Lemma 7. Given a point x ∈ Rd, we will let x1
denote its first coordinate. We will first show that on the

sphere of radius
8γ∗
√
d

π3/2
in Rd, more than 3/8 of the points

(under the uniform measure) satisfy

2γ∗ ≤ x1 ≤
8γ∗
√
d

π3/2
.

To prove this, it suffices to show that more than 3/8 of the
points on the sphere Sd−1 of radius 1 satisfy

π3/2

4
√
d
≤ x1 ≤ 1.

Given a subset B of the d-dimensional Euclidean sphere
with radius 1, let Ad(B) denote its surface area. Define

φd := Ad(Sd−1), that is, the total surface area of the d-
dimensional sphere with unit radius. Let C denote the spher-
ical cap of points satisfying ε ≤ x1 ≤ 1. Then:

Ad(C) = φd−1

∫ 1

ε

(1− x21)(d−2)/2dx1

= φd−1

(∫ 1

0

(1− x21)(d−2)/2dx1

−
∫ ε

0

(1− x21)(d−2)/2dx1

)
=
φd
2
− φd−1

∫ ε

0

(1− x21)(d−2)/2dx1

=
φd
2
− φd−1

∫ ε

0

(
1− d− 2

2
x21

+
(d− 2)(d− 4)

8
x41 − . . .

+
d−2
2

d−4
2 . . . d−2i2

i!
(−x21)i + . . .

)
dx1

=
φd
2
− φd−1

[
x1 −

d− 2

6
x31

+
(d− 2)(d− 4)

40
x51 − . . .

]ε
0

.

Note that the binomial expansion above is valid for both

even and odd d. If ε ≤
√

2
d then

Ad(C) ≥ φd
2
− εφd−1.

Therefore,
Ad(C)

φd
≥ 1

2
− εφd−1

φd
.

Standard computations (such as (Huber, 1982)) show that

φd =
dπd/2

Γ(d2 + 1)

where Γ is the gamma function. Therefore,

Ad(C)

φd
≥ 1

2
− ε

Γ(d+3
2 )

√
πΓ(d+2

2 )
.

By standard properties of the gamma function (see (Andrews
et al., 2000) for reference),

Γ

(
n+

1

2

)
=
√
π

(2n)!

4nn!

where n is any positive integer. Combining this with lower
and upper bounds from Stirling’s approximation gives us

Ad(C)

φd
≥ 1

2
− ε e2

√
d√

2π3/2
.



Does Data Augmentation Lead to Positive Margin?

Setting ε =
π3/2

4e2
√

2d
, we find

Ad(C)

φd
is greater than 3/8.

Let p denote the probability that a point x drawn uniformly
at random on the unit sphere in d dimensions satisfies x1 ≥
2γ∗, that is, x ∈ C. By basic properties of the uniform
measure on Sd−1 and the above surface area computation,
we have

p =
Ad(C)

φd
≥ 3

8
.

Now, suppose that we draw N = 16(d − 1) points on the
sphere uniformly at random. By Hoeffding’s inequality, the
probability that fewer than 3(d− 1) points of the N points
lie on C is at most ≤ e−9(d−1)/8.

Let e1 denote the vector [1, 0, 0, . . . , 0]T ∈ Rd. Without
loss of generality, assume that X+ = {0}, X− = {2γ∗e1}.
To ensure non-separability, it is sufficient that conv(X ′+)
contains a point v = ηe1 with η ≥ 2γ∗. We use the follow-
ing result from (Wendel, 1963):

Proposition 1. Suppose we draw N points independently
from a spherically symmetric distribution in Rd. Let p(d,N)
denote the probability that all N points lie in a common
hemisphere. Then

p(d,N) = 21−N
d−1∑
k=0

(
N − 1

k

)
. (C.4)

The right-hand side of (C.4) is the probability of obtaining
fewer than or equal to d − 1 heads in N − 1 tosses of a
fair coin. Set N = 3d. Applying Hoeffding’s inequality to
(C.4), we get

p(d− 1, 3d) ≤ exp

(
−2(3d− 1)

(
d+ 1

2(3d− 1)

)2
)

≤ e−(d+1)/6.

Thus, the probability that the convex hull of 3d points drawn
uniformly at random from a spherically symmetric distribu-
tion contains is at least 1− e−(d+1)/6.

Let V be the subspace of Rd orthogonal to e1 and let πV de-
note the orthogonal projection on to V . Suppose x is drawn
uniformly at random from a sphere in d-dimensions. Then
πV (x) is drawn from a spherically symmetric distribution
in Rd−1 centered at the origin.

We have shown that with probability at least 1−e−9(d−1)/8,
at least 3d from X ′+ satisfy 〈x, e1〉 ≥ 2γ∗. Let A ⊆ X ′+
denote the set of these 3d points, and let K = conv(A).
Since each πV (x) has spherically symmetric distribution
about 0, by Proposition 1, with probability at least 1−e−d/6,
conv(πV (A)) = πV (K) contains the origin in Rd−1.

Since each x ∈ A satisfies π1(x) ≥ 2γ∗ and K is their
convex hull, this implies K contains some point of the form
ηe1 where η ≥ 2γ∗. Since 0, ηe1 ∈ Xaug

+ and 2γ∗e1 ∈
Xaug
− , we find

P (H(Saug) = ∅) ≥ 1− e−9(d−1)/8 − e−d/6

≥ 1− 2e−d/6.

The last inequality above is true for d ≥ 2. For d = 1, each
point in X ′+ takes on the values ±r with equal probabili-
ties. If any point in X ′+ equals r, then linear separability is
violated. The desired result follows.

C.3. Proof of Theorem 6

Proof. It suffices to show this for r =
β−1/2

√
d/ log(N)γ∗, as taking smaller r only in-

creases the chance of being linearly separable. Let H∗ be
the max-margin hyperplane defined by (w∗, b∗) ∈ Rd × R,
with ‖w∗‖2 = 1. Let (x+ z, y) ∈ S′ with (x, y) ∈ S and z
sampled uniformly at random on the sphere of radius r. By
the definition of max-margin, y(〈w∗, x〉 + b∗) ≥ γ∗. By
Lemma 2, we have

P (y(〈w∗, z〉) ≥ −γ∗) ≤ e−d(γ
∗)2/2r2

= e−β log(N)

= N−β .

Therefore, x and x+ z lie on the same side of H∗ with this
probability. Taking a union bound over all N points in S′,
we find that with probability at least 1−N1−β , H∗ linearly
separates Saug.

C.4. Proof of Lemma 3

Proof. It suffices to prove the result for r = 1. The proof
will proceed similarly to the proof of Lemma 3.1 in (Alonso-
Gutierrez, 2008). With probability 1, the facets of K are
simplices. Suppose Bε(0) 6⊆ K. Then there exists at least
one facet of K which is contained in a hyperplane orthogo-
nal to some θ ∈ Sd−1 such that 〈zi, θ〉 < ε for all i. Let µr
denote the uniform measure on the sphere rSd−1. It follows
that

P(Bε(0) 6⊆ K)

≤
(
N

d

)
µr
({
x ∈ rSd−1 : 〈x, θ〉 < ε

})N−d
.

Let ωd denote the volume of the d−dimensional Euclidean
ball. There is some constant c > 0 such that if c√

d
< ε < 1

4 ,
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then

µr
({
x ∈ Sd−1 : 〈x, θ〉 > ε

})
=

(d− 1)ωd−1
dωd

∫ 1

ε

(
1− x2

) d−3
2 dx

≥ (d− 1)ωd−1
dωd

∫ 2ε

ε

(
1− x2

) d−3
2 dx

≥ (d− 1)ωd−1
dωd

ε
(
1− 4ε2

) d−3
2

= c′
(
1− 4ε2

) d−3
2

= c′e
d−3
2 log(1−4ε2)

≥ c′e−4ε
2d.

Here c′ is some positive constant. Therefore,

P {Bε(0) * K}

≤
(
N
d

)(
1− c′e−4ε

2d
)N−d

≤
(
eN

d

)d
exp

(
(N − d) log

(
1− c′e−4ε

2d
))

≤
(
eN

d

)d
exp

(
−c′(N − d)e−4ε

2d
)
.

Let N = td. Setting ε = 1
2
√
2

√
log(N/d)

d , we then get that
for t sufficiently large, there is some constant c′′ > 0 such
that

P (Bε(0) * K)

≤ edtd exp
(
−c′(t− 1)de−

1
2 log(t)

)
≤ edtd exp

(
−c′′
√
t
)

= exp
(
d(1 + log(t)− c′′

√
t)
)
.

There is some constant C such that if t ≥ C, then 1 +
log(t)− c′′

√
t ≤ −1. Therefore, if N ≥ Cd, then

P (Bε(0) * K) ≤ e−d.

C.5. Proof of Theorem 7

Proof. Recall that S′ = {(xi + z
(j)
i , y)}i∈[n],j∈[N ] where

each z(j)i is drawn uniformly at random from the sphere
of radius r and S = {(xi, y)}i∈[n]. For any i ∈ [n], let
Ai := {xi + z

(j)
i }j∈[N ] and Ki := conv(Ai). By Lemma

3,with probability at least 1− e−d, Bρ(xi) ⊆ Ki where

ρ =
1

2
√

2

√
log(N/d)

d
r.

By the union bound, this holds for all xi with probability at
least 1− ne−d.

Suppose that Bρ(xi) ⊆ Ki for all i ∈ [n], and suppose
(w, b) is a linear separator of Saug. Let H = {x|〈w, x〉 +
b ≥ 0}, and let H+ = {x|〈w, x〉 + b ≥ 0}. Therefore,
for all x ∈ Xaug

+ , x ∈ H+. Fix some i ∈ [n] such that
(xi, yi) ∈ S has label yi = 1. SinceAi ⊆ H+, by convexity
we find that Ki := conv(Ai) satisfies Ki ⊆ H+. Since
Bρ(xi) ⊆ Ki, we find Bρ(xi) ⊆ H+. Since H = ∂H+,
we find that d(x,H) ≥ d(x, ∂Bρ(xi)) = ρ.

Using an analogous argument for X− and applying the
union bound, we find that with probability at least 1−ne−d,
any linear separator of Saug must have margin at least ρ
with respect to X+, X−.

It now suffices to show that there exists a linear classifier.
We will use method to the proof of Theorem 6. The only
difference is that when taking a union bound over all the
perturbations, we have |S′| = nN instead of |S′| = 2N .
Thus, with probability at least 1− nN1−β , Saug is linearly
separable. Taking a union bound gives the desired result.

D. Proof of Results in Section 4
We first prove a general proposition regarding some basic
properties of ε-respectful functions.

Proposition 2. Let ε ∈ [0,∞].

1. R0(S) = R(S).

2. If ε ≤ ε′, thenRε′(S) ⊆ Rε(S).

3. If S is bounded, then ∃M ∈ R≥0 such that ∀ε ≥ M ,
Rε(S) = R∞(S).

4. For any set A ⊆ Rd, define

A[ε] =
⋃

B⊆A, R(B)≤ε

conv(B).

ThenRε(S) 6= ∅ iff X+[ε] ∩X−[ε] = ∅.

Proof. (1): Note that R(A) = 0 iff |A| ≤ 1. Thus, f ∈
Rε(S) iff ∀(x, y) ∈ S, f(x) = y.

(2): Suppose f ∈ Rε′(S) and ε ≤ ε′. If A ⊆ X+ and
R(A) ≤ ε, thenR(A) ≤ ε′, so for all x ∈ conv(A), f(x) =
1. By symmetry for X−, we find f ∈ Rε(S).

(3): Since S is bounded, there is some finite M such that
R(X+), R(X−) ≤M . Suppose f ∈ RM (S). Then for any
A ⊆ X+, we have R(A) ≤ R(X+) ≤M and f(x) = 1 on
conv(X+), so f(x) = 1 for all x ∈ conv(A). By symmetry
for X−, we find that if f ∈ RM (S), f ∈ R∞(S). By (2),
we are done.
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(4): By definition, we know that if f ∈ Rε(S), then for all
x1 ∈ X+[ε], f(x1) = 1 and for all x2 ∈ X−[ε], f(x2) =
−1, so X+[ε] ∩ X−[ε] = ∅. Conversely, if these two sets
are disjoint, we can define f(x) to be 1 on X+[ε] and −1
elsewhere. If A ⊆ X+ and R(A) ≤ ε, then conv(A) ⊆
X+[ε] and so f(x) = 1 for all x ∈ conv(A). By symmetry
for X−, we conclude that f ∈ Rε(S).

We will also use the following bound on γf (S) in terms of
the distance d(X+, X−) between X+ and X−.

Lemma 8. For f : Rd → {±1}, γf (S) ≤ d(X+, X−)

2
.

Proof. If f /∈ R(S), then γf (S) = −∞. Otherwise, fix
δ > 0. Then ∃x1 ∈ X+, x2 ∈ X− such that

d(x1, x2) < d(X+, X−) + δ.

Consider the point z = (x1 + x2)/2. By construction,

d(x1, z) = d(x2, z) <
d(X+, X−) + δ

2
.

Let y = f(z). Then for either j = 1 or j = 2, we have
d(xj , f

−1(−yj)) < d(X+,X−)+δ
2 . Thus, for all δ > 0,

∃(x, y) ∈ S such that

d(x, f−1(−y)) <
d(X+, X−) + δ

2
.

Since this holds for all δ > 0, γf (S) ≤ d(X+, X−)

2
.

D.1. Proof of Theorem 8

Proof. If Rε(Saug) = ∅, then we are done. Otherwise,
consider the following sets:

X ′′+ =
⋃

A⊆X+∪X′+, R(A)≤ε

conv(A)

X ′′− =
⋃

B⊆X−∪X′−, R(B)≤ε

conv(B)

Suppose |X ′+| ≤ d. By Proposition 2, X ′′+ ∩ X ′′− = ∅.
Therefore, we can define the function f that is 1 on X ′′+
and −1 elsewhere. By construction, f ∈ Rε(S ∪ S′). Let
V = (∂X ′′+) ∩ (X+ ∪X ′+). That is, V is the set of points
on the boundary of X ′′+ that are also in X+∪X ′+. It suffices
to show that X+ ∩ V 6= ∅.

Suppose ∃x ∈ X+ such that x /∈ V . Then x ∈
int(conv(V )), which implies |V | > d. Since |X ′+| ≤ d,
∃x ∈ X+ ∩ V . Since x ∈ ∂X ′′+, f has 0 margin on X+. If
|X ′−| ≤ d we can define an analogous function using X ′′−
to achieve 0 margin at some point in X−.

D.2. Proof of Theorem 9

Proof. Let X+, X− be disjoint sets of size n,m such that
for any x1, x2 ∈ X+ ∪ X− with x1 6= x2, d(x1, x2) >
ε+ 2r, and define

S =

(
X+ × {1}

)⋃(
X− × {−1}

)
.

Suppose S′ ⊆ Sr. Therefore, X ′± ⊆ (X±)r. Thus, for
any a, b ∈ X+, either there is some x ∈ X+ such that
d(a, x), d(b, x) ≤ r, or d(a, b) > ε. In particular, if A ⊆
X+ ∪ X ′+ and R(A) ≤ ε, then A ⊆ Br(x) for some x ∈
X+.

Define the sets

X ′′+ =
⋃

A⊆X+∪X′+, R(A)≤ε

conv(A)

X ′′− =
⋃

B⊆X−∪X′−, R(B)≤ε

conv(B)

By construction,X ′′+∩X ′′− = ∅. Define f to be 1 onX ′′+ and
−1 elsewhere. Let f ∈ Rε(S∪S′). Suppose that for all x ∈
X+, d(x, f−1(−1)) > 0. Then x must be in the interior of
X ′′+. By the argument above, this implies that there is some
set A ⊆ X ′+ ∩ Br(x) such that x ∈ int(conv(A)). Hence,
|X ′+ ∩ Br(x)| ≥ d + 1. Thus, |X ′+| ≥ (d + 1)|X+|. An
analogous argument shows that to guarantee positive worst-
case margin, we must also have |X ′−| ≥ (d+ 1)|X−|.

D.3. Proof of Lemma 4

Proof. Let X+ = {a}, X− = {b} for points a, b satisfying
d(a, b) ≥ 3r. It suffices to consider the case where X ′+ =
Br(a), X− = Br(b). We can then define f as follows. For
x ∈ Br(a), f(x) = 1 if x = a or d(x, a) > r − ε, and −1
otherwise. By construction, if A ⊆ X+ ∪X ′+ and R(A) ≤
ε, then either A = {x} or f(x) = 1 on A. Moreover,
d(a, f−1(−1)) = 0. We can define f analogously on Br(b).
In either case, f ∈ Rε(S ∪ S′) but γf (S, S′) = 0.

D.4. Proof of Theorem 10

Proof. We form X ′+ by selecting points forming a d-
simplex C of circumradius R(C) ≤ ε about each point
in X+. Note that this requires exactly |X+|(d+ 1) points.
We do the same for X ′−. Since each d-simplex C ⊆ X ′+
has circumradius R(C) ≤ ε, we are guaranteed that if
f ∈ Rε(S ∪ S′), then f(C) = 1 on conv(C). For the
point x ∈ X+ ∩ int(conv(C)), we are guaranteed that
d(x, f−1(−1)) > 0. Thus, γf (S, S′) > 0.

D.5. Proof of Theorems 11 and 13

Proof. We will use similar techniques to the proof of Theo-
rem 7. Suppose ε ∈ (0,∞] and r ∈ (0,∞) satisfies r ≤ ε.
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Recall that S′ = {xi + z
(j)
i , y}i∈[n],j∈[N ] where each z(j)i

is drawn uniformly at random from the sphere of radius r.

Fix i. Define Ai = {xi + z
(j)
i }j∈[N ], and Ki = conv(Ai).

Then by Lemma 3, we know that with probability at least
1− e−d, Bρ(xi) ⊆ Ki where

ρ =
1

2
√

2

√
log(N/d)

d
r.

Since ‖z(j)i ‖2 = r ≤ ε, we have Ai ⊆ Bε(xi). Hence,
R(Ai) ≤ ε. By ε-respectfulness, we know that if f ∈
Rε(S ∪ S′), then for all x ∈ Ki, f(x) = yi. In particular,
f(x) = yi for all x ∈ Bρ(xi). This then implies that
d(xi, f

−1(−yi)) ≥ ρ.

Taking a union bound over all i ∈ [n], we find that with
probability at least 1− ne−d, if f ∈ Rε(S, S′, then) for all
i ∈ [n], d(xi, f

−1(−yi)) ≥ ρ. In particular, this implies
that γf (S, S′) ≥ ρ.

By Proposition 2, R∞(S ∪ S′) 6= ∅ iff conv(Xaug
+ ) ∩

conv(Xaug
− ) = ∅. By the separating hyperplane theorem,

this occurs iff there is some separating hyperplane with pos-
itive margin. Applying Theorem 6 and the union bound as
in the proof of Theorem 7, we prove Theorem 11.

The first part of Theorem 13 was proved above. The second
will follow from the following lemma, which we prove in
the next section.

Lemma 9. SupposeRε(S) 6= ∅. If

r ≤ ε < d(X+, X−)

4

then for any S′ ⊆ Sr,Rε(S ∪ S′) is non-empty.

D.6. Proof of Lemma 9

We first prove the following lemma.

Lemma 10. Suppose there is f ∈ Rε(S) such that
γf (S) = φ. If r < φ−ε and S′ ⊆ Sr, then f ∈ Rε(S∪S′).

Proof. Let f ∈ Rε(S) satisfy γf (S) = φ. We first prove
that f ∈ Rε(S∪S′). SupposeA ⊆ X+∪X ′+ withR(A) ≤
ε, and let x ∈ A. This implies that d(x,X+ ∪X ′+) ≤ ε.

Fix δ > 0. Then, ∃u ∈ X+ ∪X ′+ such that d(x, u) ≤ ε+ δ.
Since S′ ⊆ Sr, X ′+ ∪X+ ⊆ (X+)r. Therefore, ∃v ∈ X+

such that d(v, u) ≤ r. We then have

d(x,X+) ≤ d(x, u) ≤ d(x, v) + d(v, u) ≤ r + ε+ δ.

Since this holds for all δ > 0 and r + ε < φ, this implies
d(x,X+) < φ. Since γf (S) = φ, this implies f(x) = 1.

Performing an analogous argument for X− shows that f ∈
Rε(S ∪ S′).

SupposeRε(S) 6= ∅. Define

γ∗(S) = sup
f∈Rε(S)

γf (S).

This is the maximum margin of any ε-respectful classifier on
S. Lemma 10 implies that if r ≤ ε < γ∗(S)

2 , and S′ ⊆ Sr,
thenRε(S ∪ S′) 6= ∅.

We would like to guarantee that for certain ε, θ is not too
small. Recall that by Lemma 8, for any f ∈ Rε(S),

γf (S) ≤ d(X+, X−)

2
.

We will show that the converse holds when ε is sufficiently
small.

Lemma 11. For all ε < d(X+,X−)
2 , there is some f ∈ Rε

such that γf (S) = d(X+,X−)
2 .

Proof. By Example 2, for ε < d(X+,X−)
2 , fNN ∈ Rε(S).

For x ∈ S and any point z with d(x, z) < d(X+,X−)
2 ,

f(z) = f(x). Therefore, γfNN (S) = d(X+,X−)
2 .

Combining Lemmas 10 and 11, we complete the proof of
Lemma 9.

D.7. Proof of Theorem 14

We will use the following result, proved in (Alonso-
Gutierrez, 2008), as a part of the proof for Theorem 3.1
in their paper.

Proposition 3. There exist absolute constants C1 and C2

such that if {zi}Ni=1 are independent random vectors on
Sd−1, N > d, and K ′ = conv{±z1, . . . ,±zN}, then

P

(
sup

i=1,...,l

1

vol(Fi)

∫
Fi

|x|2dx ≤ C1
log(2N/d)

d

)

≥ 1− 2e−C2d log(N/d)

where {F1, . . . , Fl} is the set of facets of K ′.

Above, vol(Fi) refers to the k-dimensional volume where k
is the dimension of Fi. Note that (Klartag & Kozma, 2009)
gives a similar result to Proposition 3 in Corollary 2.4, but
for standard Gaussian vectors instead of random points on
the unit sphere. Equipped with this, we can proceed.

Proof of Theorem 14. Without loss of generality, we may
assume X+ = {0} and X ′+ = {zi}i∈[N ]. Let K =
conv({0} ∪ X+) = conv({0} ∪ {zi}i∈[N ]) and let K ′ =
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conv({0} ∪Xaug
+ ) = conv({0} ∪ {±zi}i∈[N ]). Note that

K ⊆ K ′. Applying Proposition 3 to K ′ (where we scale up
by r) and applying Jensen’s inequality, we have that there
are some constants C1, C2 such that

P

(
∀i ∈ [l],

1

vol(Fi)

∫
Fi

|x|dx ≤
√
C1

log(2N/d)

d
r

)

≥ 1− 2e−C2d log(N/d).

Here, {Fi}i∈[l] are the facets of K ′. Define

δ =

√
C1

log(2N/d)

d
r.

The term vol(Fi)
−1 ∫

Fi
|x|dx is the average distance of the

points on the facetFi to the origin. If this average is bounded
above by δ, then there is at least on point on the facet that is
at a distance less than or equal to δ to the origin. Therefore,
with probability at least 1− 2 exp(−C2d log(N/d)), there
is a point on each Fi of distance at most δ to the origin.
Thus, d(0, ∂K ′) ≤ δ. Since K ⊆ K ′, this implies that with
the same probability, d(0, ∂K) ≤ δ.

Now, define a function f : Rd → R to be +1 on K and
−1 elsewhere. Since R(X ′+), R(X ′−) ≤ r ≤ ε, Proposition
2 implies that conv(X ′+) ∩ conv(X ′−) = ∅. Therefore
f is well-defined and f ∈ Fε(Saug). We then have by
construction of f ,

γf (S, S′) ≤ d(0, f−1(−1)) = d(0, ∂K).

Therefore, with probability at least 1 −
2 exp(−C2d log(N/d)),

γf (S, S′) ≤
√
C1

log(2N/d)

d
r.


