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A. Related Work

We now briefly discuss related threads in machine learning.

To the best of our knowledge, there are no reproducibility

experiments directly comparable to ours in the literature.

Dataset Biases. The computer vision community has a

rich history of creating new datasets and discussing their

relative merits, e.g., (Deng et al., 2009; Everingham et al.,

2010; Fei-Fei et al., 2007; Lin et al., 2014; Ponce et al.,

2006; Russakovsky et al., 2015; Torralba and Efros, 2011;

Yao et al., 2007). The paper closest to ours is (Torralba and

Efros, 2011), which studies dataset biases by measuring how

models trained on one dataset generalize to other datasets.

The main difference to our work is that the authors test gen-

eralization across different datasets, where larger changes

in the distribution (and hence larger drops in accuracy) are

expected. In contrast, our experiments explicitly attempt

to reproduce the original data distribution and demonstrate

that even small variations arising in this process can lead to

significant accuracy drops. Moreover, (Torralba and Efros,

2011) do not test on previously unseen data, so their experi-

ments cannot rule out adaptive overfitting.

Transfer Learning From ImageNet. Kornblith et al.

(2018) study how well accuracy on ImageNet transfers to

other image classification datasets. An important difference

from both our work and (Torralba and Efros, 2011) is that

the the ImageNet models are re-trained on the target datasets.

The authors find that better ImageNet models usually per-

form better on the target dataset as well. Similar to (Torralba

and Efros, 2011), these experiments cannot rule out adaptive

overfitting since the authors do not use new data. Moreover,

the experiments do not measure accuracy drops due to small

variations in the data generating process since the models

are evaluated on a different task with an explicit adaptation

step. Interestingly, the authors also find an approximately

linear relationship between ImageNet and transfer accuracy.

Adversarial Examples. While adversarial examples (Big-

gio and Roli, 2018; Szegedy et al., 2013) also show that ex-

isting models are brittle, the perturbations have to be finely

tuned since models are much more robust to random pertur-

bations. In contrast, our results demonstrate that even small,

benign variations in the data sampling process can already

lead to a significant accuracy drop without an adversary.

A natural question is whether adversarially robust models

are also more robust to the distribution shifts observed in

our work. As a first data point, we tested the common ℓ∞-

robustness baseline from (Madry et al., 2018) for CIFAR-10.

Interestingly, the accuracy numbers of this model fall almost

exactly on the linear fit given by the other models in our

testbed. Hence ℓ∞-robustness does not seem to offer bene-

fits for the distribution shift arising from our reproducibility

experiment. However, we note that more forms of adversar-

ial robustness such as spatial transformations or color space

changes have been studied (Engstrom et al., 2017; Fawzi

and Frossard, 2015; Hosseini and Poovendran, 2018; Kan-

bak et al., 2018; Xiao et al., 2018). Testing these variants is

an interesting direction for future work.

Non-Adversarial Image Perturbations. Recent work

also explores less adversarial changes to the input, e.g.,

(Geirhos et al., 2018; Hendrycks and Dietterich, 2019). In

these papers, the authors modify the ImageNet validation

set via well-specified perturbations such as Gaussian noise,

a fixed rotation, or adding a synthetic snow-like pattern.

Standard ImageNet models then achieve significantly lower

accuracy on the perturbed examples than on the unmodified

validation set. While this is an interesting test of robustness,

the mechanism underlying the accuracy drops is signifi-

cantly different from our work. The aforementioned papers

rely on an intentional, clearly-visible, and well-defined per-

turbation of existing validation images. Moreover, some

of the interventions are quite different from the ImageNet

validation set (e.g., ImageNet contains few images of falling

snow). In contrast, our experiments use new images and

match the distribution of the existing validation set as closely

as possible. Hence it is unclear what properties of our new

images cause the accuracy drops.
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B. A Model for the Linear Fit

Finally, we briefly comment on the striking linear relation-

ship between original and new test accuracies that we ob-

serve in all our experiments (for instance, see Figure 1 in

the introduction or Figures 12 and 13 in the appendix). To

illustrate how this phenomenon could arise, we present a

simple data model where a small modification of the data

distribution can lead to significant changes in accuracy, yet

the relative order of models is preserved as a linear rela-

tionship. We emphasize that this model should not be seen

as the true explanation. Instead, we hope it can inform

future experiments that explore natural variations in test

distributions.

First, as we describe in Appendix D.2, we find that we

achieve better fits to our data under a probit scaling of the

accuracies. Over a wide range from 21% to 83% (all models

in our ImageNet testbed), the accuracies on the new test set,

αnew, are related to the accuracies on the original test set,

αorig, by the relationship

Φ−1(αnew) = u · Φ−1(αorig) + v

where Φ is the Gaussian CDF, and u and v are scalars.

The probit scale is in a sense more natural than a linear

scale as the accuracy numbers are probabilities. When we

plot accuracies on a probit scale in Figures 6 and 13, we

effectively visualize Φ−1(α) instead of α.

We now provide a simple plausible model where the original

and new accuracies are related linearly on a probit scale.

Assume that every example i has a scalar “difficulty” τi ∈ R

that quantifies how easy it is to classify. Further assume the

probability of a model j correctly classifying an image with

difficulty τ is given by an increasing function ζj(τ). We

show that for restricted classes of difficulty functions ζj , we

find a linear relationship between average accuracies after

distribution shifts.

To be specific, we focus on the following parameterization.

Assume the difficulty distribution of images in a test set

follows a normal distribution with mean µ and variance σ2.

Further assume that

ζj(τ) = Φ(sj − τ) ,

where Φ : R → (0, 1) is the CDF of a standard normal

distribution, and sj is the “skill” of model j. Models with

higher skill have higher classification accuracy, and images

with higher difficulty lead to smaller classification accuracy.

Again, the choice of Φ here is somewhat arbitrary: any sig-

moidal function that maps (−∞,+∞) to (0, 1) is plausible.

But using the Gaussian CDF yields a simple calculation

illustrating the linear phenomenon.

Using the above notation, the accuracy αj,µ,σ of a model j

on a test set with difficulty mean µ and variance σ is then

given by

αj,µ,σ = E
τ∼N (µ,σ)

[Φ(sj − τ)] .

We can expand the CDF into an expectation and combine

the two expectations by utilizing the fact that a linear com-

bination of two Gaussians is again Gaussian. This yields:

αj,µ,σ = Φ

(

sj − µ√
σ2 + 1

)

.

On a probit scale, the quantities we plot are given by

α̃j,µ,σ = Φ−1(αj,µ,σ) =
sj − µ√
σ2 + 1

.

Next, we consider the case where we have multiple mod-

els and two test sets with difficulty parameters µk and σk

respectively for k ∈ {1, 2}. Then α̃j,2, the probit-scaled

accuracy on the second test set, is a linear function of the

accuracy on the first test set, α̃j,1:

α̃j,2 = u · α̃j,1 + v ,

with

u =

√

σ2
1 + 1

√

σ2
2 + 1

and v =
µ1 − µ2
√

σ2
2 + 1

.

Hence, we see that the Gaussian difficulty model above

yields a linear relationship between original and new test

accuracy in the probit domain. While the Gaussian assump-

tions here made the calculations simple, a variety of dif-

ferent simple classes of ζj will give rise to the same linear

relationship between the accuracies on two different test

sets.
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C. Details of the CIFAR-10 Experiments

We first present our reproducibility experiment for the

CIFAR-10 image classification dataset (Krizhevsky, 2009).

There are multiple reasons why CIFAR-10 is an important

example for measuring how well current models generalize

to unseen data.

• CIFAR-10 is one of the most widely used datasets in

machine learning and serves as a test ground for many

image classification methods. A concrete measure of

popularity is the fact that CIFAR-10 was the second

most common dataset in NIPS 2017 (after MNIST)

(Hamner, 2017).

• The dataset creation process for CIFAR-10 is transpar-

ent and well documented (Krizhevsky, 2009). Impor-

tantly, CIFAR-10 draws from the larger Tiny Images

repository that has more fine-grained labels than the

ten CIFAR-10 classes (Torralba et al., 2008). This en-

ables us to minimize various forms of distribution shift

between the original and new test set.

• CIFAR-10 poses a difficult enough problem so that

the dataset is still the subject of active research (e.g.,

see (Cubuk et al., 2018; DeVries and Taylor, 2017;

Gastaldi, 2017; Real et al., 2018; Yamada et al., 2018;

Zoph et al., 2018)). Moreover, there is a wide range

of classification models that achieve significantly dif-

ferent accuracy scores. Since code for these models

has been published in various open source repositories,

they can be treated as independent of our new test set.

Compared to ImageNet, CIFAR-10 is significantly smaller

both in the number of images and in the size of each im-

age. This makes it easier to conduct various follow-up

experiments that require training new classification models.

Moreover, the smaller size of CIFAR-10 also means that the

dataset has been accessible to more researchers for a longer

time. Hence it is plausible that CIFAR-10 experienced more

test set adaptivity than ImageNet, where it is much more

costly to tune hyperparameters.

Before we describe how we created our new test set, we

briefly review relevant background on CIFAR-10 and Tiny

Images.

Tiny Images. The dataset contains 80 million RGB color

images with resolution 32 × 32 pixels and was released in

2007 (Torralba et al., 2008). The images are organized by

roughly 75,000 keywords that correspond to the non-abstract

nouns from the WordNet database (Miller, 1995) Each key-

word was entered into multiple Internet search engines to

collect roughly 1,000 to 2,500 images per keyword. It is

important to note that Tiny Images is a fairly noisy dataset.

Many of the images filed under a certain keyword do not

clearly (or not at all) correspond to the respective keyword.

CIFAR-10. The CIFAR-10 dataset was created as a

cleanly labeled subset of Tiny Images for experiments with

multi-layer networks. To this end, the researchers assem-

bled a dataset consisting of ten classes with 6,000 images

per class, which was published in 2009 (Krizhevsky, 2009).

These classes are airplane, automobile, bird, cat,

deer, dog, frog, horse, ship, and truck. The stan-

dard train / test split is class-balanced and contains 50,000

training images and 10,000 test images.

The CIFAR-10 creation process is well-documented

(Krizhevsky, 2009). First, the researchers assembled a set of

relevant keywords for each class by using the hyponym rela-

tions in WordNet (Miller, 1995) (for instance, “Chihuahua”

is a hyponym of “dog”). Since directly using the correspond-

ing images from Tiny Images would not give a high quality

dataset, the researchers paid student annotators to label the

images from Tiny Images. The labeler instructions can be

found in Appendix C of (Krizhevsky, 2009) and include a

set of specific guidelines (e.g., an image should not contain

two object of the corresponding class). The researchers

then verified the labels of the images selected by the annota-

tors and removed near-duplicates from the dataset via an ℓ2
nearest neighbor search.

C.1. Dataset Creation Methodology

Our overall goal was to create a new test set that is as close

as possible to being drawn from the same distribution as the

original CIFAR-10 dataset. One crucial aspect here is that

the CIFAR-10 dataset did not exhaust any of the Tiny Image

keywords it is drawn from. So by collecting new images

from the same keywords as CIFAR-10, our new test set can

match the sub-class distribution of the original dataset.

Understanding the Sub-Class Distribution. As the first

step, we determined the Tiny Image keyword for every im-

age in the CIFAR-10 dataset. A simple nearest-neighbor

search sufficed since every image in CIFAR-10 had an exact

duplicate (ℓ2-distance 0) in Tiny Images. Based on this in-

formation, we then assembled a list of the 25 most common

keywords for each class. We decided on 25 keywords per

class since the 250 total keywords make up more than 95%

of CIFAR-10. Moreover, we wanted to avoid accidentally

creating a harder dataset with infrequent keywords that the

classifiers had little incentive to learn based on the original

CIFAR-10 dataset.

The keyword distribution can be found in Appendix C.3.1.

Inspecting this list reveals the importance of matching the

sub-class distribution. For instance, the most common key-

word in the airplane class is stealth_bomber and

not a more common civilian type of airplane. In addition,

the third most common keyword for the airplane class is

stealth_fighter. Both types of planes are highly dis-

tinctive. There are more examples where certain sub-classes
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are considerably different. For instance, trucks from the key-

word fire_truck are mostly red, which is quite different

from pictures for dump_truck or other keywords.

Collecting New Images. After determining the keywords,

we collected corresponding images. To simulate the student

/ researcher split in the original CIFAR-10 collection pro-

cedure, we introduced a similar split among two authors

of this paper. Author A took the role of the original stu-

dent annotators and selected new suitable images for the

250 keywords. In order to ensure a close match between

the original and new images for each keyword, we built a

user interface that allowed Author A to first look through

existing CIFAR-10 images for a given keyword and then

select new candidates from the remaining pictures in Tiny

Images. Author A followed the labeling guidelines in the

original instruction sheet (Krizhevsky, 2009). The number

of images Author A selected per keyword was so that our

final dataset would contain between 2,000 and 4,000 images.

We decided on 2,000 images as a target number for two

reasons:

• While the original CIFAR-10 test set contains 10,000

images, a test set of size 2,000 is already sufficient

for a fairly small confidence interval. In particular, a

conservative confidence interval (Clopper-Pearson at

confidence level 95%) for accuracy 90% has size about

±1% with n = 2,000 (to be precise, [88.6%, 91.3%]).
Since we considered a potential discrepancy between

original and new test accuracy only interesting if it is

significantly larger than 1%, we decided that a new test

set of size 2,000 was large enough for our study.

• As with very infrequent keywords, our goal was to

avoid accidentally creating a harder test set. Since

some of the Tiny Image keywords have only a limited

supply of remaining adequate images, we decided that

a smaller target size for the new dataset would reduce

bias to include images of more questionable difficulty.

After Author A had selected a set of about 9,000 candidate

images, Author B adopted the role of the researchers in the

original CIFAR-10 dataset creation process. In particular,

Author B reviewed all candidate images and removed im-

ages that were unclear to Author B or did not conform to the

labeling instructions in their opinion (some of the criteria

are subjective). In the process, a small number of keywords

did not have enough images remaining to reach the n =
2,000 threshold. Author B then notified Author A about

the respective keywords and Author A selected a further set

of images for these keywords. In this process, there was

only one keyword where Author A had to carefully examine

all available images in Tiny Images. This keyword was

alley_cat and comprises less than 0.3% of the overall

CIFAR-10 dataset.

Final Assembly. After collecting a sufficient number of

high-quality images for each keyword, we sampled a ran-

dom subset from our pruned candidate set. The sampling

procedure was such that the keyword-level distribution of

our new dataset matches the keyword-level distribution of

CIFAR-10 (see Appendix C.3.1). In the final stage, we again

proceeded similar to the original CIFAR-10 dataset creation

process and used ℓ2-nearest neighbors to filter out near dupli-

cates. In particular, we removed near-duplicates within our

new dataset and also images that had a near duplicate in the

original CIFAR-10 dataset (train or test). The latter aspect

is particularly important since our reproducibility study is

only interesting if we evaluate on truly unseen data. Hence

we manually reviewed the top-10 nearest neighbors for each

image in our new test set. After removing near-duplicates

in our dataset, we re-sampled the respective keywords until

this process converged to our final dataset.

Figure 3b shows a random subset of images from the original

and our new test set.

We remark that we did not run any classifiers on our new

dataset during the data collection phase of our study. In

order to ensure that the new data does not depend on the

existing classifiers, it is important to strictly separate the

data collection phase from the following evaluation phase.

C.2. Follow-up Hypotheses

Since the gap between original and new accuracy is con-

cerningly large, we investigated multiple hypotheses for

explaining this gap.

C.2.1. STATISTICAL ERROR

A first natural guess is that the gap is simply due to statistical

fluctuations. But as noted before, the sample size of our new

test set is large enough so that a 95% confidence interval has

size about ±1.2%. Since a 95% confidence interval for the

original CIFAR-10 test accuracy is even smaller (roughly

±0.6% for 90% classification accuracy and ±0.3% for 97%

classification accuracy), we can rule out statistical error as

the main explanation.

C.2.2. DIFFERENCES IN NEAR-DUPLICATE REMOVAL

As mentioned in Section C.1, the final step of both the

original CIFAR-10 and our dataset creation procedure is to

remove near-duplicates. While removing near-duplicates

between our new test set and the original CIFAR-10 dataset,

we noticed that the original test set contained images that

we would have ruled out as near-duplicates. A large number

of near-duplicates between CIFAR-10 train and test, com-

bined with our more stringent near-duplicate removal, could

explain some of the accuracy drop. Indeed, we found about

800 images in the original CIFAR-10 test set that we would

classify as near-duplicates (8% of the entire test set). More-
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(a) Test set A (b) Test set B

Figure 3. Randomly selected images from the original and new CIFAR-10 test sets. Each grid contains two images for each of the ten

classes. The following footnote reveals which of the two grids corresponds to the new test set.8

over, most classifiers have accuracy between 99% and 100%

on these near-duplicates (recall that most models achieve

100% training error). However, the following calculation

shows that the near-duplicates can explain at most 1% of

the observed difference.

For concreteness, we consider a model with 93% original

test set accuracy such as a common VGG or ResNet archi-

tecture. Let acctrue be the “true” accuracy of the model on

test images that are not near-duplicates, and let accnd be the

accuracy on near-duplicates. Then for 8% near-duplicates,

the overall accuracy is given by

acc = 0.92 · acctrue + 0.08 · accnd .

Using acc = 0.93, accnd = 1.0, and solving for acctrue then

yields acctrue ≈ 0.924. So the accuracy on original test

images that are not near-duplicates is indeed lower, but only

by a small amount (0.6%). This is in contrast to the 8% -

9% accuracy drop that VGG and ResNet models with 93%

original accuracy see in our experiments.

For completeness, we describe our process for finding near

duplicates in detail. For every test image, we visually in-

spected the top-10 nearest neighbors in both ℓ2-distance and

the SSIM (structural similarity) metric. We compared the

original test set to the CIFAR-10 training set, and our new

test set to both the original training and test sets. We con-

sider an image pair as near-duplicates if both images have

the same object in the same pose. We include images that

have different zoom, color scale, stretch in the horizontal

or vertical direction, or small shifts in vertical or horizontal

position. If the object was rotated or in a different pose, we

did not include it as a near-duplicate.

C.2.3. HYPERPARAMETER TUNING

Another conjecture is that we can recover some of the miss-

ing accuracy by re-tuning hyperparameters of a model. To

this end, we performed a grid search over multiple param-

eters of a VGG model. We selected three standard hy-

perparameters known to strongly influence test set perfor-

mance: initial learning rate, dropout, and weight decay.

The vgg16_keras architecture uses different amounts of

dropout across different layers of the network, so we chose

to tune a multiplicative scaling factor for the amount of

dropout. This keeps the ratio of dropout across different

layers constant.

We initialized a hyperparameter configuration from values

tuned to the original test set (learning rate 0.1, dropout ratio

1, weight decay 5× 10−4), and performed a grid search

across the following values:

• Learning rate in {0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8}.

• Dropout ratio in {0.5, 0.75, 1, 1.25, 1.75}.

• Weight decay in {5× 10−5, 1× 10−4, 5× 10−4,

1× 10−3, 5× 10−3}.

We ensured that the best performance was never at an ex-

treme point of any range we tested for an individual hyper-

parameter. Overall, we did not find a hyperparameter setting

with a significantly better accuracy on the new test set (the

biggest improvement was from 85.3% to 85.8%).

C.2.4. VISUALLY INSPECTING HARD IMAGES

It is also possible that we accidentally created a more dif-

ficult test set by including a set of “harder” images. To

explore this question, we visually inspected the set of im-

ages that most models incorrectly classified. Figure 4 in

Appendix C.3.5 shows examples of the hard images in our

new test set that no model correctly classified. We find that

all the new images are valid images that are recognizable to

humans.

8Test Set A is the new test set and Test Set B is the original test
set.
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C.2.5. HUMAN ACCURACY COMPARISON

The visual inspection of hard images in the previous section

is one way to compare the original and new test sets. How-

ever, our conclusion may be biased since we have created

the new test set ourselves. To compare the relative hardness

of the two test sets more objectively, we also conducted a

small experiment to measure human accuray on the two test

sets.9 The goal of the experiment was to measure if human

accuracy is significantly different on the original and new

test sets.

Since we conjectured that our new test set included par-

ticularly hard images, we focused our experiment on the

approximately 5% hardest images in both test sets. Here,

“hardness” is defined by how many models correctly clas-

sified an image. After rounding to include all images that

were classified by the same number of models, we obtained

500 images from the original test set and 115 images from

our new test set.

We recruited nine graduate students from three different

research groups in the Electrical Engineering & Computer

Sciences Department at UC Berkeley. We wrote a simple

user interface that allowed the participants to label images

with one of the ten CIFAR-10 classes. To ensure that the

participants did not know which dataset an image came

from, we presented the images in random order.

Table 3 shows the results of our experiment. We find that

four participants performed better on the original test set

and five participants were better on our new test set. The

average difference is -0.8%, i.e., the participants do not see

a drop in average accuracy on this subset of original and

new test images. This suggests that our new test set is not

significantly harder for humans. However, we remark that

our results here should only be seen as a preliminary study.

Understanding human accuracy on CIFAR-10 in more detail

will require further experiments.

C.2.6. TRAINING ON PART OF OUR NEW TEST SET

If our new test set distribution is significantly different from

the original CIFAR-10 distribution, retraining on part of our

new test set (plus the original training data) may improve

the accuracy on the held-out fraction of our new test set.

We conducted this experiment by randomly drawing a class-

balanced split containing about 1,000 images from the new

test set. We then added these images to the full CIFAR-

10 training set and retrained the vgg16_keras model.

After training, we tested the model on the remaining half

of the new test set. We repeated this experiment twice with

different randomly selected splits from our test set, obtaining

accuracies of 85.1% and 85.4% (compared to 84.9% without

9Use of this data was permitted by the Berkelely Committee
for Protection of Human Subjects (CPHS).

the extra training data10). This provides evidence that there

is no large distribution shift between our new test set and

the original CIFAR-10 dataset, or that the model is unable

to learn the modified distribution.

C.2.7. CROSS-VALIDATION

Cross-validation can be a more reliable way of measuring

a model’s generalization ability than using only a single

train / test split. Hence we tested if cross-validation on the

original CIFAR-10 dataset could predict a model’s error

on our new test set. We created cross-validation data by

randomly dividing the training set into 5 class-balanced

splits. We then randomly shuffled together 4 out of the 5

training splits with the original test set. The leftover held-out

split from the training set then became the new test set.

We retrained the models vgg_15_BN_64,

wide_resnet_28_10, and

shake_shake_64d_cutout on each of the 5

new datasets we created. The accuracies are reported in

Table 4. The accuracies on the cross-validation splits did

not differ much from the accuracy on the original test

set. The variation among the cross-validation splits is

significantly smaller than the drop on our new test set.

C.2.8. TRAINING A DISCRIMINATOR FOR ORIGINAL VS.

NEW TEST SET

Our main hypothesis for the accuracy drop is that small vari-

ations in the test set creation process suffice to significantly

reduce a model’s accuracy. To test whether these variations

could be detected by a convolutional network, we inves-

tigated whether a discriminator model could distinguish

between the two test sets.

We first created a training set consisting of 3, 200 images

(1,600 from the original test set and 1,600 from our new test

set) and a test set of 800 images (consisting of 400 images

from original and new test set each). Each image had a

binary label indicating whether it came from the original or

new test set. Additionally, we ensured that that both datasets

were class balanced.

We then trained resnet_32 and resnet_110 models

for 160 epochs using a standard SGD optimizer to learn a

binary classifier between the two datasets. We conducted

two variants of this experiment: in one variant, we traind

the model from scratch. In the other variant, we started with

a model pre-trained on the regular CIFAR-10 classification

task.

Our results are summarized in Table 5. Overall we found

10This number is slightly lower than the accuracy of
vgg16_keras on our new test set in Table 11, but still within
the 95% confidence interval [83.6, 86.8]. Hence we conjecture
that the difference is due to the random fluctuation arising from
randomly initializing the model.
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Human Accuracy (%)

Original Test Set New Test Set Gap

Participant 1 85 [81.6, 88.0] 83 [74.2, 89.8] 2

Participant 2 83 [79.4, 86.2] 81 [71.9, 88.2] 2

Participant 3 82 [78.3, 85.3] 78 [68.6, 85.7] 4

Participant 4 79 [75.2, 82.5] 84 [75.3, 90.6] -5

Participant 5 76 [72.0, 79.7] 77 [67.5, 84.8] -1

Participant 6 75 [71.0, 78.7] 73 [63.2, 81.4] 2

Participant 7 74 [69.9, 77.8] 79 [69.7, 86.5] -5

Participant 8 74 [69.9, 77.8] 76 [66.4, 84.0] -2

Participant 9 67 [62.7, 71.1] 71 [61.1, 79.6] -4

Table 3. Human accuracy on the “hardest” images in the original and our new CIFAR-10 test set. We ordered the images by number of

incorrect classifications from models in our testbed and then selected the top 5% images from the original and new test set (500 images

from the original test set, 115 images from our new test set). The results show that on average humans do not see a drop in accuracy on

this subset of images.

Model Accuracy (%)

Dataset vgg_15_BN_64 wide_resnet_28_10 shake_shake_64d_cutout

Original Test Set 93.6 [93.1, 94.1] 95.7 [95.3, 96.1] 97.1 [96.8, 97.4]

Split 1 93.9 [93.4, 94.3] 96.2 [95.8, 96.6] 97.2 [96.9, 97.5]

Split 2 93.8 [93.3, 94.3] 96.0 [95.6, 96.4] 97.3 [97.0, 97.6]

Split 3 94.0 [93.5, 94.5] 96.4 [96.0, 96.8] 97.4 [97.1, 97.7]

Split 4 94.0 [93.5, 94.5] 96.2 [95.8, 96.6] 97.4 [97.1, 97.7]

Split 5 93.5 [93.0, 94.0] 96.5 [96.1, 96.9] 97.4 [97.1, 97.7]

New Test Set 84.9 [83.2, 86.4] 89.7 [88.3, 91.0] 93.0 [91.8, 94.1]

Table 4. Model accuracies on cross-validation splits for the original CIFAR-10 data. The difference in cross-validation accuracies is

significantly smaller than the drop to the new test set.

that the resulting models could not discriminate well be-

tween the original and our new test set: the best accuracy

we obtained is 53.1%.

C.2.9. AN EXACTLY CLASS-BALANCED TEST SET

The top 25 keywords of each class in CIFAR-10 capture

approximately 95% of the dataset. However, the remaining

5% of the dataset are skewed towards the class ship. As a

result, our new dataset was not exactly class-balanced and

contained only 8% images of class ship (as opposed to

10% in the original test set).

To measure whether this imbalance affected the acccuracy

scores, we created an exactly class-balanced version of our

new test set with 2,000 images (200 per class). In this ver-

sion, we selected the top 50 keywords in each class and

computed a fractional number of images for each keyword.

We then rounded these numbers so that images for keywords

with the largest fractional part were added first. The result-

ing model accuracies can be found in Table 12 (Appendix

C.3.4). Models with lower original accuracies achieve a

small accuracy improvement on the exactly class-balanced

test set (around 0.3%), but the accuracy drop of the best-

performing model remains unchanged.

C.3. Additional Figures, Tables, and Lists

In this appendix we provide large figures etc. that did not

fit into the preceding sections about our CIFAR-10 experi-

ments.

C.3.1. KEYWORD DISTRIBUTION IN CIFAR-10

The sub-tables in Table 6 show the keyword distribution for

each of the ten classes in the original CIFAR-10 test set and

our new test set.
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Model Discriminator Accuracy (%) Discriminator Accuracy (%)

random initialization pre-trained

resnet_32 50.1 [46.6, 53.6] 52.9 [49.4, 56.4]

resnet_110 50.3 [46.7, 53.8] 53.1 [49.6, 56.6]

Table 5. Accuracies for discriminator models trained to distinugish between the original and new CIFAR-10 test sets. The models were

initialized either randomly or using a model pre-trained on the original CIFAR-10 dataset. Although the models performed slightly better

than random chance, the confidence intervals (95% Clopper Pearson) still overlap with 50% accuracy.

Table 6. Distribution of the top 25 keywords in each class for the new and original test set.

Frog

New Original

bufo_bufo 0.64% 0.63%

leopard_frog 0.64% 0.64%

bufo_viridis 0.59% 0.57%

rana_temporaria 0.54% 0.53%

bufo 0.49% 0.47%

bufo_americanus 0.49% 0.46%

toad 0.49% 0.46%

green_frog 0.45% 0.44%

rana_catesbeiana 0.45% 0.43%

bufo_marinus 0.45% 0.43%

bullfrog 0.45% 0.42%

american_toad 0.45% 0.43%

frog 0.35% 0.35%

rana_pipiens 0.35% 0.32%

toad_frog 0.30% 0.30%

spadefoot 0.30% 0.27%

western_toad 0.30% 0.26%

grass_frog 0.30% 0.27%

pickerel_frog 0.25% 0.24%

spring_frog 0.25% 0.22%

rana_clamitans 0.20% 0.20%

natterjack 0.20% 0.17%

crapaud 0.20% 0.18%

bufo_calamita 0.20% 0.18%

alytes_obstetricans 0.20% 0.16%

Cat

New Original

tabby_cat 1.78% 1.78%

tabby 1.53% 1.52%

domestic_cat 1.34% 1.33%

cat 1.24% 1.25%

house_cat 0.79% 0.79%

felis_catus 0.69% 0.69%

mouser 0.64% 0.63%

felis_domesticus 0.54% 0.50%

true_cat 0.49% 0.47%

tomcat 0.49% 0.49%

alley_cat 0.30% 0.30%

felis_bengalensis 0.15% 0.11%

nougat 0.10% 0.05%

gray 0.05% 0.03%

manx_cat 0.05% 0.04%

fissiped 0.05% 0.03%

persian_cat 0.05% 0.03%

puss 0.05% 0.05%

catnap 0.05% 0.03%

tiger_cat 0.05% 0.03%

black_cat 0.05% 0.04%

bedspread 0.00% 0.02%

siamese_cat 0.00% 0.02%

tortoiseshell 0.00% 0.02%

kitty-cat 0.00% 0.02%

Dog

New Original

pekingese 1.24% 1.22%

maltese 0.94% 0.93%

puppy 0.89% 0.87%

chihuahua 0.84% 0.81%

dog 0.69% 0.67%

pekinese 0.69% 0.66%

toy_spaniel 0.59% 0.60%

mutt 0.49% 0.47%

mongrel 0.49% 0.49%

maltese_dog 0.45% 0.43%

toy_dog 0.40% 0.36%

japanese_spaniel 0.40% 0.38%

blenheim_spaniel 0.35% 0.35%

english_toy_spaniel 0.35% 0.31%

domestic_dog 0.35% 0.32%

peke 0.30% 0.28%

canis_familiaris 0.30% 0.27%

lapdog 0.30% 0.30%

king_charles_spaniel 0.20% 0.17%

toy 0.15% 0.13%

feist 0.10% 0.06%

pet 0.10% 0.07%

cavalier 0.10% 0.05%

canine 0.05% 0.04%

cur 0.05% 0.04%

Deer

New Original

elk 0.79% 0.77%

capreolus_capreolus 0.74% 0.71%

cervus_elaphus 0.64% 0.61%

fallow_deer 0.64% 0.63%

roe_deer 0.59% 0.60%

deer 0.59% 0.60%

muntjac 0.54% 0.51%

mule_deer 0.54% 0.51%

odocoileus_hemionus 0.49% 0.50%

fawn 0.49% 0.49%

alces_alces 0.40% 0.36%

wapiti 0.40% 0.36%

american_elk 0.40% 0.35%

red_deer 0.35% 0.33%

moose 0.35% 0.35%

rangifer_caribou 0.25% 0.24%

rangifer_tarandus 0.25% 0.24%

caribou 0.25% 0.23%

sika 0.25% 0.22%

woodland_caribou 0.25% 0.21%

dama_dama 0.20% 0.19%

cervus_sika 0.20% 0.16%

barking_deer 0.20% 0.18%

sambar 0.15% 0.15%

stag 0.15% 0.13%
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Bird

New Original

cassowary 0.89% 0.85%

bird 0.84% 0.84%

wagtail 0.74% 0.74%

ostrich 0.69% 0.68%

struthio_camelus 0.54% 0.51%

sparrow 0.54% 0.52%

emu 0.54% 0.51%

pipit 0.49% 0.47%

passerine 0.49% 0.50%

accentor 0.49% 0.49%

honey_eater 0.40% 0.37%

dunnock 0.40% 0.37%

alauda_arvensis 0.30% 0.26%

nandu 0.30% 0.27%

prunella_modularis 0.30% 0.30%

anthus_pratensis 0.30% 0.28%

finch 0.25% 0.24%

lark 0.25% 0.20%

meadow_pipit 0.25% 0.20%

rhea_americana 0.25% 0.21%

flightless_bird 0.15% 0.10%

emu_novaehollandiae 0.15% 0.12%

dromaius_novaehollandiae 0.15% 0.14%

apteryx 0.15% 0.10%

flying_bird 0.15% 0.13%

Ship

New Original

passenger_ship 0.79% 0.78%

boat 0.64% 0.64%

cargo_ship 0.40% 0.37%

cargo_vessel 0.40% 0.39%

pontoon 0.35% 0.31%

container_ship 0.35% 0.31%

speedboat 0.35% 0.32%

freighter 0.35% 0.32%

pilot_boat 0.35% 0.31%

ship 0.35% 0.31%

cabin_cruiser 0.30% 0.29%

police_boat 0.30% 0.25%

sea_boat 0.30% 0.29%

oil_tanker 0.30% 0.29%

pleasure_boat 0.25% 0.21%

lightship 0.25% 0.22%

powerboat 0.25% 0.25%

guard_boat 0.25% 0.20%

dredger 0.25% 0.20%

hospital_ship 0.25% 0.21%

banana_boat 0.20% 0.19%

merchant_ship 0.20% 0.17%

liberty_ship 0.20% 0.15%

container_vessel 0.20% 0.19%

tanker 0.20% 0.18%

Truck

New Original

dump_truck 0.89% 0.89%

trucking_rig 0.79% 0.76%

delivery_truck 0.64% 0.61%

truck 0.64% 0.65%

tipper_truck 0.64% 0.60%

camion 0.59% 0.58%

fire_truck 0.59% 0.55%

lorry 0.54% 0.53%

garbage_truck 0.54% 0.53%

moving_van 0.35% 0.32%

tractor_trailer 0.35% 0.34%

tipper 0.35% 0.30%

aerial_ladder_truck 0.35% 0.34%

ladder_truck 0.30% 0.26%

fire_engine 0.30% 0.27%

dumper 0.30% 0.28%

trailer_truck 0.30% 0.28%

wrecker 0.30% 0.27%

articulated_lorry 0.25% 0.24%

tipper_lorry 0.25% 0.25%

semi 0.20% 0.18%

sound_truck 0.15% 0.12%

tow_truck 0.15% 0.12%

delivery_van 0.15% 0.11%

bookmobile 0.10% 0.10%

Horse

New Original

arabian 1.14% 1.12%

lipizzan 1.04% 1.02%

broodmare 0.99% 0.97%

gelding 0.74% 0.73%

quarter_horse 0.74% 0.72%

stud_mare 0.69% 0.69%

lippizaner 0.54% 0.52%

appaloosa 0.49% 0.45%

lippizan 0.49% 0.46%

dawn_horse 0.45% 0.42%

stallion 0.45% 0.43%

tennessee_walker 0.45% 0.45%

tennessee_walking_horse 0.40% 0.38%

walking_horse 0.30% 0.28%

riding_horse 0.20% 0.20%

saddle_horse 0.20% 0.18%

female_horse 0.15% 0.11%

cow_pony 0.15% 0.11%

male_horse 0.15% 0.14%

buckskin 0.15% 0.13%

horse 0.10% 0.08%

equine 0.10% 0.08%

quarter 0.10% 0.07%

cavalry_horse 0.10% 0.09%

thoroughbred 0.10% 0.06%
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Airplane

New Original

stealth_bomber 0.94% 0.92%

airbus 0.89% 0.89%

stealth_fighter 0.79% 0.80%

fighter_aircraft 0.79% 0.76%

biplane 0.74% 0.74%

attack_aircraft 0.69% 0.67%

airliner 0.64% 0.61%

jetliner 0.59% 0.56%

monoplane 0.54% 0.55%

twinjet 0.54% 0.52%

dive_bomber 0.54% 0.52%

jumbo_jet 0.49% 0.47%

jumbojet 0.35% 0.35%

propeller_plane 0.30% 0.28%

fighter 0.20% 0.20%

plane 0.20% 0.15%

amphibious_aircraft 0.20% 0.20%

multiengine_airplane 0.15% 0.14%

seaplane 0.15% 0.14%

floatplane 0.10% 0.05%

multiengine_plane 0.10% 0.06%

reconnaissance_plane 0.10% 0.09%

airplane 0.10% 0.08%

tail 0.10% 0.05%

joint 0.05% 0.04%

Automobile

New Original

coupe 1.29% 1.26%

convertible 1.19% 1.18%

station_wagon 0.99% 0.98%

automobile 0.89% 0.90%

car 0.84% 0.81%

auto 0.84% 0.83%

compact_car 0.79% 0.76%

shooting_brake 0.64% 0.63%

estate_car 0.59% 0.59%

wagon 0.54% 0.51%

police_cruiser 0.45% 0.45%

motorcar 0.40% 0.40%

taxi 0.20% 0.17%

cruiser 0.15% 0.13%

compact 0.15% 0.11%

beach_wagon 0.15% 0.13%

funny_wagon 0.10% 0.05%

gallery 0.10% 0.07%

cab 0.10% 0.07%

ambulance 0.10% 0.07%

door 0.00% 0.03%

ford 0.00% 0.03%

opel 0.00% 0.03%

sport_car 0.00% 0.03%

sports_car 0.00% 0.03%
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C.3.2. FULL LIST OF MODELS EVALUATED ON

CIFAR-10

The following list contains all models we evaluated on

CIFAR-10 with references and links to the corresponding

source code.

1. autoaug_pyramid_net (Cubuk et al., 2018; Han

et al., 2017) https://github.com/tensorf

low/models/tree/master/research/au

toaugment

2. autoaug_shake_shake_112 (Cubuk et al.,

2018; Gastaldi, 2017) https://github.com/t

ensorflow/models/tree/master/resea

rch/autoaugment

3. autoaug_shake_shake_32 (Cubuk et al., 2018;

Gastaldi, 2017) https://github.com/tenso

rflow/models/tree/master/research/

autoaugment

4. autoaug_shake_shake_96 (Cubuk et al., 2018;

Gastaldi, 2017) https://github.com/tenso

rflow/models/tree/master/research/

autoaugment

5. autoaug_wrn (Cubuk et al., 2018; Zagoruyko and

Komodakis, 2016) https://github.com/ten

sorflow/models/tree/master/research/

autoaugment

6. cudaconvnet (Krizhevsky et al., 2012) https:

//github.com/akrizhevsky/cuda-conv

net2

7. darc (Kawaguchi et al., 2017) http://lis.csai

l.mit.edu/code/gdl.html

8. densenet_BC_100_12 (Huang et al., 2017) http

s://github.com/hysts/pytorch_image

_classification/

9. nas (Zoph et al., 2018) https://github.com/t

ensorflow/models/blob/master/resea

rch/slim/nets/nasnet/nasnet.py#L32

10. pyramidnet_basic_110_270 (Han et al., 2017)

https://github.com/hysts/pytorch_i

mage_classification/

11. pyramidnet_basic_110_84 (Han et al., 2017)

https://github.com/hysts/pytorch_i

mage_classification/

12. random_features_256k_aug (Coates et al.,

2011) https://github.com/modestyacht

s/nondeep Random 1 layer convolutional network

with 256k filters sampled from image patches, patch

size = 6, pool size 15, pool stride 6, and horizontal flip

data augmentation.

13. random_features_256k (Coates et al., 2011) ht

https://github.com/tensorflow/models/tree/master/research/autoaugment
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tps://github.com/modestyachts/nond

eep Random 1 layer convolutional network with 256k

filters sampled from image patches, patch size = 6,

pool size 15, pool stride 6.

14. random_features_32k_aug (Coates et al.,

2011) https://github.com/modestyacht

s/nondeep Random 1 layer convolutional network

with 32k filters sampled from image patches, patch

size = 6, pool size 15, pool stride 6, and horizontal flip

data augmentation.

15. random_features_32k (Coates et al., 2011) Ran-

dom 1 layer convolutional network with 32k filters

sampled from image patches, patch size = 6, pool size

15, pool stride 16.

16. resnet_basic_32 (He et al., 2016a) https://

github.com/hysts/pytorch_image_cla

ssification/

17. resnet_basic_44 (He et al., 2016a) https://

github.com/hysts/pytorch_image_cla

ssification/

18. resnet_basic_56 (He et al., 2016a) https://

github.com/hysts/pytorch_image_cla

ssification/

19. resnet_basic_110 (He et al., 2016a) https:

//github.com/hysts/pytorch_image_c

lassification/

20. resnet_preact_basic_110 (He et al., 2016b)

https://github.com/hysts/pytorch_i

mage_classification/

21. resnet_preact_bottleneck_164 (He et al.,

2016b) https://github.com/hysts/pyt

orch_image_classification/

22. resnet_preact_tf (He et al., 2016b) https:

//github.com/tensorflow/models/tree/

b871670b5ae29aaa6cad1b2d4e004882f7

16c466/resnet

23. resnext_29_4x64d (Xie et al., 2017) https://

github.com/hysts/pytorch_image_cla

ssification/

24. resnext_29_8x64d (Xie et al., 2017) https://

github.com/hysts/pytorch_image_cla

ssification/

25. shake_drop (Yamada et al., 2018) https://gi

thub.com/imenurok/ShakeDrop

26. shake_shake_32d (Gastaldi, 2017) https://

github.com/hysts/pytorch_image_cla

ssification/

27. shake_shake_64d (Gastaldi, 2017) https://

github.com/hysts/pytorch_image_cla

ssification/

28. shake_shake_96d (Gastaldi, 2017) https://

github.com/hysts/pytorch_image_cla

ssification/

29. shake_shake_64d_cutout (DeVries and Taylor,

2017; Gastaldi, 2017) https://github.com/h

ysts/pytorch_image_classification/

30. vgg16_keras (Liu and Deng, 2015; Simonyan and

Zisserman, 2014) https://github.com/geifm

any/cifar-vgg

31. vgg_15_BN_64 (Liu and Deng, 2015; Simonyan and

Zisserman, 2014) https://github.com/hysts

/pytorch_image_classification/

32. wide_resnet_tf (Zagoruyko and Komodakis,

2016) https://github.com/tensorflow/

models/tree/b871670b5ae29aaa6cad1b

2d4e004882f716c466/resnet

33. wide_resnet_28_10 (Zagoruyko and Komodakis,

2016) https://github.com/hysts/pytor

ch_image_classification/

34. wide_resnet_28_10_cutout (DeVries and

Taylor, 2017; Zagoruyko and Komodakis, 2016)

https://github.com/hysts/pytorch_i

mage_classification/

C.3.3. FULL RESULTS TABLE

Table 11 contains the detailed accuracy scores for the origi-

nal CIFAR-10 test set and our new test set.

C.3.4. FULL RESULTS TABLE FOR THE EXACTLY

CLASS-BALANCED TEST SET

Table 12 contains the detailed accuracy scores for the origi-

nal CIFAR-10 test set and the exactly class-balanced variant

of our new test set.

C.3.5. HARD IMAGES

Figure 4 shows the images in our new CIFAR-10 test set

that were misclassified by all models in our testbed. As can

be seen in the figure, the class labels for these images are

correct.

D. Details of the ImageNet Experiments

Our results on CIFAR-10 show that current models fail to

reliably generalize in the presence of small variations in

the data distribution. One hypothesis is that the accuracy

drop stems from the limited nature of the CIFAR-10 dataset.

Compared to other datasets, CIFAR-10 is relatively small,

both in terms of image resolution and the number of images

in the dataset. Since the CIFAR-10 models are only exposed

to a constrained visual environment, they may be unable to
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Table 11. Model accuracy on the original CIFAR-10 test set and our new test set. ∆ Rank is the relative difference in the ranking from the

original test set to the new test set. For example, ∆Rank = −2 means that a model dropped by two places on the new test set compared to

the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space constraints, references for the models can

be found in Appendix C.3.2.

CIFAR-10

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf 98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0

2 autoaug_shake_shake_112_tf98.1 [97.8, 98.4] 93.9 [92.7, 94.9] 4.3 2 0

3 autoaug_shake_shake_96_tf98.0 [97.7, 98.3] 93.7 [92.6, 94.7] 4.3 3 0

4 autoaug_wrn_tf 97.5 [97.1, 97.8] 93.0 [91.8, 94.1] 4.4 4 0

5 autoaug_shake_shake_32_tf97.3 [97.0, 97.6] 92.9 [91.7, 94.0] 4.4 6 -1

6 shake_shake_64d_cutout 97.1 [96.8, 97.4] 93.0 [91.8, 94.1] 4.1 5 1

7 shake_shake_26_2x96d_SSI 97.1 [96.7, 97.4] 91.9 [90.7, 93.1] 5.1 9 -2

8 shake_shake_64d 97.0 [96.6, 97.3] 91.4 [90.1, 92.6] 5.6 10 -2

9 wrn_28_10_cutout16 97.0 [96.6, 97.3] 92.0 [90.7, 93.1] 5.0 8 1

10 shake_drop 96.9 [96.5, 97.2] 92.3 [91.0, 93.4] 4.6 7 3

11 shake_shake_32d 96.6 [96.2, 96.9] 89.8 [88.4, 91.1] 6.8 13 -2

12 darc 96.6 [96.2, 96.9] 89.5 [88.1, 90.8] 7.1 16 -4

13 resnext_29_4x64d 96.4 [96.0, 96.7] 89.6 [88.2, 90.9] 6.8 15 -2

14 pyramidnet_basic_110_270 96.3 [96.0, 96.7] 90.5 [89.1, 91.7] 5.9 11 3

15 resnext_29_8x64d 96.2 [95.8, 96.6] 90.0 [88.6, 91.2] 6.3 12 3

16 wrn_28_10 95.9 [95.5, 96.3] 89.7 [88.3, 91.0] 6.2 14 2

17 pyramidnet_basic_110_84 95.7 [95.3, 96.1] 89.3 [87.8, 90.6] 6.5 17 0

18 densenet_BC_100_12 95.5 [95.1, 95.9] 87.6 [86.1, 89.0] 8.0 20 -2

19 nas 95.4 [95.0, 95.8] 88.8 [87.4, 90.2] 6.6 18 1

20 wide_resnet_tf_28_10 95.0 [94.6, 95.4] 88.5 [87.0, 89.9] 6.5 19 1

21 resnet_v2_bottleneck_164 94.2 [93.7, 94.6] 85.9 [84.3, 87.4] 8.3 22 -1

22 vgg16_keras 93.6 [93.1, 94.1] 85.3 [83.6, 86.8] 8.3 23 -1

23 resnet_basic_110 93.5 [93.0, 93.9] 85.2 [83.5, 86.7] 8.3 24 -1

24 resnet_v2_basic_110 93.4 [92.9, 93.9] 86.5 [84.9, 88.0] 6.9 21 3

25 resnet_basic_56 93.3 [92.8, 93.8] 85.0 [83.3, 86.5] 8.3 25 0

26 resnet_basic_44 93.0 [92.5, 93.5] 84.2 [82.6, 85.8] 8.8 29 -3

27 vgg_15_BN_64 93.0 [92.5, 93.5] 84.9 [83.2, 86.4] 8.1 27 0

28 resnetv2_tf_32 92.7 [92.2, 93.2] 84.4 [82.7, 85.9] 8.3 28 0

29 resnet_basic_32 92.5 [92.0, 93.0] 84.9 [83.2, 86.4] 7.7 26 3

30 cudaconvnet 88.5 [87.9, 89.2] 77.5 [75.7, 79.3] 11.0 30 0

31 random_features_256k_aug 85.6 [84.9, 86.3] 73.1 [71.1, 75.1] 12.5 31 0

32 random_features_32k_aug 85.0 [84.3, 85.7] 71.9 [69.9, 73.9] 13.0 32 0

33 random_features_256k 84.2 [83.5, 84.9] 69.9 [67.8, 71.9] 14.3 33 0

34 random_features_32k 83.3 [82.6, 84.0] 67.9 [65.9, 70.0] 15.4 34 0

learn a more reliable representation.

To investigate whether ImageNet models generalize more

reliably, we assemble a new test set for ImageNet. Ima-

geNet captures a much broader variety of natural images: it

contains about 24× more training images than CIFAR-10

with roughly 100× more pixels per image. As a result, Im-

ageNet poses a significantly harder problem and is among

the most prestigious machine learning benchmarks. The

steadily improving accuracy numbers have also been cited

as an important breakthrough in machine learning (Malik,

2017). If popular ImageNet models are indeed more robust

to natural variations in the data (and there is again no adap-

tive overfitting), the accuracies on our new test set should

roughly match the existing accuracies.

Before we proceed to our experiments, we briefly describe

the relevant background concerning the ImageNet dataset.

For more details, we refer the reader to the original Ima-

geNet publications (Deng et al., 2009; Russakovsky et al.,
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Table 12. Model accuracy on the original CIFAR-10 test set and the exactly class-balanced variant of our new test set. ∆ Rank is the

relative difference in the ranking from the original test set to the new test set. For example, ∆Rank = −2 means that a model dropped by

two places on the new test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space

constraints, references for the models can be found in Appendix C.3.2.

CIFAR-10

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf 98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0

2 autoaug_shake_shake_112_tf98.1 [97.8, 98.4] 94.0 [92.9, 95.0] 4.1 2 0

3 autoaug_shake_shake_96_tf98.0 [97.7, 98.3] 93.9 [92.8, 94.9] 4.1 3 0

4 autoaug_wrn_tf 97.5 [97.1, 97.8] 93.0 [91.8, 94.1] 4.5 6 -2

5 autoaug_shake_shake_32_tf97.3 [97.0, 97.6] 93.2 [92.0, 94.2] 4.2 4 1

6 shake_shake_64d_cutout 97.1 [96.8, 97.4] 93.1 [91.9, 94.2] 4.0 5 1

7 shake_shake_26_2x96d_SSI 97.1 [96.7, 97.4] 92.0 [90.7, 93.1] 5.1 9 -2

8 shake_shake_64d 97.0 [96.6, 97.3] 91.9 [90.6, 93.1] 5.1 10 -2

9 wrn_28_10_cutout16 97.0 [96.6, 97.3] 92.1 [90.8, 93.2] 4.9 8 1

10 shake_drop 96.9 [96.5, 97.2] 92.3 [91.1, 93.4] 4.6 7 3

11 shake_shake_32d 96.6 [96.2, 96.9] 90.0 [88.6, 91.3] 6.6 15 -4

12 darc 96.6 [96.2, 96.9] 89.9 [88.5, 91.2] 6.7 16 -4

13 resnext_29_4x64d 96.4 [96.0, 96.7] 90.1 [88.8, 91.4] 6.2 12 1

14 pyramidnet_basic_110_270 96.3 [96.0, 96.7] 90.5 [89.1, 91.7] 5.8 11 3

15 resnext_29_8x64d 96.2 [95.8, 96.6] 90.1 [88.7, 91.4] 6.1 14 1

16 wrn_28_10 95.9 [95.5, 96.3] 90.1 [88.8, 91.4] 5.8 13 3

17 pyramidnet_basic_110_84 95.7 [95.3, 96.1] 89.6 [88.2, 90.9] 6.1 17 0

18 densenet_BC_100_12 95.5 [95.1, 95.9] 87.9 [86.4, 89.3] 7.6 20 -2

19 nas 95.4 [95.0, 95.8] 89.2 [87.8, 90.5] 6.2 18 1

20 wide_resnet_tf_28_10 95.0 [94.6, 95.4] 88.8 [87.4, 90.2] 6.2 19 1

21 resnet_v2_bottleneck_164 94.2 [93.7, 94.6] 86.1 [84.5, 87.6] 8.1 22 -1

22 vgg16_keras 93.6 [93.1, 94.1] 85.6 [84.0, 87.1] 8.0 23 -1

23 resnet_basic_110 93.5 [93.0, 93.9] 85.4 [83.8, 86.9] 8.1 24 -1

24 resnet_v2_basic_110 93.4 [92.9, 93.9] 86.9 [85.4, 88.3] 6.5 21 3

25 resnet_basic_56 93.3 [92.8, 93.8] 84.9 [83.2, 86.4] 8.5 28 -3

26 resnet_basic_44 93.0 [92.5, 93.5] 84.8 [83.2, 86.3] 8.2 29 -3

27 vgg_15_BN_64 93.0 [92.5, 93.5] 85.0 [83.4, 86.6] 7.9 27 0

28 resnetv2_tf_32 92.7 [92.2, 93.2] 85.1 [83.5, 86.6] 7.6 26 2

29 resnet_basic_32 92.5 [92.0, 93.0] 85.2 [83.6, 86.7] 7.3 25 4

30 cudaconvnet 88.5 [87.9, 89.2] 78.2 [76.3, 80.0] 10.3 30 0

31 random_features_256k_aug 85.6 [84.9, 86.3] 73.6 [71.6, 75.5] 12.0 31 0

32 random_features_32k_aug 85.0 [84.3, 85.7] 72.2 [70.2, 74.1] 12.8 32 0

33 random_features_256k 84.2 [83.5, 84.9] 70.5 [68.4, 72.4] 13.8 33 0

34 random_features_32k 83.3 [82.6, 84.0] 68.7 [66.6, 70.7] 14.6 34 0

2015).

ImageNet. ImageNet (Deng et al., 2009; Russakovsky

et al., 2015) is a large image database consisting of more

than 14 million human-annotated images depicting almost

22,000 classes. The images do not have a uniform size, but

most of them are stored as RGB color images with a resolu-

tion around 500× 400 pixels. The classes are derived from

the WordNet hierarchy (Miller, 1995), which represents

each class by a set of synonyms (“synset”) and is organized

into semantically meaningful relations. Each class has an

associated definition (“gloss”) and a unique WordNet ID

(“wnid”).

The ImageNet team populated the classes with images down-

loaded from various image search engines, using the Word-

Net synonyms as queries. The researchers then annotated

the images via Amazon Mechanical Turk (MTurk). A class-

specific threshold decided how many agreements among the

MTurk workers were necessary for an image to be consid-
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True: automobile
Predicted: airplane

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: bird
Predicted: frog

True: horse
Predicted: frog

True: cat
Predicted: dog

True: cat
Predicted: dog

True: cat
Predicted: deer

True: dog
Predicted: cat

True: dog
Predicted: cat

Figure 4. Hard images from our new test set that no model correctly. The caption of each image states the correct class label (“True”) and

the label predicted by most models (“Predicted”).

ered valid. Overall, the researchers employed over 49,000

workers from 167 countries (Li and Deng, 2017).

Since 2010, the ImageNet team has run the yearly Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC),

which consists of separate tracks for object classification,

localization, and detection. All three tracks are based on

subsets of the ImageNet data. The classification track has

received the most attention and is also the focus of our paper.

The ILSVRC2012 competition data has become the de facto

benchmark version of the dataset and comprises 1.2 million

training images, 50,000 validation images, and 100,000 test

images depicting 1,000 categories. We generally refer to this

data as the ImageNet training, validation, and test set. The

labels for the ImageNet test set were never publicly released

in order to minimize adaptive overfitting. Instead, teams

could submit a limited number of requests to an evaluation

server in order to obtain accuracy scores. There were no

similar limitations in place for the validation set. Most

publications report accuracy numbers on the validation set.

The training, validation, and test sets were not drawn strictly

i.i.d. from the same distribution (i.e., there was not a sin-

gle data collection run with the result split randomly into

training, validation, and test). Instead, the data collection

was an ongoing process and both the validation and test sets

were refreshed in various years of the ILSVRC. One no-

table difference is that the ImageNet training and validation

sets do not have the same data source: while the ImageNet

training set consists of images from several search engines

(e.g., Google, MSN, Yahoo, and Flickr), the validation set

consists almost entirely of images from Flickr (Berg, 2018).

D.1. Dataset Creation Methodology

Since the existing training, validation, and test sets are not

strictly i.i.d. (see above), the first question was which dataset
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part to replicate. For our experiment, we decided to match

the distribution of the validation set. There are multiple

reasons for this choice:

• In contrast to the training set, the validation set comes

from only one data source (Flickr). Moreover, the

Flickr API allows fine-grained searches, which makes

it easier to control the data source and match the origi-

nal distribution.

• In contrast to the original test set, the validation set

comes with label information. This makes it easier to

inspect the existing image distribution for each class,

which is important to ensure that we match various

intricacies of the dataset (e.g., see Appendix D.4.8 for

examples of ambiguous classes).

• Most papers report accuracy numbers on the validation

set. Hence comparing new vs. existing accuracies is

most relevant for the validation set.

• The validation set is commonly used to develop new

architectures and tune hyperparameters, which leads

to the possibility of adaptive overfitting. If we again

observe no diminishing returns in accuracy on our new

test set, this indicates that even the validation set is

resilient to adaptive overfitting.

Therefore, our goal was to replicate the distribution of the

original validation set as closely as possible. We aimed

for a new test set of size 10,000 since this would already

result in accuracy scores with small confidence intervals

(see Section 2). While a larger dataset would result in even

smaller confidence intervals, we were also concerned that

searching for more images might lead to a larger distribution

shift. In particular, we decided to use a time range for our

Flickr queries after the original ImageNet collection period

(see below for the corresponding considerations). Since a

given time period only has a limited supply of high quality

images, a larger test set would have required a longer time

range. This in turn may create a larger temporal distribution

shift. To balance these two concerns, we decided on a size

of 10,000 images for the new test set.

Figure 5 presents a visual overview of our dataset creation

pipeline. It consists of two parts: creating a pool of candi-

date images and sampling a clean dataset from this candidate

pool. We now describe each part in detail to give the reader

insights into the design choices potentially affecting the

final distribution.

D.1.1. CREATING A CANDIDATE POOL

Similar to the creation procedure for the original ImageNet

validation set, we collected candidate images from the Flickr

image hosting service and then annotated them with Ama-

zon Mechanical Turk (MTurk).

Downloading images from Flickr. The Flickr API has a

range of parameters for image searches such as the query

terms, an allowed time range, a maximum number of re-

turned images, and a sorting order. We summarize the main

points here:

• Query terms: For each class, we used each of

the WordNet synonyms as a search term in separate

queries.

• Date range: There were two main options for the date

range associated with our queries to Flickr: either the

same date range as the original ImageNet data col-

lection, or a date range directly after ImageNet. The

advantage of using the ImageNet date range is that it

avoids a distribution shift due to the time the images

were taken. However, this option also comes with two

important caveats: First, the pool of high quality im-

ages in the original ImageNet date range could have

been largely exhausted by ImageNet. Second, the new

dataset could end up with near-duplicates of images

in the original validation or training set that are hard

to detect. Especially the first issue is difficult to quan-

tify, so we decided on a time range directly after the

ImageNet collection period.

In particular, we initially searched for images taken

and uploaded to Flickr between July 11, 2012 and

July 11, 2013 because the final ILSVRC2012 public

data release was on July 10, 2012. Since we used

a period of only one year (significantly shorter than

the ImageNet collection period), we believe that the

temporal component of the distribution shift is small.

• Result size: We initially downloaded up to 100 images

for each class. If a class has k synonyms associated

with it, we requested 100/k images for each synonym.

We decided on 100 images per class since we aimed for

10,000 images overall and estimated that 10% of the

candidate images would be of sufficiently high quality

(similar to ImageNet (Deng et al., 2009)).

• Result order: Flickr offers the sorting options “rele-

vance”, “interestingness”, and various temporal order-

ings. Note that the “relevance” and “interestingness”

orderings may rely on machine learning models trained

on ImageNet. Since these orderings may introduce a

significant bias (e.g., by mainly showing images that

current ImageNet models recognize for the respective

search term), we chose to order the images by their

upload date. This helps to ensure that our new test set

is independent of current classifiers.

After our first data collection, we found it necessary to

expand the initial candidate pool for particular classes in

order to reach a sufficient number of valid images. This

is similar to the original ImageNet creation process, where

the authors expanded the set of queries using two methods
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Figure 5. The pipeline for the new ImageNet test set. It consists of two parts: creating the candidate pool and sampling the final dataset

from this candidate pool.

(Deng et al., 2009; Russakovsky et al., 2015). The first

method appended a word from the parent class to the queries

if this word also appeared in the gloss of the target class.

The second method included translations of the queries

into other languages such as Chinese, Spanish, Dutch, and

Italian.

We took the following steps to expand our search queries,

only proceeding to the next step for a given class when in

need of more images.

1. Append a word from the parent class if the word ap-

pears in the gloss of the target class.

2. Expand the maximum number of images to 200 for

this class.

3. Expand the search range to include photos taken or

uploaded before July 11, 2014 (i.e., a time span of two

years instead of one).

4. Concatenate compound queries, i.e., search for “dial-

phone” instead of “dial phone”.

5. Manually pick alternative query words, including trans-

lations of the queries.

In total, we obtained 208,145 candidate images from Flickr.

Amazon Mechanical Turk. While the candidate images

from Flickr are correlated with their corresponding class,

a large number of images are still unsuitable for an image

classification dataset. For instance, the images may be of

low quality (blurry, unclear object presence, etc.), violate

dataset rules (e.g., no paintings), or be simply unrelated to

the target class. So similar to ImageNet, we utilized MTurk

to filter our pool of candidate images.

We designed our MTurk tasks and UI to be close to those

used in ImageNet. As in ImageNet, we showed each MTurk

worker a grid of 48 candidate images for a given target class.

The task description was derived from the original ImageNet

instructions and included the definition of the target class

with a link to a corresponding Wikipedia page. We asked

the MTurk workers to select images belonging to the target

class regardless of “occlusions, other objects, and clutter or

text in the scene” and to avoid drawings or paintings (both

as in ImageNet). Appendix D.4.1 shows a screenshot of our

UI and a screenshot of the original UI for comparison.

For quality control, we embedded at least six randomly

selected images from the original validation set in each

MTurk task (three from the same class, three from a class

that is nearby in the WordNet hierarchy). These images

appeared in random locations of the image grid for each

task. We obfuscated all image URLs and resized our images

to match the most common size of the existing validation

images so that the original validation images were not easy

to spot.

The main outcome of the MTurk tasks is a selection fre-

quency for each image, i.e., what fraction of MTurk workers

selected the image in a task for its target class. We recruited

at least ten MTurk workers for each task (and hence for

each image), which is similar to ImageNet. Since each task

contained original validation images, we could also estimate

how often images from the original dataset were selected by

our MTurk workers.

Removing near-duplicate images. The final step in cre-

ating the candidate pool was to remove near-duplicates, both

within our new test set and between our new test set and the

original ImageNet dataset. Both types of near-duplicates

could harm the quality of our dataset.

Since we obtained results from Flickr in a temporal order-

ing, certain events (e.g., the 2012 Olympics) led to a large

number of similar images depicting the same scene (e.g., in

the class for the “horizontal bar“ gymnastics instrument). In-

specting the ImageNet validation set revealed only very few

sets of images from a single event. Moreover, the ImageNet

paper also remarks that they removed near-duplicates (Deng

et al., 2009). Hence we decided to remove near-duplicates

within our new test set.

Near-duplicates between our dataset and the original test

set are also problematic. Since the models typically achieve

high accuracy on the training set, testing on a near-duplicate

of a training image checks for memorization more than gen-

eralization. A near-duplicate between the existing validation

set and our new test set also defeats the purpose of measur-

ing generalization to previously unseen data (as opposed
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to data that may already have been the victim of adaptive

overfitting).

To find near-duplicates, we computed the 30 nearest neigh-

bors for each candidate image in three different metrics:

ℓ2-distance on raw pixels, ℓ2-distance on features extracted

from a pre-trained VGG (Simonyan and Zisserman, 2014)

model (fc7), and SSIM (structural similarity) (Wang et al.,

2004), which is a popular image similarity metric. For met-

rics that were cheap to evaluate (ℓ2-distance on pixels and

ℓ2-distance on fc7), we computed nearest neighbor distances

to all candidate images and all of the original ImageNet data.

For the more compute-intensive SSIM metric, we restricted

the set of reference images to include all candidate images

and the five closest ImageNet classes based on the tree dis-

tance in the WordNet hierarchy. We then manually reviewed

nearest neighbor pairs below certain thresholds for each

metric and removed any duplicates we discovered.

To the best of our knowledge, ImageNet used only nearest

neighbors in the ℓ2-distance to find near-duplicates (Berg,

2018). While this difference may lead to a small change in

distribution, we still decided to use multiple metrics since in-

cluding images that have near-duplicates in ImageNet would

be contrary to the main goal of our experiment. Moreover,

a manual inspection of the original validation set revealed

only a very small number of near-duplicates within the ex-

isting dataset.

D.1.2. SAMPLING A CLEAN DATASET

The result of collecting a candidate pool was a set of im-

ages with annotations from MTurk, most importantly the

selection frequency of each image. In the next step, we used

this candidate pool to sample a new test set that closely re-

sembles the distribution of the existing validation set. There

were two main difficulties in this process.

First, the ImageNet publications do not provide the agree-

ment thresholds for each class that were used to determine

which images were valid. One possibility could be to run

the algorithm the ImageNet authors designed to compute

the agreement thresholds. However, this algorithm would

need to be exactly specified, which is unfortunately not the

case to the best of our knowledge.11

11To be precise: Jia Deng’s PhD thesis (Deng, 2012) provides a
clear high-level description of their algorithm for computing agree-
ment thresholds. However – as is commonly the case in synopses
of algorithms – the description still omits some details such as the
binning procedure or the number of images used to compute the
thresholds. Since it is usually hard to exactly reconstruct a non-
trivial algorithm from an informal summary, we instead decided to
implement three different sampling strategies and compare their
outcomes. Potential deviations from the ImageNet sampling pro-
cedure are also alleviated by the fact that our MTurk tasks always
included at least a few images from the original validation set,
which allowed us to calibrate our sampling strategies to match the
existing ImageNet data.

Second, and more fundamentally, it is impossible to exactly

replicate the MTurk worker population from 2010 – 2012

with a reproducibility experiment in 2018. Even if we had

access to the original agreement thresholds, it is unclear if

they would be meaningful for our MTurk data collection

(e.g., because the judgments of our annotations could be

different). Similarly, re-running the algorithm for computing

agreement thresholds could give different results with our

MTurk worker population.

So instead of attempting to directly replicate the original

agreement thresholds, we instead explored three different

sampling strategies. An important asset in this part of our

experiment was that we had inserted original validation im-

ages into the MTurk tasks (see the previous subsection). So

at least for our MTurk worker population, we could esti-

mate how frequently the MTurk workers select the original

validation images.

In this subsection, we describe our sampling strategy that

closely matches the selection frequency distribution of the

original validation set. The follow-up experiments in Sec-

tion 4 then explore the impact of this design choice in more

detail. As we will see, the sampling strategy has significant

influence on the model accuracies.

Matching the Per-class Selection Frequency. A simple

approach to matching the selection frequency of the existing

validation set would be to sample new images so that the

mean selection frequency is the same as for the original

dataset. However, a closer inspection of the selection fre-

quencies reveals significant differences between the various

classes. For instance, well-defined and well-known classes

such as “African elephant” tend to have high selection fre-

quencies ranging from 0.8 to 1.0. At the other end of the

spectrum are classes with an unclear definition or easily

confused alternative classes. For instance, the MTurk work-

ers in our experiment often confused the class “nail” (the

fastener) with fingernails, which led to significantly lower

selection frequencies for the original validation images be-

longing to this class. In order to match these class-level

details, we designed a sampling process that approximately

matches the selection frequency distribution for each class.

As a first step, we built an estimate of the per-class distribu-

tion of selection frequencies. For each class, we divided the

annotated validation images into five histogram bins based

on their selection frequency. These frequency bins were

[0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1.0]. In-

tuitively, these bins correspond to a notion of image quality

assessed by the MTurk workers, with the [0.0, 0.2) bin con-

taining the worst images and the [0.8, 1.0] bin containing

the best images. Normalizing the resulting histograms then

yielded a distribution over these selection frequency bins

for each class.

Next, we sampled ten images for each class from our can-
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didate pool, following the distribution given by the class-

specific selection frequency histograms. More precisely, we

first computed the target number of images for each his-

togram bin, and then sampled from the candidates images

falling into this histogram bin uniformly at random. Since

we only had a limited number of images for each class, this

process ran out of images for a small number of classes. In

these cases, we then sampled candidate images from the

next higher bin until we found a histogram bin that still had

images remaining. While this slightly changes the distribu-

tion, we remark that it makes our new test set easier and

only affected 0.8% of the images in the new test set.

At the end of this sampling process, we had a test set with

10, 000 images and an average sampling frequency of 0.73.

This is close to the average sampling frequency of the anno-

tated validation images (0.71).

Final Reviewing. While the methodology outlined so far

closely matches the original ImageNet distribution, it is

still hard to ensure that no unintended biases crept into the

dataset (e.g., our MTurk workers could interpret some of

the class definitions differently and select different images).

So for quality control, we added a final reviewing step to

our dataset creation pipeline. Its purpose was to rule out ob-

vious biases and ensure that the dataset satisfies our quality

expectations before we ran any models on the new dataset.

This minimizes dependencies between the new test set and

the existing models.

In the final reviewing step, the authors of this paper manu-

ally reviewed every image in the dataset. Appendix D.4.2

includes a screenshot and brief description of the user inter-

face. When we found an incorrect image or a near-duplicate,

we removed it from the dataset. After a pass through the

dataset, we then re-sampled new images from our candidate

pool. In some cases, this also required new targeted Flickr

searches for certain classes. We repeated this process until

the dataset converged after 33 iterations. We remark that

the majority of iterations only changed a small number of

images.

One potential downside of the final reviewing step is that

it may lead to a distribution shift. However, we accepted

this possibility since we view dataset correctness to be more

important than minimizing distribution shift. In the end, a

test set is only interesting if it has correct labels. Note also

that removing incorrect images from the dataset makes it

easier, which goes against the main trend we observe (a

drop in accuracy). Finally, we kept track of all intermediate

iterations of our dataset so that we could measure the impact

of this final reviewing step (see Section D.3.2). This analysis

shows that the main trends (a significant accuracy drop and

an approximately linear relationship between original and

new accuracy) also hold for the first iteration of the dataset

without any additional reviewing.

D.2. Model Performance Results

After assembling our new test sets, we evaluated a broad

range of models on both the original validation set and our

new test sets. Section D.4.3 contains a list of all models we

evaluated with corresponding references and links to source

code repositories. Tables 14 and 15 show the top-1 and

top-5 accuracies for our main test set MatchedFrequency.

Figure 12 visualizes the top-1 and top-5 accuracies on all

three test sets.

In the main text of the paper and Figure 12, we have cho-

sen to exclude the Fisher Vector models and show accura-

cies only for the convolutional neural networks (convnets).

Since the Fisher Vector models achieve significantly lower

accuracy, a plot involving both model families would have

sacrificed resolution among the convnets. We decided to fo-

cus on convnets in the main text because they have become

the most widely used model family on ImageNet.

Moreover, a linear model of accuracies (as shown in previ-

ous plots) is often not a good fit when the accuracies span a

wide range. Instead, a non-linear model such as a logistic or

probit model can sometimes describe the data better. Indeed,

this is also the case for our data on ImageNet. Figure 6

shows the accuracies both on a linear scale as in the pre-

vious plots, and on a probit scale, i.e., after applying the

inverse of the Gaussian CDF to all accuracy scores. As can

be seen by comparing the two plots in Figure 6, the probit

model is a better fit for our data. It accurately summarizes

the relationship between original and new test set accuracy

for all models from both model families in our testbed.

Similar to Figure 12, we also show the top-1 and top-5

accuracies for all three datasets in the probit domain in

Figure 13. Section B describes a possible generative model

that leads to a linear fit in the probit domain as exhibited by

the plots in Figures 6 and 13.

D.3. Follow-up Hypotheses

As for CIFAR-10, the gap between original and new accu-

racy is concerningly large. Hence we investigated multiple

hypotheses for explaining this gap.

D.3.1. CROSS VALIDATION

A natural question is whether cross-validation with the exist-

ing ImageNet data could have pointed towards a significant

drop in accuracy. If adaptive overfitting to the images in the

validation set is a cause for the accuracy drop, testing on

different images from another cross-validation fold could

produce lower accuracies.12 Moreover, recall that the Ima-

geNet validation set is not a strictly i.i.d. sample from the

12Note however that the training images may also be affected
by adaptive overfitting since the model hyperparameters are often
tuned for fast training speed and high training accuracy.
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Figure 6. Model accuracy on the original ImageNet validation set vs. our new test set MatchedFrequency. Each data point corresponds

to one model in our testbed (shown with 95% Clopper-Pearson confidence intervals), and we now also include the Fisher Vector models.

The left plot shows the model accuracies with a linear scale on the axes. The right plot instead uses a probit scale, i.e., accuracy α appears

at Φ−1(α), where Φ is the Gaussian CDF. Comparing the two plot provides evidence that the probit model is a better fit for the accuracy

scores. Over a range of 60 percentage points, the linear fit in the probit domain accurately describes the relationship between original and

new test set accuracy. The shaded region around the linear fit is a 95% confidence region from 100,000 bootstrap samples. The confidence

region is present in both plots but is significantly smaller in the right plot due to the better fit in the probit domain.

same distribution as the training set (see the beginning of

Section 4). This also raises the question of how well a model

would perform on a cross-validation fold from the training

data.

To investigate these two effects, we conducted a cross-

validation experiment with the ImageNet training and vali-

dation sets. In order to ensure that the new cross-validation

folds contain only training images, we treated the existing

validation set as one fold and created five additional folds

with 50,000 images each. To this end, we drew a class-

balanced sample of 250,000 images from the training set

and then randomly partitioned this sample into five cross-

validation folds (again class-balanced). For each of these

five folds, we added the validation set (and the other training

folds) to the training data so that the size of the training set

was unchanged. We then trained one resnet50 model13

(He et al., 2016a) for each of the five training sets and eval-

uated them on the corresponding held-out data. Table 13

shows the resulting accuracies for each split.

Overall, we do not see a large difference in accuracy on the

new cross validation splits: all differences fall within the

95% confidence intervals around the accuracy scores. This

is in contrast to the significantly larger accuracy drops on

our new test sets.

13To save computational resources, we used the optimized train-
ing code from https://github.com/fastai/imagenet

-fast. Hence the top-5 accuracy on the original validation set is
0.4% lower than in Table 15.

D.3.2. IMPACT OF DATASET REVISIONS

As mentioned in Section D.1.2, our final reviewing pass

may have led to a distribution shift compared to the original

ImageNet validation set. In general, our reviewing criterion

was to blacklist images that were

• not representative of the target class,

• cartoons, paintings, drawings, or renderings,

• significantly different in distribution from the original

ImageNet validation set,

• unclear, blurry, severely occluded, overly edited, or

including only a small target object.

For each class, our reviewing UI (screenshot in Appendix

D.4.2) displayed a random sample of ten original valida-

tion images directly next to the ten new candidate images

currently chosen. At least to some extent, this allowed us

to detect and correct distribution shifts between the orig-

inal validation set and our candidate pool. As a concrete

example, we noted in one revision of our dataset that approx-

imately half of the images for “great white shark” were not

live sharks in the water but models in museums or statues

outside. In contrast, the ImageNet validation set had fewer

examples of such artificial sharks. Hence we decided to

remove some non-live sharks from our candidate pool and

sampled new shark images as a replacement in the dataset.

Unfortunately, some of these reviewing choices are subjec-

tive. However, such choices are often an inherent part of

creating a dataset and it is unclear whether a more “hands-

https://github.com/fastai/imagenet-fast
https://github.com/fastai/imagenet-fast
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Dataset resnet50 Top-5 Accuracy (%)

Original validation set 92.5 [92.3, 92.8]

Split 1 92.60 [92.4, 92.8]

Split 2 92.59 [92.4, 92.8]

Split 3 92.61 [92.4, 92.8]

Split 4 92.55 [92.3, 92.8]

Split 5 92.62 [92.4, 92.9]

New test set (MatchedFrequency) 84.7 [83.9, 85.4]

Table 13. resnet50 accuracy on cross-validation splits created from the original ImageNet train and validation sets. The accuracy

increase is likely caused by a small shift in distribution between the ImageNet training and validation sets.

off” approach would lead to more meaningful conclusions.

For instance, if the drop in accuracy was mainly caused by

a distribution shift that is easy to identify and correct (e.g.,

an increase in black-and-white images), the resulting drop

may not be an interesting phenomenon (beyond counting

black-and-white images). Hence we decided to both remove

distribution shifts that we found easy to identify visually,

and also to measure the effect of these interventions.

Our reviewing process was iterative, i.e., we made a full

pass over every incomplete class in a given dataset revision

before sampling new images to fill the resulting gaps. Each

time we re-sampled our dataset, we saved the current list

of images in our version control system. This allowed us

to track the datasets over time and later measure the model

accuracy for each dataset revision. We remark that we only

computed model accuracies on intermediate revisions after

we had arrived at the final revision of the corresponding

dataset.

Figure 7 plots the top-1 accuracy of a resnet50 model

versus the dataset revision for our new MatchedFrequency

test set. Overall, reviewing improved model accuracy by

about 4% for this dataset. This is evidence that our manual

reviewing did not cause the drop in accuracy between the

original and new dataset.

In addition, we also investigated whether the linear relation-

ship between original and new test accuracy was affected

by our final reviewing passes. To this end, we evaluated

our model testbed on the first revision of our MatchedFre-

quency test set. As can be seen in Figure 8, the resulting

accuracies still show a good linear fit that is of similar qual-

ity as in Figure 12. This shows that the linear relationship

between the test accuracies is not a result of our reviewing

intervention.

D.4. Additional Figures, Tables, and Lists

In this appendix we provide large figures etc. that did not fit

into the preceding sections about our ImageNet experiments.

D.4.1. MTURK USER INTERFACES

For comparison, we include the original ImageNet MTurk

user interface (UI) in Figure 9 and the MTurk UI we used in

our experiments in Figure 10. Each UI corresponds to one

task for the MTurk workers, which consists of 48 images

in both cases. In contrast to the original ImageNet UI,

our UI takes up more than one screen. This requires the

MTurk workers to scroll but also provides more details in

the images. While the task descriptions are not exactly the

same, they are very similar and contain the same directions

(e.g., both descriptions ask the MTurk workers to exclude

drawings or paintings).

D.4.2. USER INTERFACE FOR OUR FINAL REVIEWING

PROCESS

Figure 11 shows a screenshot of the reviewing UI that

the paper authors used to manually review the new Im-

ageNet datasets. At the top, the UI displays the wnid

(“n01667114”), the synset (mud turtle), and the gloss.

Next, a grid of 20 images is shown in 4 rows.

The top two rows correspond to the candidate images cur-

rently sampled for the new dataset. Below each image, our

UI shows a unique identifier for the image and the date the

image was taken. There is also a check box to blacklist any

incorrect images. In addition, there is a check box for each

image to add it to the blacklist of incorrect images. If an

image is added to the blacklist, it will be removed in the

next revision of the dataset and replaced with a new image

from the candidate pools. The candidate images are sorted

by the date they were taken, which makes it easier to spot

and remove near-duplicates. Images are marked as near-

duplicates by adding their identifier to the “Near-duplicate

set” text field.

The bottom two rows correspond to a random sample of

images from the validation set that belong to the target class.

We display these images to make it easier to detect and

correct for distribution shifts between our new test sets and

the original ImageNet validation dataset.
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Figure 7. Impact of the reviewing passes on the accuracy of a resnet152 on our new MatchedFrequency test set. The revision

numbers correspond to the chronological ordering in which we created the dataset revisions
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Figure 8. Model accuracy on the original ImageNet validation set vs. accuracy on the first revision of our MatchedFrequency test set.

Each data point corresponds to one model in our testbed (shown with 95% Clopper-Pearson confidence intervals). The red shaded region is

a 95% confidence region for the linear fit from 100,000 bootstrap samples. The plots show that the linear relationship between original and

new test accuracy also occurs without our final dataset reviewing step. The accuracy plots for the final revision of MatchedFrequency

can be found in Figure 12.

Figure 9. The user interface employed in the original ImageNet collection process for the labeling tasks on Amazon Mechanical Turk.

D.4.3. FULL LIST OF MODELS EVALUATED ON

IMAGENET

The following list contains all models we evaluated on Ima-

geNet with references and links to the corresponding source

code.

1. alexnet (Krizhevsky et al., 2012) https://gi

thub.com/Cadene/pretrained-models.

pytorch

2. bninception (Ioffe and Szegedy, 2015) https:

//github.com/Cadene/pretrained-mod

els.pytorch

3. cafferesnet101 (He et al., 2016a) https://

github.com/Cadene/pretrained-models.

pytorch

4. densenet121 (Huang et al., 2017) https://gi

thub.com/Cadene/pretrained-models.

pytorch

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
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Figure 10. Our user interface for labeling tasks on Amazon Mechanical Turk. The screenshot here omits the scroll bar and shows only a

subset of the entire MTurk task. As in the ImageNet UI, the full task involves a grid of 48 images.

5. densenet161 (Huang et al., 2017)https://gi

thub.com/Cadene/pretrained-models.

pytorch

6. densenet169 (Huang et al., 2017) https://gi

thub.com/Cadene/pretrained-models.

pytorch

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
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Figure 11. The user interface we built to review dataset revisions and remove incorrect or near duplicate images. This user interface was

not used for MTurk but only in the final dataset review step conducted by the authors of this paper.
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7. densenet201 (Huang et al., 2017) https://gi

thub.com/Cadene/pretrained-models.

pytorch

8. dpn107 (Chen et al., 2017) https://github.c

om/Cadene/pretrained-models.pytorch

9. dpn131 (Chen et al., 2017) https://github.c

om/Cadene/pretrained-models.pytorch

10. dpn68b (Chen et al., 2017)https://github.c

om/Cadene/pretrained-models.pytorch

11. dpn68 (Chen et al., 2017) https://github.com

/Cadene/pretrained-models.pytorch

12. dpn92 (Chen et al., 2017) https://github.com

/Cadene/pretrained-models.pytorch

13. dpn98 (Chen et al., 2017) https://github.com

/Cadene/pretrained-models.pytorch

14. fbresnet152 (He et al., 2016a) https://gith

ub.com/tensorflow/models/tree/mast

er/research/slim/

15. fv_4k (Clinchant et al., 2007; Perronnin et al., 2010)

https://github.com/modestyachts/no

ndeep FisherVector model using SIFT, local color

statistic features, and 16 GMM centers.

16. fv_16k (Clinchant et al., 2007; Perronnin et al., 2010)

https://github.com/modestyachts/no

ndeep FisherVector model using SIFT, local color

statistic features, and 64 GMM centers.

17. fv_64k (Clinchant et al., 2007; Perronnin et al., 2010)

https://github.com/modestyachts/no

ndeep FisherVector model using SIFT, local color

statistic features, and 256 GMM centers.

18. inception_resnet_v2_tf (Szegedy et al.,

2017) https://github.com/tensorflow/

models/tree/master/research/slim/

19. inception_v1_tf (Szegedy et al., 2015) https:

//github.com/tensorflow/models/tree/

master/research/slim/

20. inception_v2_tf (Ioffe and Szegedy, 2015) ht

tps://github.com/tensorflow/models

/tree/master/research/slim/

21. inception_v3_tf (Szegedy et al., 2016) https:

//github.com/tensorflow/models/tree/

master/research/slim/

22. inception_v3 (Szegedy et al., 2016) https://

github.com/Cadene/pretrained-models.

pytorch

23. inception_v4_tf (Szegedy et al., 2017) https:

//github.com/tensorflow/models/tree/

master/research/slim/

24. inceptionresnetv2 (Ioffe and Szegedy, 2015)

https://github.com/Cadene/pretrain

ed-models.pytorch

25. inceptionv3 (Szegedy et al., 2016) https://

github.com/Cadene/pretrained-models.

pytorch

26. inceptionv4 (Szegedy et al., 2017) https://

github.com/Cadene/pretrained-models.

pytorch

27. mobilenet_v1_tf (Howard et al., 2017) https:

//github.com/tensorflow/models/tree/

master/research/slim/

28. nasnet_large_tf (Zoph et al., 2018) https://

github.com/tensorflow/models/tree/

master/research/slim/

29. nasnet_mobile_tf (Zoph et al., 2018) https:

//github.com/tensorflow/models/tree/

master/research/slim/

30. nasnetalarge (Zoph et al., 2018) https://gi

thub.com/Cadene/pretrained-models.

pytorch

31. nasnetamobile (Zoph et al., 2018) https://

github.com/Cadene/pretrained-models.

pytorch

32. pnasnet5large (Liu et al., 2018) https://gi

thub.com/Cadene/pretrained-models.

pytorch

33. pnasnet_large_tf (Liu et al., 2018) https://

github.com/tensorflow/models/tree/

master/research/slim/

34. pnasnet_mobile_tf (Liu et al., 2018) https:

//github.com/tensorflow/models/tree/

master/research/slim/

35. polynet (Zhang et al., 2017) https://github

.com/Cadene/pretrained-models.pyto

rch

36. resnet101 (He et al., 2016a) https://github

.com/Cadene/pretrained-models.pyto

rch

37. resnet152 (He et al., 2016a) https://github

.com/Cadene/pretrained-models.pyto

rch

38. resnet18 (He et al., 2016a) https://github.c

om/Cadene/pretrained-models.pytorch

39. resnet34 (He et al., 2016a) https://github.c

om/Cadene/pretrained-models.pytorch

40. resnet50 (He et al., 2016a) https://github.c

om/Cadene/pretrained-models.pytorch

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
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https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
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41. resnet_v1_101_tf (He et al., 2016a) https:

//github.com/tensorflow/models/tree/

master/research/slim/

42. resnet_v1_152_tf (He et al., 2016a) https:

//github.com/tensorflow/models/tree/

master/research/slim/

43. resnet_v1_50_tf (He et al., 2016a) https://

github.com/tensorflow/models/tree/

master/research/slim/

44. resnet_v2_101_tf (He et al., 2016b) https:

//github.com/tensorflow/models/tree/

master/research/slim/

45. resnet_v2_152_tf (He et al., 2016b) https:

//github.com/tensorflow/models/tree/

master/research/slim/

46. resnet_v2_50_tf (He et al., 2016b) https://

github.com/tensorflow/models/tree/

master/research/slim/

47. resnext101_32x4d (Xie et al., 2017) https://

github.com/Cadene/pretrained-models.

pytorch

48. resnext101_64x4d (Xie et al., 2017) https://

github.com/Cadene/pretrained-models.

pytorch

49. se_resnet101 (Hu et al., 2018) https://gith

ub.com/Cadene/pretrained-models.py

torch

50. se_resnet152 (Hu et al., 2018) https://gith

ub.com/Cadene/pretrained-models.py

torch

51. se_resnet50 (Hu et al., 2018) https://gith

ub.com/Cadene/pretrained-models.py

torch

52. se_resnext101_32x4d (Hu et al., 2018) https:

//github.com/Cadene/pretrained-mod

els.pytorch

53. se_resnext50_32x4d (Hu et al., 2018) https:

//github.com/Cadene/pretrained-mod

els.pytorch

54. senet154 (Hu et al., 2018) https://github.c

om/Cadene/pretrained-models.pytorch

55. squeezenet1_0 (Iandola et al., 2016) https://

github.com/Cadene/pretrained-models.

pytorch

56. squeezenet1_1 (Iandola et al., 2016) https://

github.com/Cadene/pretrained-models.

pytorch

57. vgg11_bn (Ioffe and Szegedy, 2015) https://gi

thub.com/Cadene/pretrained-models.

pytorch

58. vgg11 (Simonyan and Zisserman, 2014) https://

github.com/Cadene/pretrained-models.

pytorch

59. vgg13_bn (Ioffe and Szegedy, 2015) https://gi

thub.com/Cadene/pretrained-models.

pytorch

60. vgg13 (Simonyan and Zisserman, 2014) https://

github.com/Cadene/pretrained-models.

pytorch

61. vgg16_bn (Ioffe and Szegedy, 2015) https://gi

thub.com/Cadene/pretrained-models.

pytorch

62. vgg16 (Simonyan and Zisserman, 2014) https://

github.com/Cadene/pretrained-models.

pytorch

63. vgg19_bn (Ioffe and Szegedy, 2015) https://gi

thub.com/Cadene/pretrained-models.

pytorch

64. vgg19 (Simonyan and Zisserman, 2014) https://

github.com/Cadene/pretrained-models.

pytorch

65. vgg_16_tf (Simonyan and Zisserman, 2014) http

s://github.com/tensorflow/models/t

ree/master/research/slim/

66. vgg_19_tf (Simonyan and Zisserman, 2014) http

s://github.com/tensorflow/models/t

ree/master/research/slim/

67. xception (Chollet, 2017) https://github.c

om/Cadene/pretrained-models.pytorch

D.4.4. FULL RESULTS TABLES

Tables 14 and 15 contain the detailed accuracy scores (top-1

and top-5, respectively) for the original ImageNet validation

set and our main new test set MatchedFrequency. Tables

16 – 19 contain the accuracy scores for our Threshold0.7

and TopImages test sets.
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Table 14. Top-1 model accuracy on the original ImageNet validation set and our new test set MatchedFrequency. ∆ Rank is the relative

difference in the ranking from the original test set to the new test set. For example, ∆Rank = −2 means that a model dropped by two

places on the new test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space

constraints, references for the models can be found in Appendix D.4.3. The second part of the table can be found on the following page.

ImageNet Top-1 MatchedFrequency

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 72.2 [71.3, 73.1] 10.7 3 -2

2 pnasnet5large 82.7 [82.4, 83.1] 72.1 [71.2, 73.0] 10.7 4 -2

3 nasnet_large_tf 82.7 [82.4, 83.0] 72.2 [71.3, 73.1] 10.5 2 1

4 nasnetalarge 82.5 [82.2, 82.8] 72.2 [71.3, 73.1] 10.3 1 3

5 senet154 81.3 [81.0, 81.6] 70.5 [69.6, 71.4] 10.8 5 0

6 polynet 80.9 [80.5, 81.2] 70.3 [69.4, 71.2] 10.5 6 0

7 inception_resnet_v2_tf 80.4 [80.0, 80.7] 69.7 [68.7, 70.6] 10.7 7 0

8 inceptionresnetv2 80.3 [79.9, 80.6] 69.6 [68.7, 70.5] 10.6 8 0

9 se_resnext101_32x4d 80.2 [79.9, 80.6] 69.3 [68.4, 70.2] 10.9 9 0

10 inception_v4_tf 80.2 [79.8, 80.5] 68.8 [67.9, 69.7] 11.4 11 -1

11 inceptionv4 80.1 [79.7, 80.4] 69.1 [68.2, 70.0] 10.9 10 1

12 dpn107 79.7 [79.4, 80.1] 68.1 [67.2, 69.0] 11.7 12 0

13 dpn131 79.4 [79.1, 79.8] 67.9 [67.0, 68.8] 11.5 13 0

14 dpn92 79.4 [79.0, 79.8] 67.3 [66.3, 68.2] 12.1 17 -3

15 dpn98 79.2 [78.9, 79.6] 67.8 [66.9, 68.8] 11.4 15 0

16 se_resnext50_32x4d 79.1 [78.7, 79.4] 67.9 [66.9, 68.8] 11.2 14 2

17 resnext101_64x4d 79.0 [78.6, 79.3] 67.1 [66.2, 68.0] 11.9 20 -3

18 xception 78.8 [78.5, 79.2] 67.2 [66.2, 68.1] 11.7 18 0

19 se_resnet152 78.7 [78.3, 79.0] 67.5 [66.6, 68.5] 11.1 16 3

20 se_resnet101 78.4 [78.0, 78.8] 67.2 [66.2, 68.1] 11.2 19 1

21 resnet152 78.3 [77.9, 78.7] 67.0 [66.1, 67.9] 11.3 21 0

22 resnext101_32x4d 78.2 [77.8, 78.5] 66.2 [65.3, 67.2] 11.9 22 0

23 inception_v3_tf 78.0 [77.6, 78.3] 66.1 [65.1, 67.0] 11.9 24 -1

24 resnet_v2_152_tf 77.8 [77.4, 78.1] 66.1 [65.1, 67.0] 11.7 25 -1

25 se_resnet50 77.6 [77.3, 78.0] 66.2 [65.3, 67.2] 11.4 23 2

26 fbresnet152 77.4 [77.0, 77.8] 65.8 [64.9, 66.7] 11.6 26 0

27 resnet101 77.4 [77.0, 77.7] 65.7 [64.7, 66.6] 11.7 28 -1

28 inceptionv3 77.3 [77.0, 77.7] 65.7 [64.8, 66.7] 11.6 27 1

29 inception_v3 77.2 [76.8, 77.6] 65.4 [64.5, 66.4] 11.8 29 0

30 densenet161 77.1 [76.8, 77.5] 65.3 [64.4, 66.2] 11.8 30 0

31 dpn68b 77.0 [76.7, 77.4] 64.7 [63.7, 65.6] 12.4 32 -1

32 resnet_v2_101_tf 77.0 [76.6, 77.3] 64.6 [63.7, 65.6] 12.3 34 -2

33 densenet201 76.9 [76.5, 77.3] 64.7 [63.7, 65.6] 12.2 31 2
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ImageNet Top-1 MatchedFrequency

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 76.8 [76.4, 77.2] 64.6 [63.7, 65.6] 12.2 33 1

35 resnet_v1_101_tf 76.4 [76.0, 76.8] 64.5 [63.6, 65.5] 11.9 35 0

36 cafferesnet101 76.2 [75.8, 76.6] 64.3 [63.4, 65.2] 11.9 36 0

37 resnet50 76.1 [75.8, 76.5] 63.3 [62.4, 64.3] 12.8 39 -2

38 dpn68 75.9 [75.5, 76.2] 63.4 [62.5, 64.4] 12.4 38 0

39 densenet169 75.6 [75.2, 76.0] 63.9 [62.9, 64.8] 11.7 37 2

40 resnet_v2_50_tf 75.6 [75.2, 76.0] 62.7 [61.8, 63.7] 12.9 40 0

41 resnet_v1_50_tf 75.2 [74.8, 75.6] 62.6 [61.6, 63.5] 12.6 41 0

42 densenet121 74.4 [74.0, 74.8] 62.2 [61.3, 63.2] 12.2 42 0

43 vgg19_bn 74.2 [73.8, 74.6] 61.9 [60.9, 62.8] 12.3 44 -1

44 pnasnet_mobile_tf 74.1 [73.8, 74.5] 60.9 [59.9, 61.8] 13.3 48 -4

45 nasnetamobile 74.1 [73.7, 74.5] 61.6 [60.6, 62.5] 12.5 45 0

46 inception_v2_tf 74.0 [73.6, 74.4] 61.2 [60.2, 62.2] 12.8 46 0

47 nasnet_mobile_tf 74.0 [73.6, 74.4] 60.8 [59.8, 61.7] 13.2 50 -3

48 bninception 73.5 [73.1, 73.9] 62.1 [61.2, 63.1] 11.4 43 5

49 vgg16_bn 73.4 [73.0, 73.7] 60.8 [59.8, 61.7] 12.6 49 0

50 resnet34 73.3 [72.9, 73.7] 61.2 [60.2, 62.2] 12.1 47 3

51 vgg19 72.4 [72.0, 72.8] 59.7 [58.7, 60.7] 12.7 51 0

52 vgg16 71.6 [71.2, 72.0] 58.8 [57.9, 59.8] 12.8 53 -1

53 vgg13_bn 71.6 [71.2, 72.0] 59.0 [58.0, 59.9] 12.6 52 1

54 mobilenet_v1_tf 71.0 [70.6, 71.4] 57.4 [56.4, 58.4] 13.6 56 -2

55 vgg_19_tf 71.0 [70.6, 71.4] 58.6 [57.7, 59.6] 12.4 54 1

56 vgg_16_tf 70.9 [70.5, 71.3] 58.4 [57.4, 59.3] 12.5 55 1

57 vgg11_bn 70.4 [70.0, 70.8] 57.4 [56.4, 58.4] 13.0 57 0

58 vgg13 69.9 [69.5, 70.3] 57.1 [56.2, 58.1] 12.8 59 -1

59 inception_v1_tf 69.8 [69.4, 70.2] 56.6 [55.7, 57.6] 13.1 60 -1

60 resnet18 69.8 [69.4, 70.2] 57.2 [56.2, 58.2] 12.6 58 2

61 vgg11 69.0 [68.6, 69.4] 55.8 [54.8, 56.8] 13.2 61 0

62 squeezenet1_1 58.2 [57.7, 58.6] 45.3 [44.4, 46.3] 12.8 62 0

63 squeezenet1_0 58.1 [57.7, 58.5] 45.0 [44.0, 46.0] 13.1 63 0

64 alexnet 56.5 [56.1, 57.0] 44.0 [43.0, 45.0] 12.5 64 0

65 fv_64k 35.1 [34.7, 35.5] 24.1 [23.2, 24.9] 11.0 65 0

66 fv_16k 28.3 [27.9, 28.7] 19.2 [18.5, 20.0] 9.1 66 0

67 fv_4k 21.2 [20.8, 21.5] 15.0 [14.3, 15.7] 6.2 67 0
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Table 15. Top-5 model accuracy on the original ImageNet validation set and our new test set MatchedFrequency. ∆ Rank is the relative

difference in the ranking from the original test set to the new test set. For example, ∆Rank = −2 means that a model dropped by two

places on the new test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space

constraints, references for the models can be found in Appendix D.4.3. The second part of the table can be found on the following page.

ImageNet Top-5 MatchedFrequency

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 96.2 [96.0, 96.3] 90.1 [89.5, 90.7] 6.1 3 -2

2 nasnet_large_tf 96.2 [96.0, 96.3] 90.1 [89.5, 90.6] 6.1 4 -2

3 nasnetalarge 96.0 [95.8, 96.2] 90.4 [89.8, 91.0] 5.6 1 2

4 pnasnet5large 96.0 [95.8, 96.2] 90.2 [89.6, 90.8] 5.8 2 2

5 polynet 95.6 [95.4, 95.7] 89.1 [88.5, 89.7] 6.4 5 0

6 senet154 95.5 [95.3, 95.7] 89.0 [88.4, 89.6] 6.5 6 0

7 inception_resnet_v2_tf 95.2 [95.1, 95.4] 88.4 [87.7, 89.0] 6.9 9 -2

8 inception_v4_tf 95.2 [95.0, 95.4] 88.3 [87.6, 88.9] 6.9 10 -2

9 inceptionresnetv2 95.1 [94.9, 95.3] 88.5 [87.8, 89.1] 6.7 8 1

10 se_resnext101_32x4d 95.0 [94.8, 95.2] 88.0 [87.4, 88.7] 7.0 11 -1

11 inceptionv4 94.9 [94.7, 95.1] 88.7 [88.1, 89.3] 6.2 7 4

12 dpn107 94.7 [94.5, 94.9] 87.6 [86.9, 88.2] 7.1 13 -1

13 dpn92 94.6 [94.4, 94.8] 87.2 [86.5, 87.8] 7.5 17 -4

14 dpn131 94.6 [94.4, 94.8] 87.0 [86.3, 87.7] 7.6 19 -5

15 dpn98 94.5 [94.3, 94.7] 87.2 [86.5, 87.8] 7.3 16 -1

16 se_resnext50_32x4d 94.4 [94.2, 94.6] 87.6 [87.0, 88.3] 6.8 12 4

17 se_resnet152 94.4 [94.2, 94.6] 87.4 [86.7, 88.0] 7.0 15 2

18 xception 94.3 [94.1, 94.5] 87.0 [86.3, 87.7] 7.3 20 -2

19 se_resnet101 94.3 [94.1, 94.5] 87.1 [86.4, 87.7] 7.2 18 1

20 resnext101_64x4d 94.3 [94.0, 94.5] 86.9 [86.2, 87.5] 7.4 22 -2

21 resnet_v2_152_tf 94.1 [93.9, 94.3] 86.9 [86.2, 87.5] 7.2 21 0

22 resnet152 94.0 [93.8, 94.3] 87.6 [86.9, 88.2] 6.5 14 8

23 inception_v3_tf 93.9 [93.7, 94.1] 86.4 [85.7, 87.0] 7.6 23 0

24 resnext101_32x4d 93.9 [93.7, 94.1] 86.2 [85.5, 86.8] 7.7 25 -1

25 se_resnet50 93.8 [93.5, 94.0] 86.3 [85.6, 87.0] 7.4 24 1

26 resnet_v2_101_tf 93.7 [93.5, 93.9] 86.1 [85.4, 86.8] 7.6 27 -1

27 fbresnet152 93.6 [93.4, 93.8] 86.1 [85.4, 86.7] 7.5 28 -1

28 dpn68b 93.6 [93.4, 93.8] 85.3 [84.6, 86.0] 8.3 33 -5

29 densenet161 93.6 [93.3, 93.8] 86.1 [85.4, 86.8] 7.4 26 3

30 resnet101 93.5 [93.3, 93.8] 86.0 [85.3, 86.7] 7.6 30 0

31 inception_v3 93.5 [93.3, 93.7] 85.9 [85.2, 86.6] 7.6 31 0

32 inceptionv3 93.4 [93.2, 93.6] 86.1 [85.4, 86.7] 7.4 29 3

33 densenet201 93.4 [93.1, 93.6] 85.3 [84.6, 86.0] 8.1 34 -1



Do ImageNet Classifiers Generalize to ImageNet?

ImageNet Top-5 MatchedFrequency

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 93.2 [92.9, 93.4] 85.4 [84.6, 86.0] 7.8 32 2

35 resnet_v1_101_tf 92.9 [92.7, 93.1] 85.2 [84.5, 85.9] 7.7 35 0

36 resnet50 92.9 [92.6, 93.1] 84.7 [83.9, 85.4] 8.2 38 -2

37 resnet_v2_50_tf 92.8 [92.6, 93.1] 84.4 [83.6, 85.1] 8.5 40 -3

38 densenet169 92.8 [92.6, 93.0] 84.7 [84.0, 85.4] 8.1 37 1

39 dpn68 92.8 [92.5, 93.0] 84.6 [83.9, 85.3] 8.2 39 0

40 cafferesnet101 92.8 [92.5, 93.0] 84.9 [84.1, 85.6] 7.9 36 4

41 resnet_v1_50_tf 92.2 [92.0, 92.4] 84.1 [83.4, 84.8] 8.1 41 0

42 densenet121 92.0 [91.7, 92.2] 83.8 [83.1, 84.5] 8.2 42 0

43 pnasnet_mobile_tf 91.9 [91.6, 92.1] 83.1 [82.4, 83.8] 8.8 46 -3

44 vgg19_bn 91.8 [91.6, 92.1] 83.5 [82.7, 84.2] 8.4 43 1

45 inception_v2_tf 91.8 [91.5, 92.0] 83.1 [82.3, 83.8] 8.7 47 -2

46 nasnetamobile 91.7 [91.5, 92.0] 83.4 [82.6, 84.1] 8.4 45 1

47 nasnet_mobile_tf 91.6 [91.3, 91.8] 82.2 [81.4, 82.9] 9.4 50 -3

48 bninception 91.6 [91.3, 91.8] 83.4 [82.7, 84.2] 8.1 44 4

49 vgg16_bn 91.5 [91.3, 91.8] 83.0 [82.2, 83.7] 8.6 48 1

50 resnet34 91.4 [91.2, 91.7] 82.7 [82.0, 83.5] 8.7 49 1

51 vgg19 90.9 [90.6, 91.1] 81.5 [80.7, 82.2] 9.4 52 -1

52 vgg16 90.4 [90.1, 90.6] 81.7 [80.9, 82.4] 8.7 51 1

53 vgg13_bn 90.4 [90.1, 90.6] 81.1 [80.3, 81.9] 9.3 53 0

54 mobilenet_v1_tf 90.0 [89.7, 90.2] 79.4 [78.6, 80.1] 10.6 60 -6

56 vgg_19_tf 89.8 [89.6, 90.1] 80.7 [79.9, 81.4] 9.2 54 2

55 vgg_16_tf 89.8 [89.6, 90.1] 80.5 [79.7, 81.3] 9.3 55 0

57 vgg11_bn 89.8 [89.5, 90.1] 80.0 [79.2, 80.8] 9.8 58 -1

58 inception_v1_tf 89.6 [89.4, 89.9] 80.1 [79.3, 80.9] 9.5 57 1

59 vgg13 89.2 [89.0, 89.5] 79.5 [78.7, 80.3] 9.7 59 0

60 resnet18 89.1 [88.8, 89.3] 80.2 [79.4, 81.0] 8.9 56 4

61 vgg11 88.6 [88.3, 88.9] 78.8 [78.0, 79.6] 9.8 61 0

62 squeezenet1_1 80.6 [80.3, 81.0] 69.0 [68.1, 69.9] 11.6 62 0

63 squeezenet1_0 80.4 [80.1, 80.8] 68.5 [67.6, 69.4] 11.9 63 0

64 alexnet 79.1 [78.7, 79.4] 67.4 [66.5, 68.3] 11.7 64 0

65 fv_64k 55.7 [55.3, 56.2] 42.6 [41.6, 43.6] 13.2 65 0

66 fv_16k 49.9 [49.5, 50.4] 37.5 [36.6, 38.5] 12.4 66 0

67 fv_4k 41.3 [40.8, 41.7] 31.0 [30.1, 31.9] 10.3 67 0



Do ImageNet Classifiers Generalize to ImageNet?

Table 16. Top-1 model accuracy on the original ImageNet validation set and our new test set Threshold0.7. ∆ Rank is the relative

difference in the ranking from the original test set to the new test set. For example, ∆Rank = −2 means that a model dropped by two

places on the new test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space

constraints, references for the models can be found in Appendix D.4.3. The second part of the table can be found on the following page.

ImageNet Top-1 Threshold0.7

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 80.2 [79.4, 80.9] 2.7 2 -1

2 pnasnet5large 82.7 [82.4, 83.1] 80.3 [79.5, 81.1] 2.4 1 1

3 nasnet_large_tf 82.7 [82.4, 83.0] 80.1 [79.3, 80.9] 2.6 3 0

4 nasnetalarge 82.5 [82.2, 82.8] 80.0 [79.2, 80.8] 2.5 4 0

5 senet154 81.3 [81.0, 81.6] 78.7 [77.8, 79.5] 2.6 5 0

6 polynet 80.9 [80.5, 81.2] 78.5 [77.7, 79.3] 2.3 6 0

7 inception_resnet_v2_tf 80.4 [80.0, 80.7] 77.9 [77.1, 78.7] 2.5 8 -1

8 inceptionresnetv2 80.3 [79.9, 80.6] 78.0 [77.2, 78.8] 2.3 7 1

9 se_resnext101_32x4d 80.2 [79.9, 80.6] 77.6 [76.8, 78.5] 2.6 11 -2

10 inception_v4_tf 80.2 [79.8, 80.5] 77.8 [77.0, 78.6] 2.4 10 0

11 inceptionv4 80.1 [79.7, 80.4] 77.9 [77.0, 78.7] 2.2 9 2

12 dpn107 79.7 [79.4, 80.1] 76.6 [75.8, 77.5] 3.1 12 0

13 dpn131 79.4 [79.1, 79.8] 76.6 [75.7, 77.4] 2.9 13 0

14 dpn92 79.4 [79.0, 79.8] 76.3 [75.5, 77.1] 3.1 17 -3

15 dpn98 79.2 [78.9, 79.6] 76.3 [75.5, 77.2] 2.9 16 -1

16 se_resnext50_32x4d 79.1 [78.7, 79.4] 76.5 [75.7, 77.3] 2.6 14 2

17 resnext101_64x4d 79.0 [78.6, 79.3] 75.6 [74.7, 76.4] 3.4 20 -3

18 xception 78.8 [78.5, 79.2] 76.4 [75.5, 77.2] 2.5 15 3

19 se_resnet152 78.7 [78.3, 79.0] 76.1 [75.3, 76.9] 2.5 18 1

20 se_resnet101 78.4 [78.0, 78.8] 75.8 [75.0, 76.7] 2.6 19 1

21 resnet152 78.3 [77.9, 78.7] 75.3 [74.5, 76.2] 3.0 22 -1

22 resnext101_32x4d 78.2 [77.8, 78.5] 75.4 [74.5, 76.2] 2.8 21 1

23 inception_v3_tf 78.0 [77.6, 78.3] 75.0 [74.2, 75.9] 2.9 24 -1

24 resnet_v2_152_tf 77.8 [77.4, 78.1] 75.2 [74.4, 76.1] 2.6 23 1

25 se_resnet50 77.6 [77.3, 78.0] 74.2 [73.3, 75.1] 3.4 30 -5

26 fbresnet152 77.4 [77.0, 77.8] 74.8 [74.0, 75.7] 2.6 25 1

27 resnet101 77.4 [77.0, 77.7] 74.5 [73.6, 75.3] 2.9 29 -2

28 inceptionv3 77.3 [77.0, 77.7] 74.5 [73.6, 75.4] 2.8 28 0

29 inception_v3 77.2 [76.8, 77.6] 74.7 [73.8, 75.6] 2.5 26 3

30 densenet161 77.1 [76.8, 77.5] 74.6 [73.7, 75.4] 2.6 27 3

31 dpn68b 77.0 [76.7, 77.4] 73.8 [72.9, 74.7] 3.2 33 -2

32 resnet_v2_101_tf 77.0 [76.6, 77.3] 74.0 [73.1, 74.8] 3.0 31 1

33 densenet201 76.9 [76.5, 77.3] 73.9 [73.1, 74.8] 3.0 32 1



Do ImageNet Classifiers Generalize to ImageNet?

ImageNet Top-1 Threshold0.7

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 76.8 [76.4, 77.2] 73.7 [72.9, 74.6] 3.1 34 0

35 resnet_v1_101_tf 76.4 [76.0, 76.8] 73.4 [72.5, 74.2] 3.0 35 0

36 cafferesnet101 76.2 [75.8, 76.6] 72.9 [72.0, 73.7] 3.3 37 -1

37 resnet50 76.1 [75.8, 76.5] 72.7 [71.8, 73.6] 3.4 38 -1

38 dpn68 75.9 [75.5, 76.2] 73.0 [72.1, 73.8] 2.9 36 2

39 densenet169 75.6 [75.2, 76.0] 72.3 [71.4, 73.1] 3.3 40 -1

40 resnet_v2_50_tf 75.6 [75.2, 76.0] 72.3 [71.4, 73.2] 3.3 39 1

41 resnet_v1_50_tf 75.2 [74.8, 75.6] 71.9 [71.0, 72.8] 3.3 41 0

42 densenet121 74.4 [74.0, 74.8] 70.5 [69.6, 71.4] 3.9 47 -5

43 vgg19_bn 74.2 [73.8, 74.6] 71.4 [70.5, 72.3] 2.8 42 1

44 pnasnet_mobile_tf 74.1 [73.8, 74.5] 70.6 [69.7, 71.5] 3.6 46 -2

45 nasnetamobile 74.1 [73.7, 74.5] 70.9 [70.0, 71.8] 3.2 45 0

46 inception_v2_tf 74.0 [73.6, 74.4] 71.1 [70.2, 72.0] 2.9 44 2

47 nasnet_mobile_tf 74.0 [73.6, 74.4] 70.0 [69.0, 70.8] 4.0 50 -3

48 bninception 73.5 [73.1, 73.9] 71.3 [70.4, 72.2] 2.2 43 5

49 vgg16_bn 73.4 [73.0, 73.7] 70.2 [69.3, 71.1] 3.1 48 1

50 resnet34 73.3 [72.9, 73.7] 70.2 [69.2, 71.0] 3.2 49 1

51 vgg19 72.4 [72.0, 72.8] 68.7 [67.8, 69.6] 3.7 51 0

52 vgg16 71.6 [71.2, 72.0] 68.0 [67.0, 68.9] 3.6 52 0

53 vgg13_bn 71.6 [71.2, 72.0] 67.3 [66.4, 68.2] 4.3 55 -2

54 mobilenet_v1_tf 71.0 [70.6, 71.4] 66.1 [65.2, 67.0] 4.9 59 -5

55 vgg_19_tf 71.0 [70.6, 71.4] 67.4 [66.5, 68.3] 3.6 54 1

56 vgg_16_tf 70.9 [70.5, 71.3] 67.6 [66.7, 68.5] 3.3 53 3

57 vgg11_bn 70.4 [70.0, 70.8] 66.4 [65.5, 67.3] 4.0 58 -1

58 vgg13 69.9 [69.5, 70.3] 66.0 [65.0, 66.9] 4.0 60 -2

59 inception_v1_tf 69.8 [69.4, 70.2] 66.4 [65.5, 67.4] 3.3 57 2

60 resnet18 69.8 [69.4, 70.2] 66.6 [65.7, 67.5] 3.2 56 4

61 vgg11 69.0 [68.6, 69.4] 64.6 [63.7, 65.6] 4.4 61 0

62 squeezenet1_1 58.2 [57.7, 58.6] 54.4 [53.4, 55.4] 3.8 62 0

63 squeezenet1_0 58.1 [57.7, 58.5] 53.4 [52.4, 54.4] 4.7 63 0

64 alexnet 56.5 [56.1, 57.0] 51.3 [50.3, 52.3] 5.2 64 0

65 fv_64k 35.1 [34.7, 35.5] 29.1 [28.2, 30.0] 6.0 65 0

66 fv_16k 28.3 [27.9, 28.7] 23.4 [22.5, 24.2] 5.0 66 0

67 fv_4k 21.2 [20.8, 21.5] 17.8 [17.0, 18.5] 3.4 67 0



Do ImageNet Classifiers Generalize to ImageNet?

Table 17. Top-5 model accuracy on the original ImageNet validation set and our new test set Threshold0.7. ∆ Rank is the relative

difference in the ranking from the original test set to the new test set. For example, ∆Rank = −2 means that a model dropped by two

places on the new test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space

constraints, references for the models can be found in Appendix D.4.3. The second part of the table can be found on the following page.

ImageNet Top-5 Threshold0.7

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 96.2 [96.0, 96.3] 95.6 [95.2, 96.0] 0.6 2 -1

2 nasnet_large_tf 96.2 [96.0, 96.3] 95.7 [95.2, 96.0] 0.5 1 1

3 nasnetalarge 96.0 [95.8, 96.2] 95.3 [94.9, 95.8] 0.7 4 -1

4 pnasnet5large 96.0 [95.8, 96.2] 95.5 [95.0, 95.9] 0.5 3 1

5 polynet 95.6 [95.4, 95.7] 94.9 [94.4, 95.3] 0.7 5 0

6 senet154 95.5 [95.3, 95.7] 94.8 [94.3, 95.2] 0.7 6 0

7 inception_resnet_v2_tf 95.2 [95.1, 95.4] 94.7 [94.2, 95.1] 0.6 7 0

8 inception_v4_tf 95.2 [95.0, 95.4] 94.4 [94.0, 94.9] 0.8 9 -1

9 inceptionresnetv2 95.1 [94.9, 95.3] 94.5 [94.1, 95.0] 0.6 8 1

10 se_resnext101_32x4d 95.0 [94.8, 95.2] 94.3 [93.8, 94.7] 0.7 11 -1

11 inceptionv4 94.9 [94.7, 95.1] 94.3 [93.8, 94.7] 0.6 10 1

12 dpn107 94.7 [94.5, 94.9] 93.7 [93.2, 94.2] 1.0 12 0

13 dpn92 94.6 [94.4, 94.8] 93.7 [93.2, 94.2] 0.9 14 -1

14 dpn131 94.6 [94.4, 94.8] 93.5 [92.9, 93.9] 1.1 20 -6

15 dpn98 94.5 [94.3, 94.7] 93.6 [93.1, 94.1] 0.9 17 -2

16 se_resnext50_32x4d 94.4 [94.2, 94.6] 93.6 [93.1, 94.1] 0.8 16 0

17 se_resnet152 94.4 [94.2, 94.6] 93.7 [93.2, 94.2] 0.7 13 4

18 xception 94.3 [94.1, 94.5] 93.6 [93.1, 94.1] 0.7 18 0

19 se_resnet101 94.3 [94.1, 94.5] 93.6 [93.1, 94.0] 0.7 19 0

20 resnext101_64x4d 94.3 [94.0, 94.5] 93.3 [92.8, 93.8] 0.9 22 -2

21 resnet_v2_152_tf 94.1 [93.9, 94.3] 93.4 [92.9, 93.9] 0.7 21 0

22 resnet152 94.0 [93.8, 94.3] 93.7 [93.2, 94.2] 0.4 15 7

23 inception_v3_tf 93.9 [93.7, 94.1] 92.8 [92.3, 93.3] 1.1 25 -2

24 resnext101_32x4d 93.9 [93.7, 94.1] 92.7 [92.2, 93.2] 1.2 28 -4

25 se_resnet50 93.8 [93.5, 94.0] 93.0 [92.4, 93.5] 0.8 24 1

26 resnet_v2_101_tf 93.7 [93.5, 93.9] 93.2 [92.7, 93.7] 0.5 23 3

27 fbresnet152 93.6 [93.4, 93.8] 92.7 [92.1, 93.2] 0.9 29 -2

28 dpn68b 93.6 [93.4, 93.8] 92.7 [92.1, 93.2] 0.9 31 -3

29 densenet161 93.6 [93.3, 93.8] 92.8 [92.3, 93.3] 0.8 26 3

30 resnet101 93.5 [93.3, 93.8] 92.8 [92.3, 93.3] 0.8 27 3

31 inception_v3 93.5 [93.3, 93.7] 92.7 [92.1, 93.2] 0.9 30 1

32 inceptionv3 93.4 [93.2, 93.6] 92.6 [92.1, 93.1] 0.8 32 0

33 densenet201 93.4 [93.1, 93.6] 92.4 [91.9, 92.9] 1.0 33 0



Do ImageNet Classifiers Generalize to ImageNet?

ImageNet Top-5 Threshold0.7

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 93.2 [92.9, 93.4] 92.2 [91.7, 92.7] 1.0 34 0

35 resnet_v1_101_tf 92.9 [92.7, 93.1] 92.0 [91.5, 92.5] 0.9 36 -1

36 resnet50 92.9 [92.6, 93.1] 92.0 [91.5, 92.5] 0.9 37 -1

37 resnet_v2_50_tf 92.8 [92.6, 93.1] 91.9 [91.4, 92.5] 0.9 38 -1

38 densenet169 92.8 [92.6, 93.0] 91.9 [91.4, 92.4] 0.9 39 -1

39 dpn68 92.8 [92.5, 93.0] 92.1 [91.5, 92.6] 0.7 35 4

40 cafferesnet101 92.8 [92.5, 93.0] 91.6 [91.1, 92.2] 1.1 40 0

41 resnet_v1_50_tf 92.2 [92.0, 92.4] 91.1 [90.6, 91.7] 1.0 41 0

42 densenet121 92.0 [91.7, 92.2] 91.1 [90.5, 91.6] 0.9 42 0

43 pnasnet_mobile_tf 91.9 [91.6, 92.1] 90.7 [90.1, 91.3] 1.1 47 -4

44 vgg19_bn 91.8 [91.6, 92.1] 91.0 [90.4, 91.5] 0.9 44 0

45 inception_v2_tf 91.8 [91.5, 92.0] 91.0 [90.5, 91.6] 0.7 43 2

46 nasnetamobile 91.7 [91.5, 92.0] 90.9 [90.3, 91.4] 0.9 46 0

47 nasnet_mobile_tf 91.6 [91.3, 91.8] 90.1 [89.5, 90.7] 1.4 50 -3

48 bninception 91.6 [91.3, 91.8] 90.9 [90.3, 91.5] 0.7 45 3

49 vgg16_bn 91.5 [91.3, 91.8] 90.4 [89.8, 90.9] 1.1 49 0

50 resnet34 91.4 [91.2, 91.7] 90.5 [89.9, 91.0] 1.0 48 2

51 vgg19 90.9 [90.6, 91.1] 89.7 [89.1, 90.3] 1.2 51 0

52 vgg16 90.4 [90.1, 90.6] 88.8 [88.1, 89.4] 1.6 53 -1

53 vgg13_bn 90.4 [90.1, 90.6] 89.0 [88.3, 89.6] 1.4 52 1

54 mobilenet_v1_tf 90.0 [89.7, 90.2] 87.6 [86.9, 88.2] 2.4 60 -6

56 vgg_19_tf 89.8 [89.6, 90.1] 88.5 [87.8, 89.1] 1.4 55 1

55 vgg_16_tf 89.8 [89.6, 90.1] 88.6 [87.9, 89.2] 1.3 54 1

57 vgg11_bn 89.8 [89.5, 90.1] 88.3 [87.6, 88.9] 1.5 56 1

58 inception_v1_tf 89.6 [89.4, 89.9] 88.1 [87.4, 88.7] 1.5 57 1

59 vgg13 89.2 [89.0, 89.5] 87.6 [86.9, 88.2] 1.6 59 0

60 resnet18 89.1 [88.8, 89.3] 88.1 [87.4, 88.7] 1.0 58 2

61 vgg11 88.6 [88.3, 88.9] 86.9 [86.2, 87.5] 1.7 61 0

62 squeezenet1_1 80.6 [80.3, 81.0] 78.0 [77.2, 78.8] 2.6 62 0

63 squeezenet1_0 80.4 [80.1, 80.8] 77.7 [76.9, 78.5] 2.7 63 0

64 alexnet 79.1 [78.7, 79.4] 75.9 [75.0, 76.7] 3.2 64 0

65 fv_64k 55.7 [55.3, 56.2] 49.8 [48.8, 50.7] 6.0 65 0

66 fv_16k 49.9 [49.5, 50.4] 44.2 [43.2, 45.2] 5.7 66 0

67 fv_4k 41.3 [40.8, 41.7] 36.5 [35.6, 37.5] 4.8 67 0



Do ImageNet Classifiers Generalize to ImageNet?

Table 18. Top-1 model accuracy on the original ImageNet validation set and our new test set TopImages. ∆ Rank is the relative difference

in the ranking from the original test set to the new test set. For example, ∆Rank = −2 means that a model dropped by two places on the

new test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space constraints,

references for the models can be found in Appendix D.4.3. The second part of the table can be found on the following page.

ImageNet Top-1 TopImages

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 83.9 [83.2, 84.6] -1.0 3 -2

2 pnasnet5large 82.7 [82.4, 83.1] 83.9 [83.1, 84.6] -1.1 4 -2

3 nasnet_large_tf 82.7 [82.4, 83.0] 84.0 [83.3, 84.7] -1.3 2 1

4 nasnetalarge 82.5 [82.2, 82.8] 84.2 [83.4, 84.9] -1.7 1 3

5 senet154 81.3 [81.0, 81.6] 82.8 [82.1, 83.6] -1.5 6 -1

6 polynet 80.9 [80.5, 81.2] 83.0 [82.2, 83.7] -2.1 5 1

7 inception_resnet_v2_tf 80.4 [80.0, 80.7] 82.5 [81.7, 83.2] -2.1 8 -1

8 inceptionresnetv2 80.3 [79.9, 80.6] 82.8 [82.0, 83.5] -2.5 7 1

9 se_resnext101_32x4d 80.2 [79.9, 80.6] 82.2 [81.5, 83.0] -2.0 11 -2

10 inception_v4_tf 80.2 [79.8, 80.5] 82.3 [81.5, 83.0] -2.1 9 1

11 inceptionv4 80.1 [79.7, 80.4] 82.3 [81.5, 83.0] -2.2 10 1

12 dpn107 79.7 [79.4, 80.1] 81.4 [80.6, 82.1] -1.6 13 -1

13 dpn131 79.4 [79.1, 79.8] 81.3 [80.5, 82.1] -1.9 15 -2

14 dpn92 79.4 [79.0, 79.8] 81.2 [80.5, 82.0] -1.8 16 -2

15 dpn98 79.2 [78.9, 79.6] 81.5 [80.7, 82.3] -2.3 12 3

16 se_resnext50_32x4d 79.1 [78.7, 79.4] 81.4 [80.6, 82.1] -2.3 14 2

17 resnext101_64x4d 79.0 [78.6, 79.3] 80.3 [79.5, 81.0] -1.3 22 -5

18 xception 78.8 [78.5, 79.2] 81.0 [80.2, 81.8] -2.2 18 0

19 se_resnet152 78.7 [78.3, 79.0] 81.0 [80.3, 81.8] -2.4 17 2

20 se_resnet101 78.4 [78.0, 78.8] 80.5 [79.7, 81.3] -2.1 19 1

21 resnet152 78.3 [77.9, 78.7] 80.3 [79.5, 81.1] -2.0 21 0

22 resnext101_32x4d 78.2 [77.8, 78.5] 79.9 [79.1, 80.6] -1.7 26 -4

23 inception_v3_tf 78.0 [77.6, 78.3] 80.1 [79.3, 80.9] -2.1 23 0

24 resnet_v2_152_tf 77.8 [77.4, 78.1] 80.3 [79.5, 81.1] -2.6 20 4

25 se_resnet50 77.6 [77.3, 78.0] 79.4 [78.6, 80.2] -1.8 31 -6

26 fbresnet152 77.4 [77.0, 77.8] 80.1 [79.3, 80.9] -2.7 24 2

27 resnet101 77.4 [77.0, 77.7] 79.0 [78.2, 79.8] -1.7 32 -5

28 inceptionv3 77.3 [77.0, 77.7] 79.6 [78.8, 80.4] -2.3 27 1

29 inception_v3 77.2 [76.8, 77.6] 79.6 [78.8, 80.4] -2.4 28 1

30 densenet161 77.1 [76.8, 77.5] 79.5 [78.7, 80.3] -2.4 29 1

31 dpn68b 77.0 [76.7, 77.4] 79.4 [78.6, 80.2] -2.4 30 1

32 resnet_v2_101_tf 77.0 [76.6, 77.3] 80.1 [79.3, 80.8] -3.1 25 7

33 densenet201 76.9 [76.5, 77.3] 79.0 [78.1, 79.7] -2.1 34 -1
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ImageNet Top-1 TopImages

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 76.8 [76.4, 77.2] 79.0 [78.2, 79.8] -2.2 33 1

35 resnet_v1_101_tf 76.4 [76.0, 76.8] 78.6 [77.8, 79.4] -2.2 35 0

36 cafferesnet101 76.2 [75.8, 76.6] 78.3 [77.4, 79.1] -2.1 37 -1

37 resnet50 76.1 [75.8, 76.5] 78.1 [77.3, 78.9] -2.0 38 -1

38 dpn68 75.9 [75.5, 76.2] 78.4 [77.6, 79.2] -2.6 36 2

39 densenet169 75.6 [75.2, 76.0] 78.0 [77.2, 78.8] -2.4 39 0

40 resnet_v2_50_tf 75.6 [75.2, 76.0] 78.0 [77.2, 78.8] -2.4 40 0

41 resnet_v1_50_tf 75.2 [74.8, 75.6] 77.0 [76.2, 77.9] -1.8 41 0

42 densenet121 74.4 [74.0, 74.8] 76.8 [75.9, 77.6] -2.3 45 -3

43 vgg19_bn 74.2 [73.8, 74.6] 76.6 [75.7, 77.4] -2.3 46 -3

44 pnasnet_mobile_tf 74.1 [73.8, 74.5] 76.8 [76.0, 77.6] -2.7 44 0

45 nasnetamobile 74.1 [73.7, 74.5] 76.4 [75.5, 77.2] -2.3 47 -2

46 inception_v2_tf 74.0 [73.6, 74.4] 77.0 [76.1, 77.8] -3.0 43 3

47 nasnet_mobile_tf 74.0 [73.6, 74.4] 76.0 [75.1, 76.8] -2.0 49 -2

48 bninception 73.5 [73.1, 73.9] 77.0 [76.1, 77.8] -3.4 42 6

49 vgg16_bn 73.4 [73.0, 73.7] 75.9 [75.1, 76.8] -2.6 50 -1

50 resnet34 73.3 [72.9, 73.7] 76.3 [75.4, 77.1] -3.0 48 2

51 vgg19 72.4 [72.0, 72.8] 74.2 [73.3, 75.0] -1.8 51 0

52 vgg16 71.6 [71.2, 72.0] 73.9 [73.0, 74.7] -2.3 52 0

53 vgg13_bn 71.6 [71.2, 72.0] 73.5 [72.7, 74.4] -1.9 55 -2

54 mobilenet_v1_tf 71.0 [70.6, 71.4] 72.4 [71.5, 73.3] -1.4 59 -5

55 vgg_19_tf 71.0 [70.6, 71.4] 73.6 [72.7, 74.5] -2.6 53 2

56 vgg_16_tf 70.9 [70.5, 71.3] 73.5 [72.7, 74.4] -2.6 54 2

57 vgg11_bn 70.4 [70.0, 70.8] 73.0 [72.1, 73.8] -2.6 58 -1

58 vgg13 69.9 [69.5, 70.3] 72.0 [71.1, 72.9] -2.1 60 -2

59 inception_v1_tf 69.8 [69.4, 70.2] 73.1 [72.2, 73.9] -3.3 56 3

60 resnet18 69.8 [69.4, 70.2] 73.0 [72.2, 73.9] -3.3 57 3

61 vgg11 69.0 [68.6, 69.4] 70.8 [69.9, 71.7] -1.8 61 0

62 squeezenet1_1 58.2 [57.7, 58.6] 61.7 [60.7, 62.6] -3.5 62 0

63 squeezenet1_0 58.1 [57.7, 58.5] 60.7 [59.7, 61.7] -2.6 63 0

64 alexnet 56.5 [56.1, 57.0] 58.2 [57.2, 59.1] -1.7 64 0

65 fv_64k 35.1 [34.7, 35.5] 34.2 [33.3, 35.2] 0.8 65 0

66 fv_16k 28.3 [27.9, 28.7] 27.4 [26.6, 28.3] 0.9 66 0

67 fv_4k 21.2 [20.8, 21.5] 21.1 [20.3, 21.9] 0.1 67 0
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Table 19. Top-5 model accuracy on the original ImageNet validation set and our new test set TopImages. ∆ Rank is the relative difference

in the ranking from the original test set to the new test set. For example, ∆Rank = −2 means that a model dropped by two places on the

new test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space constraints,

references for the models can be found in Appendix D.4.3. The second part of the table can be found on the following page.

ImageNet Top-5 TopImages

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 96.2 [96.0, 96.3] 97.2 [96.9, 97.5] -1.0 2 -1

2 nasnet_large_tf 96.2 [96.0, 96.3] 97.2 [96.9, 97.5] -1.0 1 1

3 nasnetalarge 96.0 [95.8, 96.2] 97.1 [96.7, 97.4] -1.1 3 0

4 pnasnet5large 96.0 [95.8, 96.2] 96.9 [96.6, 97.2] -0.9 4 0

5 polynet 95.6 [95.4, 95.7] 96.8 [96.4, 97.1] -1.2 5 0

6 senet154 95.5 [95.3, 95.7] 96.6 [96.2, 97.0] -1.1 8 -2

7 inception_resnet_v2_tf 95.2 [95.1, 95.4] 96.8 [96.4, 97.1] -1.5 6 1

8 inception_v4_tf 95.2 [95.0, 95.4] 96.5 [96.1, 96.9] -1.3 9 -1

9 inceptionresnetv2 95.1 [94.9, 95.3] 96.7 [96.3, 97.0] -1.5 7 2

10 se_resnext101_32x4d 95.0 [94.8, 95.2] 96.2 [95.8, 96.6] -1.2 11 -1

11 inceptionv4 94.9 [94.7, 95.1] 96.4 [96.0, 96.7] -1.5 10 1

12 dpn107 94.7 [94.5, 94.9] 96.0 [95.6, 96.4] -1.4 13 -1

13 dpn92 94.6 [94.4, 94.8] 95.9 [95.5, 96.3] -1.3 17 -4

14 dpn131 94.6 [94.4, 94.8] 96.0 [95.6, 96.4] -1.5 14 0

15 dpn98 94.5 [94.3, 94.7] 96.0 [95.6, 96.4] -1.5 15 0

16 se_resnext50_32x4d 94.4 [94.2, 94.6] 95.9 [95.5, 96.3] -1.5 18 -2

17 se_resnet152 94.4 [94.2, 94.6] 95.9 [95.5, 96.3] -1.5 19 -2

18 xception 94.3 [94.1, 94.5] 95.9 [95.5, 96.3] -1.6 20 -2

19 se_resnet101 94.3 [94.1, 94.5] 95.9 [95.5, 96.3] -1.6 21 -2

20 resnext101_64x4d 94.3 [94.0, 94.5] 95.7 [95.3, 96.1] -1.5 23 -3

21 resnet_v2_152_tf 94.1 [93.9, 94.3] 96.0 [95.6, 96.3] -1.9 16 5

22 resnet152 94.0 [93.8, 94.3] 96.2 [95.8, 96.5] -2.1 12 10

23 inception_v3_tf 93.9 [93.7, 94.1] 95.5 [95.1, 95.9] -1.5 25 -2

24 resnext101_32x4d 93.9 [93.7, 94.1] 95.2 [94.8, 95.6] -1.3 31 -7

25 se_resnet50 93.8 [93.5, 94.0] 95.5 [95.1, 95.9] -1.8 24 1

26 resnet_v2_101_tf 93.7 [93.5, 93.9] 95.8 [95.4, 96.2] -2.1 22 4

27 fbresnet152 93.6 [93.4, 93.8] 95.2 [94.8, 95.7] -1.7 28 -1

28 dpn68b 93.6 [93.4, 93.8] 95.2 [94.8, 95.6] -1.6 32 -4

29 densenet161 93.6 [93.3, 93.8] 95.2 [94.8, 95.6] -1.7 29 0

30 resnet101 93.5 [93.3, 93.8] 95.4 [95.0, 95.8] -1.9 26 4

31 inception_v3 93.5 [93.3, 93.7] 95.1 [94.7, 95.5] -1.6 34 -3

32 inceptionv3 93.4 [93.2, 93.6] 95.2 [94.8, 95.6] -1.8 30 2

33 densenet201 93.4 [93.1, 93.6] 95.2 [94.8, 95.7] -1.9 27 6
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ImageNet Top-5 TopImages

Orig. New

Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 93.2 [92.9, 93.4] 95.2 [94.7, 95.6] -2.0 33 1

35 resnet_v1_101_tf 92.9 [92.7, 93.1] 94.9 [94.4, 95.3] -2.0 35 0

36 resnet50 92.9 [92.6, 93.1] 94.7 [94.2, 95.1] -1.8 39 -3

37 resnet_v2_50_tf 92.8 [92.6, 93.1] 94.8 [94.3, 95.2] -1.9 37 0

38 densenet169 92.8 [92.6, 93.0] 94.7 [94.2, 95.1] -1.9 38 0

39 dpn68 92.8 [92.5, 93.0] 94.8 [94.3, 95.2] -2.0 36 3

40 cafferesnet101 92.8 [92.5, 93.0] 94.6 [94.1, 95.0] -1.8 40 0

41 resnet_v1_50_tf 92.2 [92.0, 92.4] 94.2 [93.8, 94.7] -2.1 41 0

42 densenet121 92.0 [91.7, 92.2] 94.0 [93.5, 94.5] -2.0 46 -4

43 pnasnet_mobile_tf 91.9 [91.6, 92.1] 94.1 [93.6, 94.5] -2.2 44 -1

44 vgg19_bn 91.8 [91.6, 92.1] 94.0 [93.5, 94.4] -2.1 47 -3

45 inception_v2_tf 91.8 [91.5, 92.0] 94.2 [93.7, 94.7] -2.5 42 3

46 nasnetamobile 91.7 [91.5, 92.0] 94.1 [93.6, 94.5] -2.3 43 3

47 nasnet_mobile_tf 91.6 [91.3, 91.8] 93.8 [93.4, 94.3] -2.3 49 -2

48 bninception 91.6 [91.3, 91.8] 94.0 [93.6, 94.5] -2.5 45 3

49 vgg16_bn 91.5 [91.3, 91.8] 93.7 [93.2, 94.1] -2.1 50 -1

50 resnet34 91.4 [91.2, 91.7] 93.9 [93.4, 94.3] -2.5 48 2

51 vgg19 90.9 [90.6, 91.1] 92.8 [92.2, 93.3] -1.9 51 0

52 vgg16 90.4 [90.1, 90.6] 92.5 [92.0, 93.0] -2.1 53 -1

53 vgg13_bn 90.4 [90.1, 90.6] 92.6 [92.1, 93.1] -2.2 52 1

54 mobilenet_v1_tf 90.0 [89.7, 90.2] 91.4 [90.8, 91.9] -1.4 59 -5

56 vgg_19_tf 89.8 [89.6, 90.1] 92.1 [91.5, 92.6] -2.2 56 0

55 vgg_16_tf 89.8 [89.6, 90.1] 92.2 [91.6, 92.7] -2.3 54 1

57 vgg11_bn 89.8 [89.5, 90.1] 91.9 [91.4, 92.5] -2.1 58 -1

58 inception_v1_tf 89.6 [89.4, 89.9] 92.1 [91.6, 92.6] -2.5 55 3

59 vgg13 89.2 [89.0, 89.5] 91.4 [90.8, 91.9] -2.2 60 -1

60 resnet18 89.1 [88.8, 89.3] 92.0 [91.4, 92.5] -2.9 57 3

61 vgg11 88.6 [88.3, 88.9] 91.0 [90.4, 91.5] -2.4 61 0

62 squeezenet1_1 80.6 [80.3, 81.0] 83.9 [83.1, 84.6] -3.2 62 0

63 squeezenet1_0 80.4 [80.1, 80.8] 83.5 [82.8, 84.3] -3.1 63 0

64 alexnet 79.1 [78.7, 79.4] 81.8 [81.0, 82.6] -2.7 64 0

65 fv_64k 55.7 [55.3, 56.2] 55.9 [54.9, 56.8] -0.1 65 0

66 fv_16k 49.9 [49.5, 50.4] 49.8 [48.8, 50.8] 0.1 66 0

67 fv_4k 41.3 [40.8, 41.7] 41.9 [40.9, 42.8] -0.6 67 0
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D.4.5. ACCURACY PLOTS FOR ALL IMAGENET TEST

SETS

Figure 12 shows the top-1 and top-5 accuracies for our three

test sets and all convolutional networks in our model testbed.

Figure 13 shows the accuracies for all models (including

Fisher Vector models) with a probit scale on the axes.

D.4.6. EXAMPLE IMAGES

Figure 14 shows randomly selected images for three ran-

domly selected classes for both the original ImageNet vali-

dation set and our three new test sets.

D.4.7. EFFECT OF SELECTION FREQUENCY ON MODEL

ACCURACY

To better understand how the selection frequency of an

image impacts the model accuracies, Figures 15, 16, and

17 show model accuracies stratified into five selection fre-

quency bins.

D.4.8. AMBIGUOUS CLASS EXAMPLES

Figure 18 shows randomly selected images from the origi-

nal ImageNet validation set for three pairs of classes with

ambiguous class boundaries. We remark that several more

classes in ImageNet have ill-defined boundaries. The three

pairs of classes here were chosen only as illustrative exam-

ples.

The following list shows names and definitions for the three

class pairs:

• Pair 1

a. projectile, missile: “a weapon that is

forcibly thrown or projected at a targets but is not

self-propelled”

b. missile: “a rocket carrying a warhead of con-

ventional or nuclear explosives; may be ballistic

or directed by remote control”

• Pair 2

c. tusker: “any mammal with prominent tusks

(especially an elephant or wild boar)”

d. Indian elephant, Elephas maximus:

“Asian elephant having smaller ears and tusks

primarily in the male”

• Pair 3

e. screen, CRT screen: “the display that is

electronically created on the surface of the large

end of a cathode-ray tube”

f. monitor: “electronic equipment that is used to

15Test Set A is the original validation set, Test Set B is the
MatchedFrequencydataset, Test Set C is the Threshold0.7, Test
set D is TopImages.

check the quality or content of electronic trans-

missions”
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Figure 12. Model accuracy on the original ImageNet validation set vs. our new test sets. See Section 4 for a description of these test

sets. Each data point corresponds to one model in our testbed (shown with 95% Clopper-Pearson confidence intervals). The red shaded

region is a 95% confidence region for the linear fit from 100,000 bootstrap samples. For MatchedFrequency, the accuracies on the

new test set are significantly below the original accuracies. The accuracies for Threshold0.7 are still below the original counterpart, but

for TopImages they improve over the original test accuracies. This shows that small variations in the data generation process can have

significant impact on the accuracy scores. As for CIFAR-10, all plots reveal an approximatly linear relationship between original and new

test accuracy. Only the slope for the top-5 accuracies on TopImages is significantly smaller than 1 (0.88, 95% confidence interval from

100,000 bootstrap samples: [0.81, 0.91]). It is unclear if this is a sign of adaptive overfitting or due to the models approaching the 100%

accuracy regime. Investigating this further is an interesting question for future work.
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Figure 13. Model accuracy on the original ImageNet validation set vs. our new test sets. The structure of the plots is similar to Figure 12

and we refer the reader to the description there. In contrast to Figure 12, the plots here contain also the Fisher Vector models. Moreover,

the axes are scaled according to the probit transformation, i.e., accuracy α appears at Φ−1(α), where Φ is the Gaussian CDF. For all three

datasets and both top-1 and top-5 accuracy, the plots reveal a good linear fit in the probit domain spanning around 60 percentage points of

accuracy. All plots include a 95% confidence region for the linear fit as in Figure 12, but the red shaded region is hard to see in some of

the plots due to its small size.
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(a) Test Set A

(b) Test Set B

(c) Test Set C

(d) Test Set D

Figure 14. Randomly selected images from the original ImageNet validation set and our new ImageNet test sets. We display four images

from three randomly selected classes for each of the four datasets (the original validation set and our three test sets described in Section

4). The displayed classes are “Cypripedium calceolus”, “gyromitra”, and “mongoose”. The following footnote reveals which datasets

correspond to original and new ImageNet test sets. 15
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Figure 15. Model accuracy on the original ImageNet validation set vs. accuracy on our new test set MatchedFrequency, stratified into

five selection frequency bins. Every bin contains the images with MTurk selection frequency falling into the corresponding range. Each

data point corresponds to one model and one of the five frequency bins (indicated by the different colors). The x-value of each data point

is given by the model’s accuracy on the entire original validation set. The y-value is given by the model’s accuracy on our new test images

falling into the respective selection frequency bin. The plot shows that the selection frequency has strong influence on the model accuracy.

For instance, images with selection frequencies in the [0.4, 0.6) bin lead to an average model accuracy about 20% lower than for the

entire test set MatchedFrequency, and 30% lower than the original validation set. We remark that we manually reviewed all images in

MatchedFrequency to ensure that (almost) all images have the correct class label, regardless of selection frequency bin.
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Figure 16. Model accuracy on the original ImageNet validation set stratified into five selection frequency bins. This plot has a similar

structure as Figure 15 above, but contains the original validation set accuracy on both axes (as before, the images are binned on the y-axis

and not binned on the x-axis, i.e., the x-value is the accuracy on the entire validation set). The plot shows that the selection frequency has

strong influence on the model accuracy on the original ImageNet validation set as well. For instance, images with selection frequencies in

the [0.4, 0.6) bin lead to an average model accuracy about 10 – 15% lower than for the entire validation set.
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Figure 17. Model accuracy on the original ImageNet validation set vs. accuracy on our new test set MatchedFrequency. In contrast

to the preceding Figures 15 and 16, both original and new test accuracy is now stratified into five selection frequency bins. Each data

point corresponds to the accuracy achieved by one model on the images from one of the five frequency bins (indicated by the different

colors). The plot shows that the model accuracies in the various bins are strongly correlated, but the accuracy on images in our new test is

consistently lower. The gap is largest for images in the middle frequency bins (about 20% accuracy difference) and smallest for images in

the lowest and highest frequency bins (5 – 10 % difference).
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(a) projectile, missile (b) missile

(c) tusker (d) Indian elephant, Elephas maximus

(e) screen, CRT screen (f) monitor

Figure 18. Random images from the original ImageNet validation set for three pairs of classes with ambiguous class boundaries.


