
Supplementary Material: Efficient On-Device Models using Neural Projections

Sujith Ravi 1

1. ProjectionGraph
Going beyond deep learning, we also extend our framework
to novel settings and train lightweight models in other types
of learning scenarios. For example, the training paradigm
can be changed to a semi-supervised or unsupervised set-
ting. The trainer model itself can be modified to incorporate
structured loss functions defined over a graph or proba-
bilistic graphical model instead of a deep neural network.
Figure 1 illustrates an end-to-end projection graph approach
for learning lightweight models using a graph optimized
loss function.

Figure 1. Illustration of a ProjectionGraph model trained using
graph learning algorithms.

Notation for trainer graph: ~xi represents an input node
and ~xj , ~xk represent its neighborhood N (~xi) in the orig-
inal graph G = (V,E). E refers to edges and V =
Vl ∪ Vu the nodes in this graph, where Vl indicates la-
beled nodes (red, green) and Vu the unlabeled nodes
(grey). ŷi indicates the ground-truth corresponding to a
labeled node ~xi ∈ Vl, with red, green colors indicating

1Google Research, Mountain View, California, USA. Corre-
spondence to: Sujith Ravi <sravi@google.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

different output values for ŷi. If V = Vl, the graph is
trained in a supervised manner whereas Vl ⊂ V ;Vu 6=
∅ yields a semi-supervised graph learning formulation.
Notation for projection graph: Each node ~xi in the
trainer graph G is connected via an edge to a corre-
sponding projection node in GP. The projection nodes
are discrete representations of trainer node ~xi obtained
by applying the projection functions P1...PT to the fea-
ture vector associated with the trainer node. In addi-
tion, GP may also contain intra-projection edges com-
puted using a similarity metric applied to the projection
vector representations. For example, we can use Ham-
ming distance H(.) to define a similarity metric 1 − H(.)

d
between projection nodes represented as d−bit vectors.
The training objective optimizes a combination of graph
loss Lθ(.) and projection loss Lp(.) that biases the projec-
tion graph to mimic and learn from the full trainer graph.
Lθ(.) optimizes the trainer’s predicted output yi against
the ground-truth ŷi whereas Lp(.) optimizes predictions
from the projection graph ypi against the neigbhoring trainer
predictions yi.

The ProjectionGraph model can be trained efficiently using
large-scale distributed graph algorithms (Ravi & Diao, 2016)
or even neural graph approaches (Yang et al., 2016; Bui
et al., 2018). The projection model training can also be
further extended to scenarios involving distributed devices
using complementary techniques (Konecný et al., 2016).
We leave these explorations as future work.

2. On-Device Conversational Models
We demonstrate the effectiveness of the proposed projection-
based learning architectures for powering on-device pre-
dictions for conversational applications on smartwatches
and mobile devices. Smart Reply (Kannan et al., 2016) is
a widely-used feature for automated reply suggestions in
email and chat conversations. With Smart Reply, a user can
easily send a quick reply (e.g., “yup”) in response to a chat
message (e.g., “Are you on your way?”) with a single tap.
These responses are especially useful on mobile or wearable
devices where text input may be slower than on desktops.

The original Smart Reply feature relied on cloud-based mod-
els for both training and prediction, i.e., every prediction
required sending the input message to a server which may



Supplementary Material: Efficient On-Device Models using Neural Projections

require an additional server roundtrip with associated power
costs. The cloud-based machine learning architectures are
also computationally intensive, have significant memory re-
quirements, and require an active internet connection. This
makes it infeasible to make predictions on a users phone,
smartwatch, or IoT device.

To solve this problem, we developed a fully on-device Smart
Reply system that generates response predictions to incom-
ing conversations (shown in Figure 2). The system builds
and trains a projection-based model (described earlier) on
the cloud but once trained, the model is downloaded to a
mobile device and runs all predictions locally on device.
This allows products to generate Smart Reply responses
with low latency, even when the device is not connected to
the internet. Additionally, this architecture increases user
privacy by allowing predictions to be made without input
messages ever having to leave the local device.

Figure 2. On-device smart reply predictions for incoming message
notifications on a smartwatch. Replies are generated using Projec-
tion model.

Figure 3 gives an overview of the learning and infer-
ence steps for this system. Training is performed using
a projection-based learning algorithm (ProjectionNet or Pro-
jectionGraph). The projections capture representations of
a message x obtained by applying projection functions P
to the feature vector associated with x (example illustration
in the bottom half of the right side of Figure 3). For conver-
sational applications like Smart Reply, we use text features
(e.g., skip-grams) extracted from the message content. Once
trained, the projection model is downloaded and inference
is performed directly on the mobile device. For inference,
we apply the same steps as in training—pre-processing, fea-
ture extraction and projection. The learned weights from
the projection model that are relevant to the particular mes-
sage (or conversation) are then applied to produce the final
ranked list of response suggestions (Figure 3). The overall
on-device model size is only a few Megabytes, tiny (100-
1000x smaller footprint) compared to Cloud-based LSTM
models that are used for similar prediction tasks.

On-device Smart Reply models1 have been deployed to
wearable devices and enable messaging applications on
smartwatches powered by Android Wear 2.0 (shown in Fig-
ure 2).2 We have also released an on-device conversational
model in TensorFlow Lite (tfl), an open-source library specif-
ically designed for on-device machine learning.3

3. Computing Model Predictability in Neural
Bits

We further study the notion of predictability of deep neu-
ral networks in the context of neural projections. More
specifically, using the ProjectionNet framework described
in Section 2.1, we formulate the questions: “How many
neural bits are required to solve a given task?” “How many
bits are required to capture the predictive power of a given
deep neural network?”

These motivate a series of studies on the different datasets.
We show empirical results to answer these by computing
the number of bits encoded in the projection network (Sec-
tion 2.1) used in each task. Since a very simple projection
network architecture can be represented in bits (i.e., output
of projection operations result in bit vectors) and we only
use a single layer of projections, we can compute the total
number of bits required to represent a specific Projection-
Net model. If we compare this to the accuracy achieved on
a given task by applying the projection network alone for
inference, this helps answers the first question.

On the visual recognition task for MNIST (Section 3.1), 80-
100 neural projection bits are enough to solve the task with
70-80% accuracy, and increasing this to 720 bits achieves
92.3% precision which is further improved by using a deeper
projection network. For the language task of semantic clas-
sification (Section 3.2) involving sequence input, 720 neural
projection bits are required to achieve a top-1 accuracy of
82.3%. Going deeper with projections and combining with
additional non-linear operations results in further improve-
ments, yielding 97.7% that outperforms even strong LSTM
baselines.

To answer the second question, we use a given deep neural
network (e.g, feed-forward NN) with specified configuration
to model the full trainer network in the framework described
in Section 2. We then use this to train a corresponding neural
projection network with hidden bit representations. Finally,
we compute the number of neural projection bits used in

1https://ai.googleblog.com/2017/11/on-device-conversational-
modeling-with.html

2https://developer.android.com/reference/android/app/ Notifi-
cation.Action.html#getAllowGeneratedReplies()

3Download code & model here:
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/
lite/models/smartreply/g3doc



Supplementary Material: Efficient On-Device Models using Neural Projections

Figure 3. Left: Learning projection model for Smart Reply. Right: Inference using on-device Smart Reply model.

Figure 4. Comparing predictive power of deep neural networks
using neural projection bits on different visual classification tasks.

the second network that simulates the trainer and plot this
value against the predictive quality ratio, which is defined
as the ratio of accuracies achieved by separately performing
inference with simple versus full network on a given task.
Figure 4 shows this plot for the MNIST and CIFAR-100
tasks. The plot shows that the predictive power of a 3-layer
feed-forward network with 3-5M parameters can be suc-
cinctly captured to a high degree (ratio=∼0.8) with a simple
100-bit ProjectionNet for MNIST classification and just 720
bits are required to recover more than 90% of the base deep
network quality. On more complex image recognition tasks
that involve larger output classes, a higher number of bits
are required to represent a trainer deep network with the
same architecture. For example, on CIFAR-100 task, we ob-
serve that a 3-layer feed-forward network can be projected
onto 720 neural bits at a predictive ratio of 0.5. However,
we also notice a steep increase in predictive ratio moving
from 120 to 720 neural bits. We expect a similar trend at
even higher bit sizes and on more complex tasks.

References
TensorFlow Lite. https://www.tensorflow.org/

lite/.

Bui, T. D., Ravi, S., and Ramavajjala, V. Neural graph
learning: Training neural networks using graphs. In Pro-
ceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, 2018.

Kannan, A., Kurach, K., Ravi, S., Kaufmann, T., Tomkins,
A., Miklos, B., Corrado, G., Lukacs, L., Ganea, M.,
Young, P., and Ramavajjala, V. Smart reply: Automated
response suggestion for email. In Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), 2016.

Konecný, J., McMahan, H. B., Ramage, D., and Richtárik,
P. Federated optimization: Distributed machine learning
for on-device intelligence. CoRR, abs/1610.02527, 2016.
URL http://arxiv.org/abs/1610.02527.

Ravi, S. and Diao, Q. Large scale distributed semi-
supervised learning using streaming approximation. In
Proceedings of the 19th International Conference on Ar-
tificial Intelligence and Statistics, pp. 519–528, 2016.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisiting
semi-supervised learning with graph embeddings. CoRR,
abs/1603.08861, 2016. URL http://arxiv.org/
abs/1603.08861.

https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
http://arxiv.org/abs/1610.02527
http://arxiv.org/abs/1603.08861
http://arxiv.org/abs/1603.08861

