8. Proofs

8.1. Proof of Theorem 1

Theorem 1 [No Free Lunch] Let $x \in \mathcal{X}$ where \mathcal{X} is a finite set. Let $p(x)$ be a uniform distribution on \mathcal{X}. Let q be any antithetic distribution $q(x_1, x_2)$. Let \mathcal{F} be the set of functions $\mathcal{X} \rightarrow \mathbb{R}$ such that $\text{Var}_{p(x_1)p(x_2)}[\hat{\mu}_f(x_1;2)] \neq 0$. Then

$$\max_{f \in \mathcal{F}} \frac{\text{Var}_{q(x_1,x_2)}[\hat{\mu}_f(x_1;2)]}{\text{Var}_{p(x_1)p(x_2)}[\hat{\mu}_f(x_1;2)]} \geq 1 - \frac{1}{|\mathcal{X}| - 1} \quad (22)$$

For sampling without replacement for any $f \in \mathcal{F}$

$$\frac{\text{Var}_{q(x_1,x_2)}[\hat{\mu}_f(x_1;2)]}{\text{Var}_{p(x_1)p(x_2)}[\hat{\mu}_f(x_1;2)]} = 1 - \frac{1}{|\mathcal{X}| - 1} \quad (23)$$

Proof of Theorem 1. First we show that

$$\text{Var}_{q(x_1,x_2)}[\hat{\mu}_f(x_1;2)] = \frac{1}{4} \left(\text{Var}_{q(x_1,x_2)}[f(x_1)] + \text{Var}_{q(x_1,x_2)}[f(x_2)] + 2 \text{Cov}_{q(x_1,x_2)}(f(x_1), f(x_2)) \right)$$

$$= \frac{1}{2} \text{Var}_{p(x)}[f(x)] + \frac{1}{2} \text{Cov}_{q(x_1,x_2)}(f(x_1), f(x_2))$$

In addition

$$\text{Var}_{p(x_1)p(x_2)}[\hat{\mu}_f(x_1;2)] = \frac{1}{2} \text{Var}_{p(x)}[f(x)]$$

So

$$\frac{\text{Var}_{q(x_1,x_2)}[\hat{\mu}_f(x_1;2)]}{\text{Var}_{p(x_1)p(x_2)}[\hat{\mu}_f(x_1;2)]} = 1 + \frac{\text{Cov}_{q(x_1,x_2)}(f(x_1), f(x_2))}{\text{Var}_{p(x)}[f(x)]}$$

Denote $|\mathcal{X}|$ by k, and the elements of \mathcal{X} by v_1, v_2, \ldots, v_k. We only have to show

$$\max_{f \in \mathcal{F}} \frac{\text{Cov}_{q(x_1,x_2)}(f(x_1), f(x_2))}{\text{Var}_{p(x)}[f(x)]} \geq - \frac{1}{k - 1} \quad (24)$$

which is equivalent to Eq.(23).

Let $\mathcal{X} = \{v_1, \ldots, v_k\}$ be the set of k values x can take. Denote

$$Q = \begin{pmatrix} q(v_1, v_1) & q(v_1, v_2) & \cdots & q(v_1, v_k) \\ q(v_2, v_1) & q(v_2, v_2) & \cdots & q(v_2, v_k) \\ \cdots & \cdots & \cdots & \cdots \\ q(v_k, v_1) & q(v_k, v_2) & \cdots & q(v_k, v_k) \end{pmatrix}$$

Because $q(x_1, x_2)$ is an antithetic distribution for the uniform distribution $p(x)$, it must satisfy

$$1^T Q = \frac{1}{k} 1 \quad Q 1 = \frac{1}{k} 1$$

Denote

$$f = (f(v_1), f(v_2), \ldots, f(v_k))^T$$

Then because the marginal is uniform $p(v_1) = \cdots = p(v_k) = 1/k$

$$\text{Cov}_{q(x_1,x_2)}[f(x_1), f(x_2)] = \sum_{v_1, v_2 \in \mathcal{X}} f(v_1)f(v_2)(q(v_1, v_2) - p(v_1)p(v_2))$$

$$= f^T(Q - \frac{1}{k^2} 11^T)f$$

$$= f^T \left(\frac{Q + Q^T}{2} - \frac{1}{k^2} 11^T \right) f$$

where the last step is because

$$f^T Q f = (f^T Q f)^T = f^T Q^T f = f^T \left(\frac{Q + Q^T}{2} \right) f$$

Therefore for each non-symmetric Q, there is a symmetric joint distribution $Q + Q^T$ that achieves the same covariance. For the rest of this proof we assume that Q is symmetric without loss of generality. We will use the notation

$$R \overset{\text{def}}{=} Q - \frac{1}{k^2} 11^T$$

R is a symmetric matrix

We also have

$$\text{Var}_{p(x_1)p(x_2)}[f(x)] = \frac{1}{k} \sum_{x \in \mathcal{X}} f(x)^2 - \frac{1}{k^2} \sum_{x_1, x_2} f(x_1)f(x_2)$$

$$= \frac{1}{k} f^T f - \frac{1}{k} f^T 11^T f$$

$$= f^T \left(\frac{1}{k} I - \frac{1}{k^2} 11^T \right) f$$

We will use the notation

$$R' \overset{\text{def}}{=} \frac{1}{k} I - \frac{1}{k^2} 11^T$$

To briefly summarize our notation we have

$$\text{Cov}_{q(x_1,x_2)}[f(x_1), f(x_2)] = f^T R f$$

$$\text{Var}_{p(x)}[f(x)] = f^T R' f$$

Now we try to find for any R, some f such that $f^T R f / f^T R' f$ is large. In other words, we want to prove

$$\max_{f \in \mathcal{F}} \frac{f^T R f}{f^T R' f} \geq - \frac{1}{k - 1}$$

which is equivalent to Eq.(24). As is the condition of the theorem, we require $f \in \mathcal{F}$ to satisfy $f^T R' f \neq 0$.

Adaptive Antithetic Sampling for Variance Reduction
For any such matrix \(R \), \(1 \) must be an eigenvector with eigenvalue 0. This is because by our definition
\[
R1 = Q1 - \frac{1}{k^2}11^T 1 = \frac{1}{k}1 - \frac{1}{k}1 = 0
\]
In addition, \(1 \) is also an eigenvector of \(R' \) with eigenvalue 0 because
\[
R'1 = \frac{1}{k}1 - \frac{1}{k}1 = 0
\]
For any \(f \) that is not a scalar multiple of \(1 \), \(f^T R' f > 0 \). This is because
\[
\text{rank}(R') \geq \text{rank}(I) - \text{rank}(11^T) \geq k - 1
\]
so \(1 \) (or its scalar multiple) must be the only eigenvector with 0 as its eigenvalue. In addition \(f^T R' f \geq 0 \) because it is a variance.

This also implies that \(f \in \mathcal{F} \), if and only if \(f^T R' f \neq 0 \), if and only if \(f \) is not a scalar multiple of \(1 \).

We consider two situations

1) \(R \) has at least one positive eigenvalue. Let \(f \) be the corresponding eigenvector, we have
\[
f^T R f > 0 \quad f^T R' f > 0
\]
and certainly \(f \) is not a scalar multiple of \(1 \), which means that Eq.(25) must be true.

2) \(R \) does not have any positive eigenvalues. Because \(Q \) is a matrix with no negative entries, \(\text{tr}(Q) \geq 0 \). In addition
\[
\text{tr}(\frac{1}{k^2}11^T) = \frac{1}{k},
\]
so
\[
\text{tr}(R) = \text{tr}(Q) - \text{tr}(\frac{1}{k^2}11^T) \geq - \frac{1}{k} \tag{26}
\]
We know that \(R \) must have a zero eigenvalue, and all other eigenvalues are non-positive. We arrange them in non-descending order
\[
0 \geq \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_k
\]
It is easy to see that \(\lambda_2 \geq -\frac{1}{k(k-1)} \) because otherwise
\[
\text{tr}(R) = \sum_{i} \lambda_i < - \frac{1}{k(k-1)}(k-1) = - \frac{1}{k}
\]
which violates Eq.(26). Suppose the eigenvector corresponding to \(\lambda_2 \) is \(g \). Because \(R \) is symmetric, we can always select \(g \) orthogonal to the other eigenvectors. In particular, \(g^T 1 = 0 \). The \(f \) we will choose is \(f_{\text{bad}} = g - 1 \).

We know that \(f_{\text{bad}} \in \mathcal{F} \) as it is not a scalar multiple of \(1 \). For \(f_{\text{bad}} \), we have
\[
f_{\text{bad}}^T R f_{\text{bad}} = (g - 1)^T R (g - 1)
\]
where the above inequalities come from the fact that \(R1 = 1^T R = 0 \), and \(g^T 1 = 0 \).

Similarly we have
\[
f_{\text{bad}}^T R f_{\text{bad}} = (g - 1)^T R' (g - 1)
\]
\[
= \frac{1}{k}(g - 1)^T (g - 1) - \frac{1}{k^2} (g - 1)^T 11^T (g - 1)
\]
\[
= \frac{1}{k}(g^T g + k) - \frac{1}{k^2}k^2 = \frac{1}{k}g^T g
\]
This means that for this choice of \(f_{\text{bad}} = g - 1 \)
\[
\frac{f_{\text{bad}}^T R f_{\text{bad}}}{f_{\text{bad}}^T R' f_{\text{bad}}} \geq - \frac{1}{k - 1}
\]
which proves Eq.(25).

Finally we show that sampling without replacement achieves equality. For sampling without replacement
\[
Q = \begin{pmatrix}
0 & \frac{1}{k(k-1)} & \ldots & \frac{1}{k(k-1)} \\
\frac{1}{k(k-1)} & 0 & \ldots & \frac{1}{k(k-1)} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{k(k-1)} & \frac{1}{k(k-1)} & \cdots & 0
\end{pmatrix}
\]
Then
\[
R = Q - \frac{1}{k^2}11^T = \frac{1}{k^2(k-1)}11^T - \frac{1}{k(k-1)}I
\]
Note that the set of eigenvalues for \(11^T \) is
\[
k, 0, \cdots, 0
\]
so the eigenvalues for \(R \) must be
\[
0, -\frac{1}{k(k-1)}, \ldots, -\frac{1}{k(k-1)}
\]
Denote this eigen-decomposition as \(R = H^T \Lambda H \). As before let \(R' = \frac{1}{k}I - \frac{1}{k^2}11^T \). Because \(R' \) is a scalar multiple of \(R, R' \) must have the same eigenvectors as \(R \), with eigenvalues
\[
0, \frac{1}{k}, \cdots, \frac{1}{k}
\]
Denote the eigen-decomposition as \(R' = H^T \Lambda' H \). Choose any \(f \), we compute \(g = H f \). If \(g = (*, 0, \cdots, 0) \) (\(* \) denotes any real number) we will have \(f^T R' f = g^T \Lambda' g = 0 \) and our theorem excludes this degenerate situation. When \(g \neq (*, 0, \cdots, 0) \), we have
\[
\frac{\text{Cov}_{g(x_1, x_2)}(f(x_1), f(x_2))}{\text{Var}_{p(x)}[f(x)]} = \frac{f^T R f}{f^T R' f} = \frac{g^T \Lambda g}{g^T N' g} = - \frac{1}{k - 1}
\]
This means that sampling without replacement achieves our theoretical upper bound on minimax performance. \qed
8.2. Proof of Proposition 1

Proposition 1 Let \(q_\theta(x_{1:m}) \) be a Gaussian-reparameterized antithetic of order \(m \) for \(p(x) \). Then for any \(k \):

1. For any \(\Sigma_\theta \in \Sigma_{\text{unbiased}} \), the estimator (10) is unbiased
 \[
 E_{q_\theta(x_{1:m})}[\hat{f}(x_{1:m})] = E_p(x)[f(x)]
 \]

2. If \(\Sigma_\theta = I \), the Gaussian-reparameterized antithetic is equivalent to i.i.d sampling.

3. Given a Cholesky decomposition \(\Sigma_\theta = L_\theta L_\theta^T \), we can sample from \(q_\theta(x_{1:m}) \) by drawing \(m \) i.i.d. samples \(\delta = (\delta_1, \cdots, \delta_m)^T \) from \(\mathcal{N}(0, I_d) \), and \(x_{1:m} = L_\theta \delta \).

Proof of Proposition 1. Part 1: Because \(\Sigma_\theta \in \Sigma_{\text{unbiased}} \), each component \(\epsilon_i \) of \((\epsilon_1, \cdots, \epsilon_m) \sim \mathcal{N}(0, \Sigma_\theta) \) is marginally \(\epsilon_i \sim \mathcal{N}(0, I_d) \). By assumption, this means that \(g(\epsilon_i) \sim p(x) \). Combined with Eq. (3) this finishes the proof.

Part 2: By construction, if \(\Sigma_\theta = I \) then \((\epsilon_1, \cdots, \epsilon_m) \sim \mathcal{N}(0, I_d) \) are i.i.d. Thus \(g(\epsilon_i) \) are also i.i.d.

Part 3: Given a Cholesky decomposition \(\Sigma_\theta = L_\theta L_\theta^T \), we can sample \((\epsilon_1, \cdots, \epsilon_m) \) via \((\epsilon_1, \cdots, \epsilon_m) = L_\theta (z_1, \cdots, z_m) \) where \((z_1, \cdots, z_m) \sim \mathcal{N}(0, I_d) \).

8.3. Proof of Theorem 2

Theorem 2 For any \(\epsilon > 0 \), the map \(\psi \) defined in Eq.(13) is a surjection from \(\mathbb{M}^{m \times m} \) into \(\Sigma_{\text{unbiased}} \).

Proof of Theorem 2. We first check that \(\psi \) is well defined.

For any \(\theta \in \mathbb{M}^{m \times m} \), denote \(\bar{\Sigma} = \epsilon I + \theta \theta^T \in \mathbb{M}^{m \times m} \). When \(\epsilon > 0 \), this must be positive definite as a matrix in \(\mathbb{R}^{md \times md} \). Because \(\bar{\Sigma} \) is positive definite as a matrix \(\mathbb{R}^{md \times md} \), each element of \(\text{diag}(\bar{\Sigma}) \) as a matrix \(\mathbb{M} \) must be a positive definite element of \(\mathbb{M} \), and must have an inverse. This means that \(\text{diag}(\bar{\Sigma})^{-1/2} \) is also well defined. Therefore \(\psi(\theta) \) is well defined.

It is obvious that \(\psi(\theta) \) has identity diagonal. It is also positive semi-definite, so \(\psi(\theta) \in \Sigma_{\text{unbiased}} \).

Now we prove that the map is a surjection. Choose any \(\Sigma \in \Sigma_{\text{unbiased}} \), let
\[
\zeta(\Sigma) = \text{diag}(\Sigma)^{-1/2} \Sigma \text{diag}(\Sigma)^{-T/2}
\]
then it is easy to see that \(\zeta(\Sigma) = \Sigma \). In addition, for any diagonal matrix \(D \in \mathbb{M}^{m \times m} \) whose diagonal elements are all positive definite elements of \(\mathbb{M} \), we have \(\zeta(D\Sigma D^T) = \Sigma \). We choose \(D = \alpha I \), where \(\alpha \in \mathbb{R}_{>0} \); \(I \) is the identity matrix of \(\mathbb{M}^{m \times m} \). We choose a sufficiently large \(\alpha \) such that \(\alpha^2 \Sigma - \epsilon I \) is positive definite element of \(\mathbb{R}^{md \times md} \).

By the cholesky decomposition in \(\mathbb{R}^{md \times md} \), there exists \(\theta \in \mathbb{R}^{md \times md} \) such that \(\theta \theta^T = \alpha^2 \Sigma - \epsilon I \). We have, by construction, found a \(\theta \) that satisfy \(\psi(\theta) = \Sigma \). This is because \(\epsilon I + \theta \theta^T = \alpha^2 \Sigma = \alpha \Sigma \), so \(\zeta(\epsilon I + \theta \theta^T) = \Sigma \).

\[\square\]

9. Results of IWAE

<table>
<thead>
<tr>
<th></th>
<th>MNIST</th>
<th>Omniglot</th>
</tr>
</thead>
<tbody>
<tr>
<td>noise dimension</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>i.i.d sampling</td>
<td>113.79</td>
<td>98.92</td>
</tr>
<tr>
<td>negative sampling</td>
<td>113.71</td>
<td>98.89</td>
</tr>
<tr>
<td>Our method</td>
<td>113.61</td>
<td>98.71</td>
</tr>
</tbody>
</table>

Table 1: Negative Log Likelihood of our methods compared with negative sampling and i.i.d sampling on MNIST and Omniglot dataset. Our method can achieve a tighter bound on all settings.
10. Results of GANs

Figure 3: Variance reduction for GAN training. **Left:** Variance of gradient estimation for different batch sizes. **Middle:** Inception score after 50 epochs of training for different mini-batch batch sizes m. **Right:** Inception score by wall-clock time. For small batch size m, adaptive antithetic improves marginally compared to baselines; because of its overhead, the overall wall-clock time is worse; for larger batch size m, adaptive antithetic performs significantly better, the overall wall-clock time is also better.