
A Block Coordinate Descent Proximal Method
for Simultaneous Filtering and Parameter Estimation

Ramin Raziperchikolaei 1 2 Harish S. Bhat 3 4

Abstract
We propose and analyze a block coordinate de-
scent proximal algorithm (BCD-prox) for simulta-
neous filtering and parameter estimation of ODE
models. As we show on ODE systems with up
to d = 40 dimensions, as compared to state-of-
the-art methods, BCD-prox exhibits increased ro-
bustness (to noise, parameter initialization, and
hyperparameters), decreased training times, and
improved accuracy of both filtered states and esti-
mated parameters. We show how BCD-prox can
be used with multistep numerical discretizations,
and we establish convergence of BCD-prox under
hypotheses that include real systems of interest.

1. Introduction
Though ordinary differential equations (ODE) are used ex-
tensively in science and engineering, the task of learning
ODE states and parameters from data still presents chal-
lenges. This is especially true for nonlinear ODE that do
not have analytical solutions. For such problems, several
published and widely used methods—including Bayesian,
spline-based, and extended Kalman filter methods—work
well with data with a high signal-to-noise ratio. As the
magnitude of noise increases, these methods break down,
leading to unreliable estimates of states and parameters.
Problem domains such as biology commonly feature both
nonlinear ODE models and highly noisy observations, moti-
vating the present work.

Motivated by recent advances in alternating minimization
(Chatterji & Bartlett, 2017; Li et al., 2016; Yi et al., 2014),

1Rakuten Institute of Technology, San Mateo, CA, USA
2Department of Computer Science, University of California,
Merced, USA 3Department of Mathematics, University of Utah,
USA 4Department of Applied Mathematics, University of Cali-
fornia, Merced, USA. Correspondence to: Ramin Raziperchiko-
laei <ramin.raziperchikola@rakuten.com>, Harish S. Bhat <hb-
hat@ucmerced.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

block coordinate descent (BCD) (Xu & Yin, 2013; Zhang
& Brand, 2017), and proximal methods (Parikh & Boyd,
2014; Sun et al., 2015), we study a BCD proximal algo-
rithm (BCD-prox) to solve the simultaneous filtering and
parameter estimation problem. Here filtering means recov-
ering clean ODE states from noisy observations. BCD-prox
works by minimizing a unified objective function that di-
rectly measures how well the states and parameters satisfy
the ODE system, in contrast to other methods that use sepa-
rate objectives. BCD-prox learns the states directly in the
original space, instead of learning them indirectly by fitting
a smoothed function to the observations. Under hypotheses
that include systems of real interest, BCD-prox is provably
convergent. In comparison with other methods, BCD-prox
is more robust with respect to noise, parameter initialization,
and hyperparameters. BCD-prox is also easy to implement
and runs quickly.

There have been several different approaches to the filtering
and estimation problem. Nonlinear least squares methods
start with an initial guess for the parameters that is iteratively
updated to bring the model’s predictions close to measure-
ments (Bard, 1973; Benson, 1979; Himmelblau et al., 1967;
Hosten, 1979). These methods diverge when the initial
parameters are far from the true parameters.

Of more recent interest are spline-based methods, in which
filtered, clean states are computed via (cubic) splines fit to
noisy data. As splines are differentiable, parameter esti-
mation then reduces to a regression problem (Cao & Zhao,
2008; Cao et al., 2011; Poyton et al., 2006; Ramsay et al.,
2007; Varah, 1982). Estimators other than splines, such
as smoothing kernels and local polynomials, are also used
(Dattner & Klaassen, 2015; Gugushvili & Klaassen, 2012;
Liang & Wu, 2008). These methods are sensitive to numer-
ous hyperparameters (such as smoothing parameters and the
numbers/positions of knots), to parameter initialization, and
to the magnitude/type of noise that contaminates the data.

Bayesian approaches (Calderhead et al., 2009; Dondelinger
et al., 2013; Girolami, 2008; Gorbach et al., 2017) must
set hyperparameters (prior distributions, variances, kernel
widths, etc.) very carefully to produce reasonable results.
Bayesian methods also feature large training times. Another
disadvantage of these methods, mentioned by Gorbach et al.

BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

(2017), is that they cannot simultaneously learn clean states
and parameters. Gorbach et al. (2017) uses a variational in-
ference approach to overcome this problem, but the method
is not applicable to all ODE.

BCD-prox learns parameters and states jointly, but it does
not fit a smooth function to the observations. Via this ap-
proach, BCD-prox reduces the number of hyperparameters
to one. BCD-prox avoids assumptions (i.e., spline or other
smooth estimator) regarding the shape of the filtered states.
Furthermore, both the BCD and proximal components of the
algorithm enable it to step slowly away from a poor initial
choice of parameters. In this way, BCD-prox remedies the
problems of other methods.

Many other well-known nonlinear ODE filtering methods,
including extended and ensemble Kalman filters as well
as particle filters, are online methods that make Gaussian
assumptions. In contrast, BCD-prox is a distribution-free,
batch method.

The rest of the paper is organized as follows. In Section 2
we define both the problem and the BCD-prox algorithm.
In Section 3, we compare BCD-prox at a conceptual level
against a competing method from the literature. We dis-
cuss the convergence of BCD-prox in Section 4. We show
the advantages of BCD-prox with several experiments in
Section 5. Further experiments and details are given in the
supplementary material.

2. Problem and Proposed Solution
Consider a dynamical system in Rd, depending on a param-
eter θ ∈ Rp, with state x(t) at time t:

ẋ(t) =
dx(t)

dt
= f(x(t),θ). (1)

At T distinct times {ti} Ti=1, we have noisy observations
y(ti) ∈ Rd:

y(ti) = x(ti) + z(ti), i = 1, . . . , T (2)

where z(ti) ∈ Rd is the noise of the observation at time
ti. We represent the set of T d-dimensional states, noises,
and observations by X,Z, and Y ∈ Rd×T , respectively.
For concision, in what follows, we write the time ti as a
subscript, i.e., x(ti) instead of x(ti).

In this paper, we assume that the form of the vector field
f(·) is known. The simultaneous parameter estimation and
filtering problem is to use Y to estimate θ and X. Examples
of f(·) and θ can be found in Section 5.

For ease of exposition, we first describe a BCD-prox al-
gorithm based on the explicit Euler discretization of (1).
Later, we will describe how to incorporate higher-order mul-
tistep methods into BCD-prox. The explicit Euler method

discretizes the ODE (1) for the T time points as follows:

x(ti+1) − x(ti) = f(x(ti),θ)∆i, i = 1, ..., T − 1 (3)

where ∆i = ti+1 − ti. In (3), both states X and parameters
θ are unknown; we are given only the noisy observations Y.
With this discretization, let us define

E(X,θ) =
T−1∑

i=1

∥∥x(ti+1) − x(ti) − f(x(ti),θ)∆i

∥∥2 (4)

Note that E measures the time-discretized mismatch be-
tween the left- and right-hand sides of (1). We refer to E
as fidelity, the degree to which the estimated states X and
parameters θ actually satisfy the ODE. Let us now envision
a sequence of iterates {X∗(n),θ∗(n)} n≥ 0. For n ≥ 1, we
define the Euler BCD-prox objective function:

F Euler
n (X,θ) = E(X,θ) + λ

∥∥∥X−X∗(n−1)
∥∥∥
2
. (5)

We can now succinctly describe the Euler version of BCD-
prox as block coordinate descent (first on θ, then on X)
applied to (5), initialized with the noisy data via X∗(0) = Y,
and repeated iteratively until convergence criteria are met..

The Euler method is a first-order method. To understand
this, let ∆i = h (independent of i) and tN = Nh. Then the
global error between the numerical and true solution of the
ODE (1),

∥∥xnumerical(tN)− xtrue(tN)
∥∥, is O(h). If we seek

a more accurate discretization, we can apply a multistep
method. The idea of multistep (m-step) methods is to use
the previous m states to predict the next state, yielding
a method with O(hm) global error. Let us consider the
general formulation of the explicit linear m-step method to
discretize (1):

x(ti+1) =
m−1∑

j=0

ajx(ti−j) +∆i

m−1∑

j=0

bjf(x(i−j),θ), (6)

where ∆i is the time step. There are several strategies to
determine the coefficients {aj } m−1

j=0 and {bj } m−1
j=0 . For ex-

ample, over the interval ∆i, the Adams-Bashforth method
approximates f(·) with a polynomial of order m; this leads
to a method with O(hm) global error. When m = 1, this
method reduces to the explicit Euler method considered
above. For further information on multistep methods, con-
sult Iserles (2009); Palais & Palais (2009).

Note that to use m-step methods to predict the state at time i,
we need its previous m states. To predict the states {xi} mi=2

(the first few states), the maximum order we can use is i−1,
because there are only i − 1 states before the state xi. In
general, to predict xi we use a multistep method of order
min(i− 1,m).

BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

Algorithm 1 Pseudo-code of our proposed method
Input: Noisy observations Y = [y(t1), . . . ,y(tT)] ∈
Rd×T , time differences {∆i = ti+1 − ti} T−1

i=1 , form of f(·)
in Eq. (1), hyperparameter λ, initial guess θ∗(0), and order
m of the m-step method.

1: X∗(0) = Y
2: n = 0
3: repeat
4: n = n+ 1
5: • Compute θ∗(n) = argminθ Fn(X∗(n−1),θ).
6: • Compute X∗(n) = argminX Fn(X,θ∗(n)).
7: until convergence
8: Compute predicted states X̂ by repeatedly applying Eq.

(6), where θ = θ∗(n) and x(t1) = x∗(n)(t1)
.

9: return θ∗(n) and X̂ as the estimated parameters and
predicted states.

When using a general m-step discretization method, we
define our objective function as follows:

Em-step(X,θ) =
T−1∑

i=1

∥∥∥∥x(ti+1) −
∑k−1

j=0 ajx(ti−j)

−∆i
∑k−1

j=0 bjf(x(i−j),θ)

∥∥∥∥
2

, (7)

where k = min(i− 1,m) is the order of the discretization
method to predict the state xi. We can then reformulate the
BCD-prox objective as

Fn(X,θ) = Em-step(X,θ) + λ
∥∥∥X−X∗(n−1)

∥∥∥
2
. (8)

We now regard (5) as a special case of (8) for m = 1, i.e.,
in the case where the m-step method reduces to Euler. With
these definitions, BCD-prox is block coordinate descent
(first on θ, then on X) applied to Fn(X,θ), initialized with
the noisy data via X∗(0) = Y, and repeated iteratively until
convergence criteria are met.. We detail this algorithm in
Alg. 1.

3. Conceptual Comparison with iPDA
Though BCD-prox may seem straightforward, we cannot
find prior work that utilizes precisely this approach. Since of
the closest relatives is the successful iPDA (iterated princi-
pal differential analysis) method (Poyton et al., 2006; Ram-
say et al., 2007), we explain iPDA and offer a conceptual
comparison between iPDA and BCD-prox. In iPDA, the
parameter estimation error is defined as

Econt(x(t),θ) =

∫ ∥∥∥∥
dx(t)

dt
− f(x(t),θ)

∥∥∥∥
2

dt, (9)

which we can regard as the continuous-time (∆i → 0) limit
of either (4) or (7), our mismatch/fidelity terms. The iPDA
objective function is then

J(x(t),θ) = Econt(x(t),θ) + λ∥X−Y∥2 , (10)

the sum of the parameter estimation error with a regulariza-
tion term. Initialized with θ(0), the iPDA method proceeds
by iterating over the following two minimization steps:

1. Set x(n)
(t) = argminx(t)

J(x(t),θ
(n−1)). In this step,

x(t) is constrained to be a smooth spline.

2. Set θ(n) = argminθ J(x
(n)
(t) ,θ). Note that the opti-

mization only includes the parameter estimation term
since the regularization term does not depend on θ.

The main issue with the objective in (10) is the regulariza-
tion term. This term determines how far the clean states
are going to be from the noisy observations. If we set λ
to a large value, then x(t) remains close to the data y(t),
potentially causing a large parameter estimation error. If we
set λ to a small value, then x(t) might wander far from the
observed data. It is a challenging task to set λ to the right
value for two reasons: 1) the optimal λ depends on both the
noise Z and the vector field f , and 2) in a real problem, we
do not have access to the clean states X (all we have are
the noisy observations Y), so we cannot find the right λ by
cross-validation. We return to this point below.

Before continuing, it is worth pointing out a crucial fact
regarding all the mismatch/fidelity objectives E that we
have seen thus far.

Theorem 1. The objective functions E defined in (4), (7),
and (9) all have an infinite number of zeros, i.e., an infinite
number of global minima that result in E = 0.

Proof. Assign arbitrary real vectors to θ and the initial
condition x(t1). Note that (4) is the special case of (7)
for m = 1 so we need only discuss (7). Starting from
x(t1), step forward in time via (6). By computing the states
x(t2), . . . ,x(tT) in this way, we ensure that each term in (7)
vanishes. For the continuous E function (9), we use the
existence/uniqueness theorem for ODE to posit a unique
solution x(t) passing through x(t1) at time t = t1. By def-
inition of a solution of an ODE, this will ensure that (9)
vanishes. Because, in all cases, E ≥ 0, we achieve a global
minimum. Because θ and x(t1) are arbitrary, an infinite
number of such minima exist.

Note that BCD-prox always produces a (state,parameter)
pair that results in E = 0 for (7). In fact, step 8 of Alg. 1
uses the idea from the proof of Theorem (1) to generate a
sequence of predicted states X̂ such that E(X̂,θ∗(n)) = 0.

BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

Let us reconsider Step 6 in Alg. 1:

X∗(n) = argmin
X

Fn(X,θ∗(n)). (11)

By definition of Fn and using the notion of proximal opera-
tors (Parikh & Boyd, 2014), we can write

X∗(n) = prox(2λ)−1E(X
∗(n−1)),

with the understanding here and in what follows that θ is
fixed at θ∗(n). In general for ∆i > 0 and arbitrary f , E
defined in (7) will not be convex. In this case, we view the
proximal operator above as a set-valued operator as in (Li
et al., 2017); any element of the set will do. Conceptually,
this proximal step approximates a gradient descent step:

X∗(n) = X∗(n−1)

− (2λ)−1∇XE(X∗(n−1),θ∗(n)) + o((2λ)−1). (12)

It is now clear that λ plays the role of an inverse step size—
our experiments later will confirm that there is little harm in
choosing λ too large. With this in mind, we can now contrast
BCD-prox with iPDA. In BCD-prox, we use the data Y to
initialize the algorithm; subsequently, the algorithm may
take many proximal steps of the form (12) to reach a desired
optimum. If the data Y is heavily contaminated with noise,
it may be wise to move far away from Y as we iterate.

In contrast, iPDA’s regularization term is λ∥X − Y∥2.
Roughly speaking, iPDA searches for X in a neighborhood
of Y; the diameter of this neighborhood is inversely related
to λ. When the magnitude of the noise Z is small, searching
for X in a small neighborhood of Y is reasonable. For real
data problems in which the magnitude of Z is unknown,
however, choosing λ a priori becomes difficult.

An additional important difference between BCD-prox and
iPDA has to do with convexity, which we discuss next.

4. Convergence
In practice, we implement the argmin steps in Alg.1 us-
ing the LBFGS algorithm, implemented in Python via
scipy.optimize.minimize. Throughout this work, when us-
ing LBFGS, we use automatic differentiation to supply the
optimizer with gradients of the objective function. We stop
Alg.1 when the error E changes less than 10−8 from one
iteration to the next.

To see when this happens, we take another look at the op-
timization over the states X in (11) at iteration n. This
objective function Fn has two parts. The optimal solution of
the first part (E) is the predicted states X̂(n). The optimal
solution of the proximal part is X∗(n−1). When we optimize
this objective function to find X∗(n), there are three cases:
1) X∗(n) = X̂(n), 2) X∗(n) = X∗(n−1), and 3) X∗(n) is

neither X̂(n) nor X∗(n−1). Our algorithm stops when we
are in case 1 or 2 since further optimization over θ and X
changes nothing. In case 3, the algorithm continues, leading
to further optimization steps to decrease error.

Indeed, let us note that steps 5 and 6 in Alg. 1 together imply

E(X∗(n),θ∗(n)) ≤ E(X∗(n−1),θ∗(n−1)). (13)

The function E, bounded below by 0, is non-increasing
along the trajectory {(X∗(n),θ∗(n))} n≥ 1. Hence
{E(X∗(n),θ∗(n))} n≥ 1 must converge to some E∗ ≥ 0.

Next we offer convergence theory for the Euler version of
BCD-prox. We believe this theory can also be established
for the general m-step version of BCD-prox; however, the
calculations will be lengthier. In this subsection, we let
xi = x(ti) ∈ Rd. For T even, set

x+ = {x1,x2, . . . ,xT/2} , x− = {xT/2+1, . . . ,xT } .

For T odd, replace T/2 by (T−1)/2 in the above definitions.
In words, x+ is the first half of the state series while x− is
the second half of the state series. Note that X = (x+,x−).

Assume that f is at most linear in θ, so that f(x,θ) =
f0(x) + f1(x)θ, with f1 : Rd → Rd×p assumed to have full
column rank for all x.

Now initialize X0 = Y and proceed sequentially with the
following steps for n ≥ 1:

θn = argmin
θ

Fn(X
n−1,θ) = argmin

θ
E(Xn−1,θ)

(14a)

(x−)n = argmin
x−

Fn((x
+)n−1,x−,θn) (14b)

(x+)n = argmin
x+

Fn(x
+, (x−)n,θn) (14c)

Xn = ((x+)n, (x−)n) (14d)

We now seek to apply the results of Xu & Yin (2013). In
order to do so, we will establish strong convexity of each of
the steps in (14). We begin by noting that

E(X,θ) =
T−1∑

i=1

∥xi+1 − xi − f0(xi)∆i + f1(xi)θ∆i∥2.

We compute the p× p Hessian

∇θ∇θE = 2
T−1∑

i=1

(f1(xi))
T f1(xi)∆

2
i .

Since f1 has full column rank, it follows that E(X,θ) is
strongly convex in θ with X held fixed.

Next, suppose all ∆i are zero. Then (4) reduces to
E(X,θ;∆i = 0) =

∑T−1
i=1 ∥xi+1 − xi∥2. This is a

BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

quadratic form written as a sum of squares; hence it is
positive semidefinite. We sharpen this to positive definite-
ness by examining derivatives. First we hold x− and θ fixed
and consider A = ∇x+∇x+E(X,θ;∆i = 0), the Hessian
with respect to x+ only. We obtain

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

2I −2I
−2I 4I −2I

−2I 4I
. . .

. −2I
−2I 4I

⎤

⎥⎥⎥⎥⎥⎥⎦

Here each I is a d× d identity block. The positive semidefi-
niteness established above implies that all eigenvalues of A
are nonnegative. By an induction argument, we can show
that detA = 2dT/2, implying that the eigenvalues of A
are bounded away from zero. Hence the quadratic form
E(X,θ;∆i = 0) restricted to x+ (with x− held fixed) is
strongly convex. In an analogous way, we can show that
E(X,θ;∆i = 0) restricted to x− (with x+ held fixed) is
strongly convex. Both of these properties hold at ∆i = 0.
Because the eigenvalues of both restrictions are continuous
functions of ∆i, there exists δ > 0 such that for ∆i ∈ (0, δ),
the eigenvalues remain bounded away from zero.

Then we have the following first convergence result.

Theorem 2. Suppose all ∆i ∈ (0, δ) for the δ established
above. Suppose f is linear in θ with the full-rank condi-
tion described above. Then there exists an interval of λ
values for which the algorithm (14) converges to a Nash
equilibrium (X,θ) of the objective E defined in (4).

Proof. The result follows directly from Theorem 2.3 from
Xu & Yin (2013); we have verified all hypotheses. In par-
ticular, when all ∆i ∈ (0, δ), E(X,θ) is strongly convex in
x+ (with x− and θ held fixed) and strongly convex in x−

(with x+ and θ held fixed).

Let us further assume that f satisfies the Kurdyka-
Lojasiewicz (KL) property described in Section 2.2 of Xu
& Yin (2013). In particular, if each component of f is real
analytic, the KL property will be satisfied. Together with
linearity of f in θ, this includes numerous vector fields
of interest, including all ODE in our experimental results.
(For FitzHugh–Nagumo, a change of variables renders the
system linear in the parameters.) Then we have a second
convergence result.

Theorem 3. Suppose in addition to the hypotheses of The-
orem 2, f is smooth and satisfies the KL property. Then
assuming the algorithm defined by (14) begins sufficiently
close to a global minimizer, it will converge to a global
minimizer of E defined in (4).

Proof. The result follows directly from Corollary 2.7 and
Theorem 2.8 of Xu & Yin (2013); we have verified all
hypotheses.

5. Experiments
We briefly explain the datasets (models) that we used in
our experiments here. In the supplementary material, we
detail the ODEs and true parameter values for 1) Lotka–
Volterra with two-dimensional states and four unknown
parameters. 2) FitzHugh–Nagumo with two-dimensional
states and four unknown parameters. 3) Rössler attractor
with three-dimensional states and three unknown parameters.
4) Lorenz-96 with 40 nonlinear equations and one unknown
parameter, the largest ODE we found in the literature.

We create the clean states using a Runge-Kutta method of
order 5. In all of our experiments, unless otherwise stated,
we use the three-step Adams-Bashforth method to discretize
the ODE. Also, unless otherwise stated, we added Gaussian
noise with mean 0 and variance σ2 to each of the clean
states to create the noisy observations.

Advantages of our approach. Before detailing our ex-
perimental results, let us give an overview of our findings.
BCD-prox is robust with respect to its only hyperparameter
λ. We will show below that for a broad range of λ values,
BCD-prox works well. We fix it to λ = 1 in our later exper-
iments. As explained before, previous methods have a large
number of hyperparameters, which are difficult to set.

BCD-prox can be trained quickly. On a standard laptop, it
takes around 20 seconds for BCD-prox to learn the param-
eters and states jointly on ODE problems with 400 states.
The spline-based methods take a few minutes and Bayesian
methods take a few hours to converge on the same problem.

Because BCD-prox, unlike Bayesian methods, does not
make assumptions about the type of the noise or distribution
of the states, it performs well under different noise and state
distributions. In particular, as the magnitude of noise in the
observations increases, BCD-prox clearly outperforms the
extended Kalman filter.

As our experiments confirm, both spline-based and Bayesian
approaches are very sensitive to the initialization of the ODE
parameters. If we initialize them far away from the true val-
ues, they do not converge. BCD-prox is much more robust.
This robustness stems from simultaneously learning states
and parameters. Even if the estimated and true parame-
ters differ at some iteration, they can converge later, as the
estimated states converge to the clean states.
Evaluation metrics. Let θ and X denote the true param-
eters and the clean states, respectively. Let θ∗ and X̂ denote
the estimated parameters and the predicted states. We re-
port the Frobenius norm of X− X̂ as the prediction error.

BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

Rössler Lorenz-96
pr

ed
.e

rr
or

iteration iteration
Figure 1. Prediction error at different iterations of our algorithm
with different discretization methods. The noise variance of ob-
servations is σ2 = 1. Our learning strategy decreases the error
significantly.

We also consider |θl− θ∗l| as the lth parameter error. To
compute predicted states, we first take θ∗ as the parameter
and x∗(t1) as the initial state; we then repeatedly apply either
Euler (3) or multistep (6) numerical integration.

Optimization of objective (4) leads to better estimation.
At each iteration n of our optimization, we compute the
predicted states X̂(n) and report the prediction error. In
Fig. 1, we consider two kinds of discretization: 1) one-step
Euler method, and 2) three-step Adams-Bashforth method.
Note that as we increase the order, we expect to see more
accurate results.

The variance of the noisy observations is σ2 = 1. The sup-
plementary material contains the results for the FitzHugh–
Nagumo model and also for the case of σ2 = 0.5. Fig. 1
shows that at the first iteration the error is significant in
all models. The error is ∼ 103 for FitzHugh–Nagumo and
Rössler, and ∼ 1.5× 105 for Lorenz-96 model.

After several iterations of our algorithm, the error decreases
significantly, no matter what kind of discretization we use.
Three-step Adams-Bashforth performs better than Euler in
general: it converges faster and achieves a smaller final error.
This is especially clear for the Lorenz-96 model: the final
error is near zero for three-step Adams-Bashforth, but near
104 for Euler.

The last point about Fig. 1 is that, as expected, the predic-
tion error increases at times; the error does not decrease
monotonically. This mainly happens at the first few itera-
tions. The main reason for this behavior is that our objective
function in (4) is different from the prediction error. We
cannot directly optimize the prediction error because we
do not have access to the clean states. Still, the fact that
our algorithm eventually brings the prediction error close to
zero suggests that minimizing the objective in (4) has the
same effect as minimizing the prediction error.

Robustness to the hyperparameter λ. The only hyper-
parameter in our algorithm is λ. In Fig. 2, we set λ in turn
to a set of values from 0 to 20, run our algorithm, and report
the results after convergence. In both models, we generate
observations with the variance σ2 = 0.5. Because of ran-

Lotka–Volterra FitzHugh–Nagumo

pr
ed

.e
rr

or
pa

ra
m

.v
al

ue

penalty weight λ penalty weight λ
Figure 2. Robustness to the hyperparameter λ. The true parameters
are θ0 = .5, θ1 = .3, and θ2 = 3 in the FitzHugh–Nagumo and
θ0 = 2, θ1 = 1, θ2 = 4, and θ3 = 1 in the Lotka–Volterra.
For each λ, we report the mean error and parameter value in 10
experiments.

domness included in creating noisy observations, we create
10 sets of observations, run our algorithm once for each
of them, and report the mean in Fig. 2. We also show the
standard deviation in prediction errors, but not in parameter
values (to avoid clutter).

In Fig. 2 we report the prediction error and the estimated
parameters for each value of λ. The true values for the
FitzHugh–Nagumo are θ0 = .5, θ1 = .3, and θ2 = 3. For
the Lotka–Volterra model, the true values are θ0 = 2, θ1 =
1, θ2 = 4, and θ3 = 1.

We see in Fig. 2 that for λ > 0, BCD-prox correctly finds the
parameters and brings the error close to zero. Also, in the
range of λ = 1 to 20, the errors and the estimated parameters
remain almost the same. We have found that increasing λ
to 1 000 does not change the estimated parameters. The
only disadvantage of increasing λ to a large value is that
training time increases—as explained above, increasing λ is
analogous to decreasing the step size in a gradient descent
method. Large λ implies that states can change very little
from one iteration to another, forcing the algorithm to run
longer for convergence. The algorithm, as explained in
detail before, does not work well when λ = 0; in this case,
the algorithm stops after a single iteration, with the predicted
states far from the clean states.

Comparison with other methods (robustness to initial-
ization). As the first experiment, we compare BCD-prox
with three other methods, each of them from a different
category. Among the iPDA (spline-based) methods, we use
a MATLAB code available online (Ramsay et al., 2007), de-
noted by “iPDA” in our experiments. Among the Bayesian
approaches, we use an R code available online (Dondelinger
et al., 2013), denoted “Bayes” in our experiments. We also
implement a method that uses the iterative least square ap-
proach, denoted “lsq” in our experiments. This method con-
siders the parameters and the initial state as the unknown

BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

σ2
θ = 1 σ2

θ = 5 σ2
θ = 10 σ2

θ = 20
..

..
..

..
..

..
..

..
.R

ös
sl

er
at

tra
ct

or
..

..
..

..
..

..
..

..
..

.
st

at
e

er
ro

r
θ 0

er
ro

r
θ 1

er
ro

r
θ 2

er
ro

r

Figure 3. Comparison with other methods. We create initializations by adding Gaussian noise of variance σ2
θ to the true parameters. We

create 10 sets of observations and initializations per each σ2
θ and report the errors. Each error bar corresponds to the error in one of the

experiments. BCD-prox performs significantly better.

variables. To implement lsq, we use the Python LMFIT
package (Newville et al., 2014). The variance of the noisy
observations is σ2 = 0.5.

All methods including ours need an initial guess for the
unknown parameters. We add Gaussian noise with mean
0 and variance σ2

θ to the true parameter and use the result
to initialize the methods. Fig. 3 shows the results for the
Rössler model and the supplementary material contains the
results on the FitzHugh–Nagumo model. We change the
variance from σ2

θ = 1 to 20. Since there is randomness in
both initialization and observation, we repeat the experiment
10 times. Note that the comparisons are fair, with the same
observations and initializations used across all methods.

In Fig. 3, each of the bars corresponds to the prediction
or parameter error for one of the methods in one of the
experiments. Hence there are 10 error bars for each of
the methods in each plot. We set λ = 1 in BCD-prox for
all the experiments. For the other methods, we chose the
best hyperparameters that we could determine after careful
experimentation.

The first point in Fig. 3 is that BCD-prox is robust with
respect to the initialization, while the other methods are not.
The total number of experiments per method is 80 (40 for
the FitzHugh–Nagumo and 40 for Rössler). The prediction
error of BCD-prox exceeds 100 in 4 experiments. The
prediction error of iPDA (the second best method after ours)
exceeds 100 in 39 experiments (nearly half the experiments).
For lsq and Bayes, the errors are substantially worse.

Fig. 3 shows that almost all the methods work well when the
initialization is close to the true parameters (small noise). In
reality, we do not know what the real parameters are; it is
reasonable to say that the last column of Fig. 3 (initialization
with the largest noise) determines which method performs
better in real-world applications. BCD-prox outperforms
other methods in both prediction and parameter error.

In our second experiment, we compare BCD-prox with
the mean-field variational Bayes method of Gorbach et al.
(2017) on the Lotka–Volterra model. The mean-field method
is only applicable to differential equations with a specific
form—see Eq. (10) in Gorbach et al. (2017). While we can-
not apply the mean-field method to the FitzHugh–Nagumo
and Rössler models, we can apply it to the Lotka–Volterra
model. In Fig. 4, we compare the methods by prediction
and parameter errors.

Fig. 4 (first row) shows the results for σ2 = 1 (results for
other variances are in supplementary material). Similar
to our previous experiments, we generate 10 sets of noisy
observations and each bar corresponds to the error for one
of the methods in one of the experiments.

Fig. 4 shows that the average error of BCD-prox is less
than that of the mean-field method in almost all cases. The
average parameter error of the mean-field method for θ0 and
θ1 becomes around 3 and 8, respectively, but the average
error of BCD-prox for both parameters remains less than
1. The results in the supplementary material show that
as we increase the noise in the observations, the error of

BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

prediction error θ0 error θ1 error θ2 error θ3 error
T

=
20

σ
2
=

1
T

=
10

4

σ
2
=

0.
1

T
=

10
4

σ
2
=

1.
5

Figure 4. We generate 10 sets of observations for the Lotka–Volterra model and report the error for each of the experiments. The average
error has been reported below each plot. First row: comparison with the mean-field method of Gorbach et al. (2017), where the noisy
observations have the variance σ2 = 1. Second and third rows: comparison with the extended Kalman filter (EKF) where the noisy
observations have the variance σ2 = 0.1 and 1.5, respectively.The number of observation is T = 10 000.

both methods increases. Still, BCD-prox is more robust to
observational noise than the mean-field method.

Comparison with extended Kalman filter (EKF). We
follow Sitz et al. (2002) to apply EKF to our problem. We
use an open-source Python code (Labbe, 2014) in our im-
plementation. For details, see the supplementary material.

In the second and third rows of Fig. 4, we compare BCD-
prox with EKF on the Lotka–Volterra model. We compare
the methods in different settings by changing the amount
of noise and the number of samples. The noise variances
are σ2 = 0.1 and σ2 = 1.5 and the number of samples are
T = 20 (time range [0, 2]) and T = 10 000 (time range
[0, 1 000]). The results for T = 20 can be found in the
supplementary material.

In Fig. 4 we report the average estimation error instead
of the prediction error. Estimation error is defined as the
difference between the clean states and the estimated states
X∗. We report the estimation error because the prediction
error of EKF goes to infinity. To see why this happens,
note that to obtain reasonable predictions we need good
estimations of the parameters and the initial state. Since
EKF is an online method, it never updates the initial state.
Given that the initial state is noisy, no matter how well
parameters are estimated, the prediction error becomes very
large. BCD-prox updates the initial state, yielding small
prediction error.

We found that the only setting in which EKF performs
comparably to BCD-prox is the case of T = 10 000 and
σ2 = 0.1. In other words, EKF works fine when we have

long time series with low noise. In more realistic settings,
BCD-prox significantly outperforms EKF. A key difference
between the two methods is that EKF is an online method
while ours is a batch method, iterating over the entire data
set repeatedly. Consequently, BCD-prox updates parame-
ters based on information in all the states, leading to more
robust updates than is possible with EKF, which updates
parameters based on a single observation.

We also see that the error of both methods becomes smaller
as we increase the number of samples T . This is expected
because increasing T is equivalent to giving more informa-
tion about the model to the methods. The average estimation
error of BCD-prox becomes almost 0 for large T .

Conclusion. BCD-prox addresses issues of previous ap-
proaches to simultaneous parameter estimation and filtering,
achieving fast training and robustness to noise, initialization,
and hyperparameter tuning. We have shown how to use
BCD-prox with multistep ODE integration methods. Addi-
tional features of BCD-prox include its connection to BCD
and proximal methods, its unified objective function, and
a convergence theory resulting from blockwise convexity.
In ongoing/future work, we seek to extend BCD-prox to
estimate the vector field f from noisy observations.

Acknowledgements
H. S. Bhat was partially supported by NSF award DMS-
1723272. Both authors acknowledge use of the MERCED
computational cluster, funded by NSF award ACI-1429783.

BCD Proximal Method for Simultaneous Filtering and Parameter Estimation

References
Bard, Y. Nonlinear Parameter Estimation. Academic Press, 1973.

Benson, M. Parameter fitting in dynamic models. Ecological
Modelling, 6(2):97–115, 1979.

Calderhead, B., Girolami, M., and Lawrence, N. D. Accelerat-
ing Bayesian inference over nonlinear differential equations
with Gaussian processes. In Advances in Neural Information
Processing Systems, pp. 217–224, 2009.

Cao, J. and Zhao, H. Estimating dynamic models for gene regula-
tion networks. Bioinformatics, 24(14):1619–1624, 2008.

Cao, J., Wang, L., and Xu, J. Robust estimation for ordinary
differential equation models. Biometrics, 67(4):1305–1313,
2011.

Chatterji, N. S. and Bartlett, P. L. Alternating minimization for
dictionary learning with random initialization. In Advances in
Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pp. 1994–2003, 2017.

Dattner, I. and Klaassen, C. A. J. Optimal rate of direct estimators
in systems of ordinary differential equations linear in functions
of the parameters. Electronic Journal of Statistics, 9(2):1939–
1973, 2015.

Dondelinger, F., Husmeier, D., Rogers, S., and Filippone, M.
ODE parameter inference using adaptive gradient matching
with Gaussian processes. In Artificial Intelligence and Statistics,
pp. 216–228, 2013.

Girolami, M. Bayesian inference for differential equations. Theo-
retical Computer Science, 408(1):4–16, 2008.

Gorbach, N. S., Bauer, S., and Buhmann, J. M. Scalable varia-
tional inference for dynamical systems. In Advances in Neural
Information Processing Systems, pp. 4809–4818, 2017.

Gugushvili, S. and Klaassen, C. A.
√
n-consistent parameter

estimation for systems of ordinary differential equations: by-
passing numerical integration via smoothing. Bernoulli, 18(3):
1061–1098, 2012.

Himmelblau, D. M., Jones, C. R., and Bischoff, K. B. Determina-
tion of rate constants for complex kinetics models. Industrial &
Engineering Chemistry Fundamentals, 6(4):539–543, 1967.

Hosten, L. A comparative study of short cut procedures for param-
eter estimation in differential equations. Computers & Chemical
Engineering, 3(1-4):117–126, 1979.

Iserles, A. A First Course in the Numerical Analysis of Differ-
ential Equations. Cambridge Texts in Applied Mathematics.
Cambridge University Press, Cambridge, second edition, 2009.

Labbe, R. Kalman and Bayesian filters in Python,
2014. URL https://github.com/rlabbe/
Kalman-and-Bayesian-Filters-in-Python.

Li, Q., Zhou, Y., Liang, Y., and Varshney, P. K. Convergence
analysis of proximal gradient with momentum for nonconvex
optimization. In Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, pp. 2111–2119, 2017.

Li, Y., Liang, Y., and Risteski, A. Recovery guarantee of weighted
low-rank approximation via alternating minimization. In Pro-
ceedings of the 33rd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, pp. 2358–2367, 2016. URL http://jmlr.org/
proceedings/papers/v48/lii16.html.

Liang, H. and Wu, H. Parameter estimation for differential equa-
tion models using a framework of measurement error in regres-
sion models. Journal of the American Statistical Association,
103(484):1570–1583, 2008.

Newville, M., Stensitzki, T., Allen, D. B., and Ingargiola, A. LM-
FIT: Non-linear least-square minimization and curve-fitting for
Python, 2014.

Palais, R. S. and Palais, R. A. Differential Equations, Mechanics,
and Computation. Number 51 in Student Mathematical Library.
American Math. Soc., Providence, RI, 2009.

Parikh, N. and Boyd, S. P. Proximal Algorithms. Foundations and
Trends in Optimization, 1(3):127–239, 2014.

Poyton, A., Varziri, M., McAuley, K., McLellan, P., and Ramsay,
J. Parameter estimation in continuous-time dynamic models
using principal differential analysis. Computers & Chemical
Engineering, 30(4):698–708, 2006.

Ramsay, J. O., Hooker, G., Campbell, D., and Cao, J. Parameter
estimation for differential equations: a generalized smoothing
approach. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 69(5):741–796, 2007.

Sitz, A., Schwarz, U., Kurths, J., and Voss, H. U. Estimation of
parameters and unobserved components for nonlinear systems
from noisy time series. Phys. Rev. E, 66(1):016210, 2002. doi:
10.1103/PhysRevE.66.016210.

Sun, J., Lu, J., Xu, T., and Bi, J. Multi-view sparse co-clustering
via proximal alternating linearized minimization. In Pro-
ceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, pp. 757–
766, 2015. URL http://jmlr.org/proceedings/
papers/v37/sunb15.html.

Varah, J. M. A spline least squares method for numerical parameter
estimation in differential equations. SIAM Journal on Scientific
and Statistical Computing, 3(1):28–46, 1982.

Xu, Y. and Yin, W. A block coordinate descent method for regular-
ized multiconvex optimization with applications to nonnegative
tensor factorization and completion. SIAM J. Imaging Sci-
ences, 6(3):1758–1789, 2013. doi: 10.1137/120887795. URL
https://doi.org/10.1137/120887795.

Yi, X., Caramanis, C., and Sanghavi, S. Alternating min-
imization for mixed linear regression. In Proceedings of
the 31st International Conference on Machine Learning,
ICML 2014, Beijing, China, 21-26 June 2014, pp. 613–
621, 2014. URL http://jmlr.org/proceedings/
papers/v32/yia14.html.

Zhang, Z. and Brand, M. Convergent block coordinate descent
for training Tikhonov regularized deep neural networks. In
Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pp. 1719–1728,
2017.

