Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht* 1 Rebecca Roelofs 1 Ludwig Schmidt 1 Vaishaal Shankar 1

Abstract
We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% – 15% on CIFAR-10 and 11% – 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to generalize to slightly “harder” images than those found in the original test sets.

1. Introduction
The overarching goal of machine learning is to produce models that generalize. We usually quantify generalization by measuring the performance of a model on a held-out test set. What does good performance on the test set then imply? At the very least, one would hope that the model also performs well on a new test set assembled from the same data source by following the same data cleaning protocol.

In this paper, we realize this thought experiment by replicating the dataset creation process for two prominent benchmarks, CIFAR-10 and ImageNet (Deng et al., 2009; Krizhevsky, 2009). In contrast to the ideal outcome, we find that a wide range of classification models fail to reach their original accuracy scores. The accuracy drops range from 3% to 15% on CIFAR-10 and 11% to 14% on ImageNet. On ImageNet, the accuracy loss amounts to approximately five years of progress in a highly active period of machine learning research.

Conventional wisdom suggests that such drops arise because the models have been adapted to the specific images in the original test sets, e.g., via extensive hyperparameter tuning. However, our experiments show that the relative order of models is almost exactly preserved on our new test sets: the models with highest accuracy on the original test sets are still the models with highest accuracy on the new test sets. Moreover, there are no diminishing returns in accuracy. In fact, every percentage point of accuracy improvement on the original test set translates to a larger improvement on our new test sets. So although later models could have been adapted more to the test set, they see smaller drops in accuracy. These results provide evidence that exhaustive test set evaluations are an effective way to improve image classification models. Adaptivity is therefore an unlikely explanation for the accuracy drops.

Instead, we propose an alternative explanation based on the relative difficulty of the original and new test sets. We demonstrate that it is possible to recover the original ImageNet accuracies almost exactly if we only include the easiest images from our candidate pool. This suggests that the accuracy scores of even the best image classifiers are still highly sensitive to minutiæ of the data cleaning process. This brittleness puts claims about human-level performance into context (He et al., 2015; Karpathy, 2011; Russakovsky et al., 2015). It also shows that current classifiers still do not generalize reliably even in the benign environment of a carefully controlled reproducibility experiment.

Figure 1 shows the main result of our experiment. Before we describe our methodology in Section 3, the next section provides relevant background. To enable future research, we release both our new test sets and the corresponding code.1

2. Potential Causes of Accuracy Drops
We adopt the standard classification setup and posit the existence of a “true” underlying data distribution \(D \) over labeled examples \((x, y) \). The overall goal in classification

* Authors ordered alphabetically. Ben did none of the work.
1 Department of Computer Science, University of California Berkeley, Berkeley, California, USA. Correspondence to: Benjamin Recht <brecht@berkeley.edu>.

is to find a model \hat{f} that minimizes the population loss

$$L_D(\hat{f}) = \mathbb{E}_{(x,y) \sim D} [\mathbb{I}[\hat{f}(x) \neq y]].$$ (1)

Since we usually do not know the distribution D, we instead measure the performance of a trained classifier via a test set S drawn from the distribution D:

$$L_S(\hat{f}) = \frac{1}{|S|} \sum_{(x,y) \in S} \mathbb{I}[\hat{f}(x) \neq y].$$ (2)

We then use this test error $L_S(\hat{f})$ as a proxy for the population loss $L_D(\hat{f})$. If a model \hat{f} achieves a low test error, we assume that it will perform similarly well on future examples from the distribution D. This assumption underlies essentially all empirical evaluations in machine learning since it allows us to argue that the model \hat{f} generalizes.

In our experiments, we test this assumption by collecting a new test set S' from a data distribution D' that we carefully control to resemble the original distribution D. Ideally, the original test accuracy $L_S(\hat{f})$ and new test accuracy $L_{S'}(\hat{f})$ would then match up to the random sampling error. In contrast to this idealized view, our results in Figure 1 show a large drop in accuracy from the original test set S to our new test set S'. To understand this accuracy drop in more detail, we decompose the difference between $L_S(\hat{f})$ and $L_{S'}(\hat{f})$ into three parts (dropping the dependence on \hat{f} to simplify notation):

$$L_S - L_{S'} = \underbrace{(L_S - L_D)}_{\text{Adaptivity gap}} + \underbrace{(L_D - L_{D'})}_{\text{Distribution Gap}} + \underbrace{(L_{D'} - L_{S'})}_{\text{Generalization gap}}. $$

We now discuss to what extent each of the three terms can lead to accuracy drops.

Generalization Gap. By construction, our new test set S' is independent of the existing classifier \hat{f}. Hence the third term $L_{D'} - L_{S'}$ is the standard generalization gap commonly studied in machine learning. It is determined solely by the random sampling error.

A first guess is that this inherent sampling error suffices to explain the accuracy drops in Figure 1 (e.g., the new test set S' could have sampled certain “harder” modes of the distribution D more often). However, random fluctuations of this magnitude are unlikely for the size of our test sets. With 10,000 data points (as in our new ImageNet test set), a Clopper-Pearson 95% confidence interval for the test accuracy has size of at most $\pm 1\%$. Increasing the confidence level to 99.99% yields a confidence interval of size at most $\pm 2\%$. Moreover, these confidence intervals become smaller for higher accuracies, which is the relevant regime for the best-performing models. Hence random chance alone cannot explain the accuracy drops observed in our experiments.\(^2\)

Adaptivity Gap. We call the term $L_S - L_D$ the adaptivity gap. It measures how much adapting the model \hat{f} to the test set S causes the test error L_S to underestimate the population loss L_D. If we assumed that our model \hat{f} is independent of the test set S, this terms would follow the

\(^2\)We remark that the sampling process for the new test set S' could indeed systematically sample harder modes more often than under the original data distribution D. Such a systematic change in the sampling process would not be an effect of random chance but captured by the distribution gap described below.

Figure 1. Model accuracy on the original test sets vs. our new test sets. Each data point corresponds to one model in our testbed (shown with 95% Clopper-Pearson confidence intervals). The plots reveal two main phenomena: (i) There is a significant drop in accuracy from the original to the new test sets. (ii) The model accuracies closely follow a linear function with slope greater than 1 (1.7 for CIFAR-10 and 1.1 for ImageNet). This means that every percentage point of progress on the original test set translates into more than one percentage point on the new test set. The two plots are drawn so that their aspect ratio is the same, i.e., the slopes of the lines are visually comparable. The red shaded region is a 95% confidence region for the linear fit from 100,000 bootstrap samples.
same concentration laws as the generalization gap \(L_{D'} - L_{S'} \) above. But this assumption is undermined by the common practice of tuning model hyperparameters directly on the test set, which introduces dependencies between the model \(f \) and the test set \(S \). In the extreme case, this can be seen as training directly on the test set. But milder forms of adaptivity may also artificially inflate accuracy scores by increasing the gap between \(L_S \) and \(L_{D'} \) beyond the purely random error.

Distribution Gap. We call the term \(L_{D'} - L_{D} \) the distribution gap. It quantifies how much the change from the original distribution \(D \) to our new distribution \(D' \) affects the model \(f \). Note that this term is not influenced by random effects but quantifies the systematic difference between sampling the original and new test sets. While we went to great lengths to minimize such systematic differences, in practice it is hard to argue whether two high-dimensional distributions are exactly the same. We typically lack a precise definition of either distribution, and collecting a real dataset involves a plethora of design choices.

2.1. Distinguishing Between the Two Mechanisms

For a single model \(\hat{f} \), it is unclear how to disentangle the adaptivity and distribution gaps. To gain a more nuanced understanding, we measure accuracies for multiple models \(\hat{f}_1, \ldots, \hat{f}_k \). This provides additional insights because it allows us to determine how the two gaps have evolved over time.

For both CIFAR-10 and ImageNet, the classification models come from a long line of papers that incrementally improved accuracy scores over the past decade. A natural assumption is that later models have experienced more adaptive overfitting since they are the result of more successive hyperparameter tuning on the same test set. Their higher accuracy scores would then come from an increasing adaptivity gap and reflect progress only on the specific examples in the test set \(S \) but not on the actual distribution \(D \). In an extreme case, the population accuracies \(L_D(\hat{f}_i) \) would plateau (or even decrease) while the test accuracies \(L_S(\hat{f}_i) \) would continue to grow for successive models \(\hat{f}_i \).

However, this idealized scenario is in stark contrast to our results in Figure 1. Later models do not see diminishing returns but an increased advantage over earlier models. Hence we view our results as evidence that the accuracy drops mainly stem from a large distribution gap. After presenting our results in more detail in the next section, we will further discuss this point in Section 5.

3. Summary of Our Experiments

We now give an overview of the main steps in our reproducibility experiment. Appendices C and D describe our methodology in more detail. We begin with the first decision, which was to choose informative datasets.

3.1. Choice of Datasets

We focus on image classification since it has become the most prominent task in machine learning and underlies a broad range of applications. The cumulative progress on ImageNet is often cited as one of the main breakthroughs in computer vision and machine learning (Malik, 2017). State-of-the-art models now surpass human-level accuracy by some measure (He et al., 2015; Russakovsky et al., 2015). This makes it particularly important to check if common image classification models can reliably generalize to new data from the same source.

We decided on CIFAR-10 and ImageNet, two of the most widely-used image classification benchmarks (Hamner, 2017). Both datasets have been the focus of intense research for almost ten years now. Due to the competitive nature of these benchmarks, they are an excellent example for testing whether adaptivity has led to overfitting. In addition to their popularity, their carefully documented dataset creation process makes them well suited for a reproducibility experiment (Deng et al., 2009; Krizhevsky, 2009; Russakovsky et al., 2015).

Each of the two datasets has specific features that make it especially interesting for our replication study. CIFAR-10 is small enough so that many researchers developed and tested new models for this dataset. In contrast, ImageNet requires significantly more computational resources, and experimenting with new architectures has long been out of reach for many research groups. As a result, CIFAR-10 has likely experienced more hyperparameter tuning, which may also have led to more adaptive overfitting.

On the other hand, the limited size of CIFAR-10 could also make the models more susceptible to small changes in the distribution. Since the CIFAR-10 models are only exposed to a constrained visual environment, they may be unable to learn a robust representation. In contrast, ImageNet captures a much broader variety of images: it contains about \(24 \times \) more training images than CIFAR-10 and roughly \(100 \times \) more pixels per image. So conventional wisdom (such as the claims of human-level performance) would suggest that ImageNet models also generalize more reliably.

As we will see, neither of these conjectures is supported by our data: CIFAR-10 models do not suffer from more adaptive overfitting, and ImageNet models do not appear to be significantly more robust.

3.2. Dataset Creation Methodology

One way to test generalization would be to evaluate existing models on new i.i.d. data from the original test distribution. For example, this would be possible if the original dataset authors had collected a larger initial dataset and randomly
split it into two test sets, keeping one of the test sets hidden for several years. Unfortunately, we are not aware of such a setup for CIFAR-10 or ImageNet.

In this paper, we instead mimic the original distribution as closely as possible by repeating the dataset curation process that selected the original test set\(^3\) from a larger data source. While this introduces the difficulty of disentangling the adaptivity gap from the distribution gap, it also enables us to check whether independent replication affects current accuracy scores. In spite of our efforts, we found that it is astonishingly hard to replicate the test set distributions of CIFAR-10 and ImageNet. At a high level, creating a new test set consists of two parts:

Gathering Data. To obtain images for a new test set, a simple approach would be to use a different dataset, e.g., Open Images (Krasin et al., 2017). However, each dataset comes with specific biases (Torralba and Efros, 2011). For instance, CIFAR-10 and ImageNet were assembled in the late 2000s, and some classes such as *car* or *cell_phone* have changed significantly over the past decade. We avoided such biases by drawing new images from the same source as CIFAR-10 and ImageNet. For CIFAR-10, this was the larger Tiny Image dataset (Torralba et al., 2008). For ImageNet, we followed the original process of utilizing the Flickr image hosting service and only considered images uploaded in a similar time frame as for ImageNet. In addition to the data source and the class distribution, both datasets also have rich structure within each class. For instance, each class in CIFAR-10 consists of images from multiple specific keywords in Tiny Images. Similarly, each class in ImageNet was assembled from the results of multiple queries to the Flickr API. We relied on the documentation of the two datasets to closely match the sub-class distribution as well.

Cleaning Data. Many images in Tiny Images and the Flickr results are only weakly related to the query (or not at all). To obtain a high-quality dataset with correct labels, it is therefore necessary to manually select valid images from the candidate pool. While this step may seem trivial, our results in Section 4 will show that it has major impact on the model accuracies.

The authors of CIFAR-10 relied on paid student labelers to annotate their dataset. The researchers in the ImageNet project utilized Amazon Mechanical Turk (MTurk) to handle the large size of their dataset. We again replicated both annotation processes. Two graduate students authors of this paper impersonated the CIFAR-10 labelers, and we employed MTurk workers for our new ImageNet test set.

For both datasets, we also followed the original labeling instructions, MTurk task format, etc.

After collecting a set of correctly labeled images, we sampled our final test sets from the filtered candidate pool. We decided on a test set size of 2,000 for CIFAR-10 and 10,000 for ImageNet. While these are smaller than the original test sets, the sample sizes are still large enough to obtain 95% confidence intervals of about ±1%. Moreover, our aim was to avoid bias due to CIFAR-10 and ImageNet possibly leaving only “harder” images in the respective data sources. This effect is minimized by building test sets that are small compared to the original datasets (about 3% of the overall CIFAR-10 dataset and less than 1% of the overall ImageNet dataset).

3.3. Results on the New Test Sets

After assembling our new test sets, we evaluated a broad range of image classification models spanning a decade of machine learning research. The models include the seminal AlexNet (Krizhevsky et al., 2012), widely used convolutional networks (He et al., 2016a; Huang et al., 2017; Simonyan and Zisserman, 2014; Szegedy et al., 2016), and the state-of-the-art (Cubuk et al., 2018; Liu et al., 2018). For all deep architectures, we used code previously published online. We relied on pre-trained models whenever possible and otherwise ran the training commands from the respective repositories. In addition, we also evaluated the best-performing approaches preceding convolutional networks on each dataset. These are random features for CIFAR-10 (Coates et al., 2011; Rahimi and Recht, 2009) and Fisher vectors for ImageNet (Perronnin et al., 2010).\(^4\) We wrote our own implementations for these models, which we also release publicly.\(^5\)

Overall, the top-1 accuracies range from 83% to 98% on the original CIFAR-10 test set and 21% to 83% on the original ImageNet validation set. We refer the reader to Appendices D.4.3 and C.3.2 for a full list of models and source repositories.

Figure 1 in the introduction plots original vs. new accuracies, and Table 1 in this section summarizes the numbers of key models. The remaining accuracy scores can be found in Appendices C.3.3 and D.4.4. We now briefly describe the

\(^3\)For ImageNet, we repeat the creation process of the validation set because most papers developed and tested models on the validation set. We discuss this point in more detail in Appendix D.1. In the context to this paper, we use the terms “validation set” and “test set” interchangeably for ImageNet.

\(^4\)We remark that our implementation of Fisher vectors yields top-5 accuracy numbers that are 17% lower than the published numbers in ILSVRC 2012 (Russakovsky et al., 2015). Unfortunately, there is no publicly available reference implementation of Fisher vector models achieving this accuracy score. Hence our implementation should not be seen as an exact reproduction of the state-of-the-art Fisher vector model, but as a baseline inspired by this approach. The main goal of including Fisher vector models in our experiment is to investigate if they follow the same overall trends as convolutional neural networks.

\(^5\)https://github.com/modestyachts/nondeep
two main trends and discuss the results further in Section 5.

A Significant Drop in Accuracy.

All models see a large drop in accuracy from the original test sets to our new test sets. For widely used architectures such as VGG (Simonyan and Zisserman, 2014) and ResNet (He et al., 2016a), the drop is 8% on CIFAR-10 and 11% on ImageNet. On CIFAR-10, the state of the art (Cubuk et al., 2018) is more robust and only drops by 3% from 98.4% to 95.5%. In contrast, the best model on ImageNet (Liu et al., 2018) sees an 11% drop from 83% to 72% in top-1 accuracy and a 6% drop from 96% to 90% in top-5 accuracy. So the top-1 drop on ImageNet is larger than what we observed on CIFAR-10.

To put these accuracy numbers into perspective, we note that the original accuracy of the best model on ImageNet is larger than what we observed on CIFAR-10. This effect is less pronounced on ImageNet (slope 1.1) than on CIFAR-10 (slope 1.07).

Few Changes in the Relative Order.

When sorting the models in order of their original and new accuracy, there are few changes in the respective rankings. Models with comparable original accuracy tend to see a similar decrease in performance. In fact, Figure 1 shows that the original accuracy is highly predictive of the new accuracy and that the relationship can be summarized well with a linear function.

On CIFAR-10, the new accuracy of a model is approximately given by the following formula:

$$\text{acc}_{\text{new}} = 1.69 \cdot \text{acc}_{\text{orig}} - 72.7\% .$$

On ImageNet, the top-1 accuracy of a model is given by

$$\text{acc}_{\text{new}} = 1.11 \cdot \text{acc}_{\text{orig}} - 20.2\% .$$

Computing a 95% confidence interval from 100,000 bootstrap samples gives [1.63, 1.76] for the slope and $[-78.6, -67.5]$ for the offset on CIFAR-10, and [1.07, 1.19] and $[-26.0, -17.8]$ respectively for ImageNet.

On both datasets, the slope of the linear fit is greater than 1. So models with higher original accuracy see a smaller drop on the new test sets. In other words, model robustness improves with increasing accuracy. This effect is less pronounced on ImageNet (slope 1.1) than on CIFAR-10 (slope 1.07).

Table 1. Model accuracies on the original CIFAR-10 test set, the original ImageNet validation set, and our new test sets. Δ Rank is the relative difference in the ranking from the original test set to the new test set in the full ordering of all models (see Appendices C.3.3 and D.4.4). For example, ΔRank $= -2$ means that a model dropped by two places on the new test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space constraints, references for the models can be found in Appendices C.3.2 and D.4.3.

<table>
<thead>
<tr>
<th>Orig. Rank</th>
<th>Model</th>
<th>Orig. Accuracy</th>
<th>New Accuracy</th>
<th>Gap</th>
<th>New Rank</th>
<th>Δ Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>autoaug_pyramid_net_tf</td>
<td>98.4 [98.1, 98.6]</td>
<td>95.5 [94.5, 96.4]</td>
<td>2.9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>shake_shake_64d_cutout</td>
<td>97.1 [96.8, 97.4]</td>
<td>93.0 [91.8, 94.1]</td>
<td>4.1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>wide_resnet_28_10</td>
<td>95.9 [95.5, 96.3]</td>
<td>89.7 [88.3, 91.0]</td>
<td>6.2</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>resnet_basic_110</td>
<td>93.5 [93.0, 93.9]</td>
<td>85.2 [83.5, 86.7]</td>
<td>8.3</td>
<td>24</td>
<td>-1</td>
</tr>
<tr>
<td>27</td>
<td>vgg_15_BN_64</td>
<td>93.0 [92.5, 93.5]</td>
<td>84.9 [83.2, 86.4]</td>
<td>8.1</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>cudaconvnet</td>
<td>88.5 [87.9, 89.2]</td>
<td>77.5 [75.1, 79.3]</td>
<td>11.0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>random_features_256k_auc</td>
<td>85.6 [84.9, 86.3]</td>
<td>73.1 [71.1, 75.1]</td>
<td>12.5</td>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orig. Rank</th>
<th>Model</th>
<th>Orig. Accuracy</th>
<th>New Accuracy</th>
<th>Gap</th>
<th>New Rank</th>
<th>Δ Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pnasnet_large_tf</td>
<td>82.9 [82.5, 83.2]</td>
<td>72.2 [71.3, 73.1]</td>
<td>10.7</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>nasnetlarge</td>
<td>82.5 [82.2, 82.8]</td>
<td>72.2 [71.3, 73.1]</td>
<td>10.3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>resnet152</td>
<td>78.3 [77.9, 78.7]</td>
<td>67.0 [66.1, 67.9]</td>
<td>11.3</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>inception_v3_tf</td>
<td>78.0 [77.6, 78.3]</td>
<td>66.1 [65.1, 67.0]</td>
<td>11.9</td>
<td>24</td>
<td>-1</td>
</tr>
<tr>
<td>30</td>
<td>densenet161</td>
<td>77.1 [76.8, 77.5]</td>
<td>65.3 [64.4, 66.2]</td>
<td>11.8</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>vgg19_bn</td>
<td>74.2 [73.8, 74.6]</td>
<td>61.9 [60.9, 62.8]</td>
<td>12.3</td>
<td>44</td>
<td>-1</td>
</tr>
<tr>
<td>64</td>
<td>alexnet</td>
<td>56.5 [56.1, 57.0]</td>
<td>44.0 [43.0, 45.0]</td>
<td>12.5</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>65</td>
<td>fv_64k</td>
<td>35.1 [34.7, 35.5]</td>
<td>24.1 [23.2, 24.9]</td>
<td>11.0</td>
<td>65</td>
<td>0</td>
</tr>
</tbody>
</table>
In contrast to a scenario with strong adaptive overfitting, neither dataset sees diminishing returns in accuracy scores when going from the original to the new test sets.

3.4. Experiments to Test Follow-Up Hypotheses

Since the drop from original to new accuracies is concerning large, we investigated multiple hypotheses for explaining this drop. Appendices C.2 and D.3 list a range of follow-up experiments we conducted, e.g., re-tuning hyperparameters, training on part of our new test set, or performing cross-validation. However, none of these effects can explain the size of the drop. We conjecture that the accuracy drops stem from small variations in the human annotation process. As we will see in the next section, the resulting changes in the test sets can significantly affect model accuracies.

4. Understanding the Impact of Data Cleaning on ImageNet

A crucial aspect of ImageNet is the use of MTurk. There is a broad range of design choices for the MTurk tasks and how the resulting annotations determine the final dataset. To better understand the impact of these design choices, we assembled three different test sets for ImageNet. All of these test sets consist of images from the same Flickr candidate pool, are correctly labeled, and selected by more than 70% of the MTurk workers on average. Nevertheless, the resulting model accuracies vary by 14%. To put these numbers in context, we first describe our MTurk annotation pipeline.

MTurk Tasks. We designed our MTurk tasks and user interface to closely resemble those originally used for ImageNet. As in ImageNet, each MTurk task contained a grid of 48 candidate images for a given target class. The task description was derived from the original ImageNet instructions and included the definition of the target class with a link to a corresponding Wikipedia page. We asked the MTurk workers to select images belonging to the target class regardless of “occlusions, other objects, and clutter or text in the scene” and to avoid drawings or paintings (both as in ImageNet). Appendix D.4.1 shows a screenshot of our UI and a screenshot of the original UI for comparison.

For quality control, we embedded at least six randomly selected images from the original validation set in each MTurk task (three from the same class, three from a class that is nearby in the WordNet hierarchy). These images appeared in random locations of the image grid for each task. In total, we collected sufficient MTurk annotations so that we have at least 20 annotated validation images for each class.

The main outcome of the MTurk tasks is a selection frequency for each image, i.e., what fraction of MTurk workers selected the image in a task for its target class. We recruited at least ten MTurk workers for each task (and hence for each image), which is similar to ImageNet. Since each task contained original validation images, we could also estimate how often images from the original dataset were selected by our MTurk workers.

Sampling Strategies. In order to understand how the MTurk selection frequency affects the model accuracies, we explored three sampling strategies.

- **MatchedFrequency**: First, we estimated the selection frequency distribution for each class from the annotated original validation images. We then sampled ten images from our candidate pool for each class according to these class-specific distributions (see Appendix D.1.2 for details).
- **Threshold0.7**: For each class, we sampled ten images with selection frequency at least 0.7.
- **TopImages**: For each class, we chose the ten images with highest selection frequency.

In order to minimize labeling errors, we manually reviewed each dataset and removed incorrect images. The average selection frequencies of the three final datasets range from 0.93 for **TopImages** over 0.85 for **Threshold0.7** to 0.73 for **MatchedFrequency**. For comparison, the original validation set has an average selection frequency of 0.71 in our experiments. Hence all three of our new test sets have higher selection frequencies than the original ImageNet validation set. In the preceding sections, we presented results on **MatchedFrequency** for ImageNet since it is closest to the validation set in terms of selection frequencies.

Results. Table 2 shows that the MTurk selection frequency has significant impact on both top-1 and top-5 accuracy. In particular, **TopImages** has the highest average MTurk selection frequency and sees a small increase of about 2% in both average top-1 and top-5 accuracy compared to the original validation set. This is in stark contrast to **MatchedFrequency**, which has the lowest average selection frequency and exhibits a significant drop of 12% and 8%, respectively. The **Threshold0.7** dataset is in the middle and sees a small decrease of 3% in top-1 and 1% in top-5 accuracy.

In total, going from **TopImages** to **MatchedFrequency** decreases the accuracies by about 14% (top-1) and 10% (top-5). For comparison, note that after excluding AlexNet (and the SqueezeNet models tuned to match AlexNet (Iandola et al., 2016)), the range of accuracies spanned by all remaining convolutional networks is roughly 14% (top-1) and 8% (top-5). So the variation in accuracy caused by the three sampling strategies is larger than the variation in accuracy among all post-AlexNet models we tested.

Figure 2 plots the new vs. original top-1 accuracies on **Threshold0.7** and **TopImages**, similar to Figure 1 for **MatchedFrequency** before. For easy comparison of top-1
5. Discussion

Due to space constraints, we defer a discussion of related work to Appendix A. Furthermore, Appendix B contains a theoretical model for the accurate linear fit observed in Figures 1 and 2. Here, we return to the main question from Section 2: What causes the accuracy drops? As before, we distinguish between two possible mechanisms.

5.1. Adaptivity Gap

In its prototypical form, adaptive overfitting would manifest itself in diminishing returns observed on the new test set (see Section 2.1). However, we do not observe this pattern on either CIFAR-10 or ImageNet. On both datasets, the slope of the linear fit is greater than 1, i.e., each point of accuracy improvement on the original test set translates to more than 1% on the new test set. This is the opposite of the standard overfitting scenario. So at least on CIFAR-10 and ImageNet, multiple years of competitive test set adaptivity did not lead to diminishing accuracy numbers.

While our experiments rule out the most dangerous form of adaptive overfitting, we remark that they do not exclude all variants. For instance, it could be that any test set adaptivity leads to a roughly constant drop in accuracy. Then all models are affected equally and we would see no diminishing returns since later models could still be better. Testing for this form of adaptive overfitting likely requires a new test set that is truly i.i.d. and not the result of a separate data collection effort. Finding a suitable dataset for such an experiment is an interesting direction for future research.

The lack of adaptive overfitting contradicts conventional wisdom in machine learning. We now describe two mechanisms that could have prevented adaptive overfitting:

The Ladder Mechanism. Blum and Hardt introduced the Ladder algorithm to protect machine learning competitions against adaptive overfitting (Blum and Hardt, 2015). The core idea is that constrained interaction with the test set can allow a large number of model evaluations to succeed, even if the models are chosen adaptively. Due to the natural form of their algorithm, the authors point out that it can also be seen as a mechanism that the machine learning community implicitly follows.

Limited Model Class. Adaptivity is only a problem if we can choose among models for which the test set accuracy differs significantly from the population accuracy. Importantly, this argument does not rely on the number of all possible models (e.g., all parameter settings of a neural network), but only on those models that could actually be evaluated on the test set. For instance, the standard deep learning workflow only produces models trained with SGD-style algorithms on a fixed training set, and requires that the models achieve high training accuracy (otherwise we would not consider the corresponding hyperparameters). Hence the number of different models arising from the current methodology may be small enough so that uniform convergence holds.

Our experiments offer little evidence for favoring one explanation over the other. One observation is that the convolutional networks shared many errors on CIFAR-10, which could be an indicator that the models are rather similar. But to gain a deeper understanding into adaptive overfitting, it is likely necessary to gather further data from more machine learning benchmarks, especially in scenarios where adaptive overfitting does occur naturally.

5.2. Distribution Gap

The lack of diminishing returns in our experiments points towards the distribution gap as the primary reason for the accuracy drops. Moreover, our results on ImageNet show that changes in the sampling strategy can indeed affect model accuracies by a large amount, even if the data source and other parts of the dataset creation process stay the same.

So in spite of our efforts to match the original dataset creation process, the distribution gap is still our leading hypothesis for the accuracy drops. This demonstrates that it...
is surprisingly hard to accurately replicate the distribution of current image classification datasets. The main difficulty likely is the subjective nature of the human annotation step. There are many parameters that can affect the quality of human labels such as the annotator population (MTurk vs. students, qualifications, location & time, etc.), the exact task format, and compensation. Moreover, there are no exact definitions for many classes in ImageNet (e.g., see Appendix D.4.8). Understanding these aspects in more detail is an important direction for designing future datasets that contain challenging images while still being labeled correctly.

The difficulty of clearly defining the data distribution, combined with the brittle behavior of the tested models, calls into question whether the black-box and i.i.d. framework of learning can produce reliable classifiers. Our analysis of selection frequencies in Figure 15 (Appendix D.4.7) shows that we could create a new test set with even lower model accuracies. The images in this hypothetical dataset would still be correct, from Flickr, and selected by more than half of the MTurk labelers on average. So in spite of the impressive accuracy scores on the original validation set, current ImageNet models still have difficulty generalizing from “easy” to “hard” images.

6. Conclusion & Future Work

The expansive growth of machine learning rests on the aspiration to deploy trained systems in a variety of challenging environments. Common examples include autonomous vehicles, content moderation, and medicine. In order to use machine learning in these areas responsibly, it is important that we can both train models with sufficient generalization abilities, and also reliably measure their performance. As our results show, these goals still pose significant hurdles even in a benign environment.

Our experiments are only a first step in addressing this reliability challenge. One important question is whether other machine learning tasks are also resilient to adaptive overfitting, but similarly brittle under natural variations in the data. Another direction is developing methods for more comprehensive yet still realistic evaluations of machine learning systems. Of course, the overarching goal is to develop learning algorithms that generalize reliably. While this is often a vague goal, our new test sets offer a well-defined instantiation of this challenge that is beyond the reach of current methods. Generalizing from our “easy” to slightly “harder” images will hopefully serve as a starting point towards a future generation of more reliable models.

Acknowledgements

We would like to thank Tudor Achim, Alex Berg, Orianna DeMasi, Jia Deng, Alexei Efros, David Fouhey, Moritz Hardt, Piotr Indyk, Esther Rolf, and Olga Russakovsky for helpful discussions while working on this paper. Moritz Hardt has been particularly helpful in all stages of this project and – among other invaluable advice – suggested the title of this paper and a precursor to the data model in Appendix B. We also thank the participants of our human accuracy experiment in Appendix C.2.5 (whose names we keep anonymous following our IRB protocol).

This research was generously supported in part by ONR awards N00014-17-1-2191, N00014-17-1-2401, and N00014-18-1-2833, the DARPA Assured Autonomy (FA8750-18-C-0101) and Lagrange (W911NF-16-1-0552) programs, an Amazon AWS AI Research Award, and a gift from Microsoft Research. In addition, LS was supported by a Google PhD fellowship and a Microsoft Research Fellowship at the Simons Institute for the Theory of Computing.
References

Alex Berg. Personal communication, 2018.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. In *International Conference on Learning...
Do ImageNet Classifiers Generalize to ImageNet?

