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1 Proof of the Lowerbound on the Conductance in the Discrete
case

We prove the following.

Theorem 1.1. Let M be the Gibbs sampler chain for an arbitrary discrete k-DPP, then we have
φ(M) ≥ 1

Ck2
, for a constant C > 0.

Fix M = (Ω, P, π) to be the Gibbs-sampler chain on a k-DPP defined on domain [n], that

is Ω =
([n]
k

)
. Before discussing the details of the proof let us first fix some notation and recall

fundamental properties of k-DPPs. For any element 1 ≤ i ≤ n, define Ωi,Ωi be the set of all states
in Ω that contain, do not contain i, respectively. Also define

πi := {π| i is chosen }, i.e. πi(x) =
π(x)

π(Ωi)
, ∀x ∈ Ωi

πi := {π| i is not chosen }, i.e. πi(x) =
π(x)

π(Ωi)
, ∀x ∈ Ωi

.

It follows from [AGR16] that πi, πi can be identified with a (k−1)-DPP, k-DPP supported on Ωi,Ωi,
respectively. We defineMi = (Ωi, Pi, πi),Mi = (Ωi, Pi, πi) to be the restricted Gibbs samplers. So,
it is straightforward to see that for any x, y ∈ Ωi we get Pi(x,y) = k

k−1 ·P (x,y). and consequently
for Qi defined as Q for Mi, we get

Qi(x,y) =
Q(x,y)

π(Ωi)
. (1.1)

Unlike Pi, Pi is not obtained from scaling a restriction of P . In particular, Let x,y ∈ Ωi so that
Pi(x,y) > 0 (which implies |x ∩ y| = k − 1). Then, setting I = x ∩ y and with a bit abuse of
notation π(I) =

∑
j∈[n]\I π(I + j), i.e. π(I) = Pz∼π[I ⊂ z], we have

Pi(x,y) =
1

k
· π(y)

π(I)− π(i+ I)
(1.2)

whereas P (x,y) = π(y)
k·π(I) . For any x ∈ Ωi, define Ni(x) be the set of its neighbours in Ωi, i.e.

Ni(x) = {y ∈ Ωi|P (x,y) > 0}.

We use the following lemma to relate Qi to Q.

1



Lemma 1.2. Let A ⊂ Ωi be an arbitrary subset. For a state x ∈ Ωi, consider the following
partitioning of Ni(x): NA = Ni(x) ∩A and NA = Ni(x) ∩ (Ωi \A). Then we have

Q(x, NA) +Q(NA, NA) ≥ π(Ωi) ·Qi(NA, NA). (1.3)

Proof. Note that x∪NA ∪NA is the set of all states containing elements in x− i. So by definition
of Q and Qi, we have

Q(x, NA) +Q(NA, NA) =
1

k
· π(x)π(NA)

π(x) + π(NA) + π(NA)
+

1

k
·

π(NA)π(NA)

π(x) + π(NA) + π(NA)
(1.4)

=
π(NA)

k
·

π(x) + π(NA)

π(x) + π(NA) + π(NA)
≥ π(NA)

k
·

π(NA)

π(NA) + π(NA)
= π(Ωi) ·Qi(NA, NA)

(1.5)

where the inequality follows simply because π(NA) ≥ 0.

Ωn ΩnSn Sn

Figure 1: A schematic view of the restriction chains.
yellow, red, blue, and green edges correspond to Q(Sn,Ωn \ Sn), Q(Sn,Ωn \ Sn), Q(Sn,Ωn \ Sn),

and Q(Sn,Ωn \ Sn), respectively

We use an inductive argument to prove Q(S, S) ≥ π(S)
Ck2

for a subset S ∈ Ω with π(S) ≤ 1
2 .

Letting Sn = S ∩ Ωn and Sn = S ∩ Ωn, we have

Q(S, S) = Q(Sn,Ωn \ Sn) +Q(Sn,Ωn \ Sn) +Q(Sn,Ωn \ Sn) +Q(Sn,Ωn \ Sn). (1.6)

We carry out the induction step by lowerbounding the RHS of the above term by term. In order to
bound Q(Sn,Ωn \ Sn) we use induction hypothesis on Mn. To bound Q(Sn,Ωn \ Sn), we combine
the induction hypothesis on Mn with Lemma 1.2. It remains to bound the other two terms which
correspond to the contribution of the edge across (Ωn,Ωn). To do that, we crucially use negative
association of π. In particular, we use the following lemma (appeared before in [Mih92] in the
unweighted case). For any set A ∈ Ωn, let Nn(A) = {y ∈ Ωn : ∃x ∈ A, P (x,y) > 0} denote the
set of neighbors of A in Ωn.

Lemma 1.3 ([AGR16]). For any subset A ⊆ Ωn,

πn(Nn(A)) ≥ πn(A).

The lemma lower bounds the vertex expansion of Sn in Ωn and similarly vertex expansion of Sn in
Ωn. Later we show how to use it to bound the edge expansion which is our quantity of interest.
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Proof of Theorem 1.1. We induct on k + n. So, assume, the conductance of the Gibbs sampler
for any (k− 1)-DPP over n− 1 elements is at most 1

C(k−1)2
and the conductance is at most 1

Ck2
for

any k-DPP over any n− 1 elements.
Fix a set S ⊂ Ω where π(S) ≤ 1

2 . We need to show Q(S, S) ≥ π(S)
Ck2

. First, consider a
simple case where πn(S) ≤ 1

2 and πn(S) ≤ 1
2 . By induction hypothesis we have Qn(Sn,Ωn \

Sn) ≥ πn(Sn)
c(k−1)2

. Moreover, by adding up (1.1) for the edges across the cut (Sn,Ωn \ Sn), we get

Q(Sn,Ωn \ Sn) = (k−1)π(Ωn)
k ·Qn(Sn,Ωn \ Sn). So combining them we have

Q(Sn,Ωn \ Sn) ≥ π(Sn)

Ck2
. (1.7)

Now, we use induction on Mn along with Lemma 1.2. The induction hypothesis implies

Qn(Sn,Ωn \ Sn) ≥ πn(Sn)

ck2
=

π(Sn)

π(Ωn) · ck2

So to prove the theorem in this case, it is enough to show the following and add it up with (1.7).

Q(Sn,Ωn \ Sn) +Q(Sn,Ωn \ Sn) +Q(Sn,Ωn \ Sn) ≥ π(Ωn) ·Qn(Sn,Ωn \ Sn). (1.8)

To see that, it is enough to apply Lemma 1.2 and add up (1.3) for all x ∈ Ωn, where subset A ⊂ Ωn

in the lemma is determined as follows: if x ∈ Sn then set A = Sn, otherwise set A = Ωn \Sn. Note
that, doing that the RHS of the result will be exactly π(Ωn) · Qn(Sn,Ωn \ Ωn), because any edge
yz of that will only show up in (1.3) by having x = y ∩ z + n.

So we focus on the case max{πn(Sn), πn(Sn)} > 1
2 . Since π(S) ≤ 1

2 , we have min{πn(Sn), πn(Sn)} ≤ 1
2 .so

So, without loss of generality, perhaps by considering S instead of S, we may assume πn(Sn) > 1
2

and πn(S) ≤ 1
2 . Our goal is to prove

Q(S, S) ≥ 1

Ck2
·min{1− π(S), π(S)} (1.9)

For every x ∈ Ωn, let Nn,S(x) := Nn(x) ∩ Sn, and Nn,S(x) := Nn(x) ∩ (Ωn \ Sn) be a partitioning
of Nn(x), so for every subset T ∈ Nn(x) we have

Q(x, T ) =
1

2k
· π(x)π(T )

π(x) + π(Nn,S(x)) + π(Nn,S(x))
(1.10)

Now, define Sleave ⊂ Sn to be

Sleave = {x ∈ Sn : π(x) + π(Nn,S(x)) < π(Nn,S(x))},

in other words, Sleave ∈ Sn is the subset of states so that, if the chain takes one step from Sleave by
removing and resampling element n, then with probability at least 1

2 it leaves S and enters Nn,S(x).
We also let Sstay = Sn \ Sleave. On the other hand, starting from Sstay and by resampling n, the
chain with probability at least half stays in S. It is straight-forward to see

Q(Sleave,Ωn \ Sn) ≥ π(Sleave)

4k
(1.11)
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To see that, note that definition of Sleave and setting T = Ωn \ Sn in (1.10) implies that for any

x ∈ Sleave, we have Q(x,Ωn \ Sn) ≥ π(x)
4k . To get (1.11), it suffices to sum up this over all states

of Sleave. The bound (1.11) shows that Q(Sleave, S) � π(Sleave)
k2

. So roughly speaking, to prove the
theorem, it suffices to show φ(Sstay)∪Sn) ≥ 1

Ck2
. consider two cases: if πn(Sstay) / 1

2 , we essentially
use the same argument as in the case πn(Sn), πn(Sn) ≤ 1

2 . Otherwise we combine the induction
with Lemma 1.3 to bound the expansion.

• Case 1: πn(Sstay) ≤ 1
2 + 1

4k . We show Q(S, S) ≥ π(S)
Ck2

. To do that, we use the induction
hypothesis on Mn, and the following claim which is the stronger version of (1.8).

Claim 1.4.

Q(Sn, S) +Q(Sn,Ωn \ Sn)− 1

2
Q(Sleave,Ωn \ Sn) ≥ π(Ωn) ·Qn(Sn,Ωn \ Sn) (1.12)

Proof. The claim is implied by combining the summation of (1.13),(1.14), and (1.15) over
Ωn \ Sn, Sstay and Sleave, respectively. Let x ∈ Ωn \ Sn. Then by applying Lemma 1.2 for x
and A = Sn, we get

Q(Nn,S(x), {x} ∪Nn,S(x)) ≥ π(Ωn) ·Qn(Nn,S(x), Nn,S(x)) (1.13)

Similarly if x ∈ Sn, by applying Lemma 1.2 for x and A = Ωn \ Sn, we have

Q(x ∪Nn,S(x, Nn,S(x)) ≥ π(Ωn) ·Qn(Nn,S(x), Nn,S(x)). (1.14)

Finally, for x ∈ Sleave, we have

Q(Nn,S(x), Nn,S(x)) +
1

2
Q(x, Nn,S(x)) =

π(Nn,S(x))

2k · (π(x) + π(Nn,S(x)) + π(Nn,S(x)))
·
(
π(Nn,S(x)) +

π(x)

2

)
≥ 1

2k
·
π(Nn,S(x))π(Nn,S(x))

π(Nn,S(x)) + π(Nn,S(x))

= π(Ωn) ·Qn(Nn,S(x), Nn,S(x)) ,

(1.15)
where the inequality follows since π(x) + π(Nn,S(x)) < π(Nn,S(x)) for x ∈ Sleave.

In particular, we use the above claim to get

Q(S, S) = Q(Sn,Ωn \ Sn) +Q(Sn,Ωn \ Sn) +Q(Sn,Ωn \ Sn) +Q(Sn,Ωn \ Sn)

≥ Q(Sn,Ωn \ Sn) +
1

2
Q(Sleave + Ωn \ Sn) + π(Ωn)Qn(Sn, Sn) By Claim 1.4

≥ π(Ωn)− π(Sn)

Ck(k − 1)
+

1

2
Q(Sleave,Ωn \ Sn) +

π(Sn)

Ck2
induction Hyp. on Mn and Mn

≥ π(Ωn)− π(Sleave)− π(Sstay)

Ck(k − 1)
+
π(Sleave)

8k
+
π(Sn)

Ck2
By (1.11) and Sn = Sleave ∪ Sstay

(1.16)

To finish the proof, we need to show the RHS of the above is at least π(S)
Ck2

. To see that note

that since π(Sleave)
8k ≥ π(Sleave) ·

(
1

Ck2
+ 1

Ck(k−1)

)
for sufficiently large k, it suffices to show

π(Ωn)−π(Sstay)
Ck(k−1) ≥ π(Sstay)

Ck2
, which can be directly verified for πn(Sstay) ≤ 1

2 + 1
4k .
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• Case 2: πn(Sstay) > 1
2 + 1

4k . We prove

Q(S, S̄) ≥ 1− π(S)

Ck2
.

Lemma 1.3 states that the vertex expansion of Sstay is proportional to πn(Sstay) − πn(Sn)(
which is positive in this case by the assumption). We use it to bound Q(S, S) by relating
vertex expansion of Sstay to Q(S, S). In particular, we show the following claim.

Claim 1.5.

Q(Sstay,Ωn \ Sn) +Q(Sn,Ωn \ Sn) ≥ π(Ωn)

2k
· (πn(Sstay)− πn(Sn))

Proof. Note that for any x ∈ Sstay, since π(Nn,S(x)) ≤ π(x) + π(Nn,S(x)), we have

Q(x, Nn,S(x))+Q(Nn,S(x), Nn,S(x)) =
1

2k
·
π(Nn,S(x)) · [π(x) + π(Nn,S(x))]

π(x) + π(Nn,S(x)) + π(Nn,S(x))
≥ 1

2k
·
π(Nn,S(x))

2
,

To complete the proof, it is enough to sum up the above over Sstay to get the following

Q(Sstay,Ωn \ Sn) +Q(Sn,Ωn \ Sn) ≥
∑

x∈Sstay

π(Nn,S(x))

4k
≥ π

 ⋃
x∈Sstay

Nn,S(x)

 .

≥ π(Nn(Sstay))− π(Sn)

≥ π(Ωn) · (πn(Sstay)− πn(Sn)) By Lemma 1.3

Claim 1.5 and (1.16) implies Q(S, S) ≥ max{L1, L2} defined as above

L1 :=
π(Sleave)

8k
+
π(Ωn)− π(Sleave)− π(Sstay)

Ck(k − 1)
+
π(Sn)

Ck2
By (1.16)

L2 :=
π(Ωn)

4k
· (πn(Sstay)− πn(Sn)) By Claim 1.5.

So we need to prove max{L1, L2} ≥ 1−π(S)
Ck2

. To prove that, we show that L1 + L2
k−1 ≥

(1 + 1
k−1) · 1−π(S)

Ck2
. Replacing values of L1 and L2 in the above and simplifying the resulting

inequality, we need to show

π(Sleave)

8k
+
π(Sn)

Ck2
+

π(Ωn)

4k(k − 1)
· (πn(Sstay)− πn(Sn)) ≥ π(Ωn)− π(Sn)

Ck(k − 1)
.

Ignoring the π(Sleave)
8k term and rearranging the other terms, it is enough to show

π(Ωn)

4k(k − 1)
· (πn(Sstay)− πn(Sn)) ≥ π(Ωn)

Ck(k − 1)
· (1− 2k − 1

k
· πn(Sn)).

The above can be verified for C > 16, by noting that by assumption πn(Sstay) ≥ 1
2 + 1

4k and
πn(Sn) ≤ 1

2 .
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2 Markov Chains with Measurable State Space

Here, we provide a more formal overview of Markov chains defined on measurable state spaces.
More details, can also be found at [LS93]. Let (Ω,B) be a measurable space. In the most general
setting, a Markov chain is defined by the triple (Ω,B, {Px}x∈Ω), where for every x ∈ Ω, Px : B → R+

is a probability measure on (Ω,B). Also, for every fixed B ∈ B, Px(B) is a measurable function in
terms of x. In this setting starting from a distribution µ0, after one step the distribution µ1 would
be given by

µ1(B) =

∫
Ω
Px(B)dµ0(x), ∀B ∈ B.

From now on, assume Ω ⊂ Rk and B is the standard Borel σ-algebra. In our setting, we can assume
the transition probabilities are given by a kernel transition kernel P : Ω× Ω → R+ where for any
measurable A ⊂ Ω, we can write

Px(A) =

∫
A
P (x, y)dy.

In this notation, we use P (x,B) and Px(B) interchangeably. Pn(x, .) would also denote the prob-
ability distribution of the states after n steps of the chain started at x. Similar to the discrete
setting, we can define the stationary measure for the chain. A probability distribution π on Ω is
stationary if and only if for every measurable set B, we have

π(B) =

∫
Ω

∫
B
P (x, y)dydπ(x).

We call M φ-irreducible for a probability measure φ if for any set B ∈ B with φ(B) > 0, and any
state x, there is t ∈ N such that P t(x,B) > 0. It is called strongly φ-irreducible if for any B ⊆ Ω
with non-zero measure and x ∈ Ω, there exists t ∈ N such that for any m ≥ t, Pm(x,B) > 0. We
say M is reversible with respect to a measure π if for any two sets A and B we have∫

B

∫
A
P (y, x)dxdπ(y) =

∫
A

∫
B
P (x, y)dydπ(x).

In particular, reversibility with respect to a measure, implies it is a stationary measure. Is is
immediate from this to verify that for a Gibbs sampler of a k-DPPs π, the π itself is the stationary
measure. Moreover, if the kernel of the k-DPP is continuous, it is straight-forward to see that it is
π-strongly irreducible. The following lemma also shows π is the unique stationary measure, and as
the number of steps increases, the chain approaches to the unique stationary measure.

Lemma 2.1 ([DF97]). If π is a stationary measure ofM, andM is strongly π-irreducible. Then for
any other distribution µ which is absolutely continuous with respect to π, limn→∞ |Pn(µ, .)−π|TV =
0.

From now on, considerM = (Ω, P, π) is chain with state space Ω, probability transition function
P , and a unique stationary measure π. Let us describe some results about mixing time in the Markov
chains defined on continuous spaces. But before that we need to setup some notation. Consider a
Hilbert space L2(Ω, π) equipped with the following inner product.

〈f, g〉π =

∫
Ω
f(x)g(x)dπ(x).
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P defines an operator in this space where for any function f ∈ `2(Ω, π) and x ∈ Ω,

(Pf)(x) =

∫
Ω
P (x, y)f(y)dy.

In particular M being reversible is equivalent to P being self-adjoint. For a reversible chain M
and a function f ∈ L2(Ω, π), the Dirichlet form EP (f, f) is defined as

EP (f, f) =
1

2

∫
Ω

∫
Ω

(f(x)− f(y))2P (x, y)dπ(x)dy.

We also define the Variance of f with respect to π as

varπ(f) :=

∫
Ω

(f(x)− Eπ(f))2dπ(x).

We may drop the subscript if the underlying stationary distribution is clear in the context. One
way for upperbounding the mixing time of a chain is to use is to its spectral gap which is also
known as Poincaré Constant.

Definition 2.2 (Poincaré Constant). . The Poincaré constant of the chain is defined as follows,

λ := inf
f :π→R

EP (f, f)

varπ(f)
,

where the infimum is only taken over all functions in L2(Ω, π) with non-zero variance.

In this paper, we use the following theorem to upperbound the mixing time of the chain relevant
to us.

Theorem 2.3 ([KM12]). For any reversible, lazy, and π-irreducible Markov chain M = (Ω, P, π),
if λ > 0, then the distribution of the chain started from µ (which is absolute continuous with respect
to π) is

‖P t(µ, .)− π‖TV ≤
1

2
(1− λ)t

√
varπ

(
fµ
fπ

)
.

For the sake of completeness, we include a proof of the above theorem which is an extension of
the proof of the analogous discrete result in [Fil91]. We need the following simple lemma known as
Mihail’s identity.

Lemma 2.4 (Mihail’s identity, [Fil91]). For any reversible irreducible Markov chainM = (Ω, P, π),
and any function f in L2(π),

varπ(f) = varπ(Pf) + EP 2(f, f).

Proof of Theorem 2.3. First of all, one can easily verify that if a chain is lazy and irreducible,
then it is strongly-irreducible. Combining it with Lemma 2.1 would guarantee the uniqueness of
the stationary measure. Let µ0 = µ be the starting distribution and define µt = P t(µ, .) be the

distribution at time t. Set ft :=
fµt
fπ

, by reversibility of the chain we have

(Pft)(x) =

∫
Ω
P (x, y)

fµt(y)

fπ(y)
dy =

∫
Ω

P (y, x)fµt(y)

fπ(x)
dy =

fµt+1

fπ
(x) = ft+1(x)
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which implies
varπ(Pft) = varπ(ft+1) (2.1)

So applying Mihail’s identity on
fµn
fπ

and using (2.1) , we conclude

varπ(ft) = varπ(ft+1) + EP 2(ft, ft). (2.2)

Now, note that P 2 has the same stationary distribution π, so its Poincaré constant is at most

λ(P 2) ≤ EP 2(ft, ft)

varπ(ft)
.

Combining this with (2.2), and using induction we can deduce

varπ(ft) ≤ (1− λ(P 2))t varπ(f0).

Note that, since P is the kernel for a lazy chain, it has no negative values in its spectrum, implying
1− λ(P 2) = (1− λ(P ))2. So in order to complete the proof it is enough show

4‖µt − π‖2TV ≤ var(ft).

This can be seen using an application of Cauchy-Schwarz’s inequality. We have

4‖µt − π‖2TV =

(∫
Ω
|fµt(x)− fπ(x)|dx

)2

=

(∫
Ω
fπ(x)

∣∣∣∣fµt(x)

fπ(x)
− 1

∣∣∣∣ dx)2

≤
∫

Ω
fπ(x)

∣∣∣∣fµt(x)

fπ(x)
− 1

∣∣∣∣2 dx = var(
fµt
fπ

)

The last identity uses that Eπ
fµt
fπ

= 1. This completes the proof.
In order to take advantage of Theorem 2.3, we need to lowerbound the Poicaré constant of our

chain. This can be done by lowerbounding the Ergodic Flow of the chain.

Definition 2.5 (Ergodic Flow). For a chain M = (Ω, P, π), the ergodic flow Q : B → [0, 1] is
defined by

Q(B) =

∫
B

∫
Ω\B

P (u, v)dvfπ(u)du.

The conductance of a set B is defined by, φ(B) := Q(B)
π(B) , and the conductance of the chain is

φ(M) = min
0<π(B)≤ 1

2

φ(B).

The following theorem which is an extension of the Cheeger’s inequality for the Markov chains on
a continuous space, relates the spectral gap to conductance.

Theorem 2.6 ([LS88]). For a chain M defined on a general state space with spectral gap λ we
have

φ(M)2

8
≤ λ ≤ 2φ(M).
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3 Conductance of the Continuous Case

Let M be the Gibbs sampler for a k-DPP defined by a continuous kernel L. As the rest of the
paper, we assume L is a continuous, symmetric, and PSD kernel where

∫
C |L(x, x)|dx < ∞. We

prove the following.

Theorem 3.1. Let M be the Gibbs sampler for a k-DPP defined by L : Rd × Rd → R, then

φ(M) &
1

k2
. (3.1)

Proof. Recall that by Theorem 1.1 the conductance of a Gibbs sampler for any discrete k-DPP
is at least Ω( 1

k2
). The key observation is that this bound is independent of the number of states.

Therefore, we can obtain this bound for arbitrarily fine discretizations of M, and with a limiting
argument extend it to M.

For simplicity, we assume d = 1. It is straight-forward to extend the argument to higher
dimensions. Let us denote the state space by Ω. Fix a measurable subset S ⊂ Ω with π(S) ≤ 1

2 .

Our goal is to prove φ(S) = Q(S,S)
π(S) ≥ Ω( 1

k2
). Without loss of generality, we can only consider

restriction of Ω and S to a bounded set. To see that, note that if we set Ωn =
([−n,n]

k

)
, then clearly,

limn→∞
Q(S∩Ωn,S∩Ωn)

π(S∩Ωn) = φ(S), and so for large values of n, Q(S∩Ωn,S)
π(S∩Ωn) = Θ(φ(S)). So suppose that

Ω =
([0,1]
k

)
. For an integer n, we consider a discretization Mn of M defined as follows. We use

n in subscript to denote quantities related to Mn. We partition [0, 1] into intervals of length 1
n ,

and identify each interval with an element in the ground set of Mn, so Ωn =
([n]
k

)
. Mn is defined

by a kernel Ln characterized below. For i ∈ [n] let Ii = [ i−1
n , in ]. For any i, j ∈ [n], we define

Ln(i, j) =
∫
Ii

∫
Ij

L(u, v)dudv, be the accumulative value of L over Ii × Ij . One can easily see Ln is a

PSD matrix, as L is a PSD operator. Moreover, L and consequently detL is a continuous function
on a closed domain, so it is uniform continuous, implying for any ε > 0, there exists an integer n(ε)
so that for all n > n(ε) and any two states {x1, . . . , xk} and {y1, . . . , yk} with |yi−xi| ≤ 1

n , we have

|detL(x1, . . . , xk) − detL(y1, . . . , yk)| ≤ ε. Now, note that fπ(y1, . . . , yk) = detL(y1,...,yk)
1
k!

∫
detL(x1,...,xk)dx1...dxk

.

So, using the simple fact that for any two sequences of numbers {an} and {bn},(
lim
n→∞

an = a
)
∧
(

lim
n→∞

bn = b 6= 0
)

=⇒ lim
n→∞

an
bn

=
a

b
(3.2)

we get that for any ε > 0, there exists an integer m(ε), where m(ε) depends on n(ε), such that

∀n ≥ m(ε),∀{t1, . . . , tk} ∈
(

[n]

k

)
:

∣∣∣∣∣πn(t1, . . . , tk)− π(

k∏
i=1

Iti)

∣∣∣∣∣ ≤ ε

nk
(3.3)

We define a set Sn ⊂ Ωn corresponding to S for any n, so that

lim
n→∞

φn(Sn) = φ(S). (3.4)

Clearly, the above proves the theorem as by Theorem 1.1, we know that φn(Sn) & 1
k2

for any n.
In what follows, we use A ⊂ B to denote both of A − B and B − A have Lebesgue measure zero.
Also, define

Sn =

{
{t1, . . . , tk} ∈

(
[n]

k

) ∣∣∣∣ It1 × · · · × Itk ⊂ S} .
9



Following (3.2), to prove (3.4), it is enough to argue that limn→∞Qn(Sn, Sn) = Q(S, S), and
limn→∞ πn(Sn) = π(S). We first show the latter. This follows by (3.3) and that

lim
n→∞

µ

(
∪{t1,...,tk}∈Sn

k∏
i=1

Iti

)
= µ(S) (3.5)

for µ being the Lebesgue measure.
It remains to see limn→∞Qn(Sn, Sn) = Q(S, S). First, note that [0, 1]k−1 is a closed set, so

for any δ > 0 and ε > 0, there exists an integer n(δ, ε) so that for any n > n(δ, ε), and points
x1, . . . , xk, xk+1 and y1, . . . , yk, yk+1 with |xi−yi| ≤ 1

n , and
∫ 1

0 detL(x1, . . . , xk−1, τ)dτ ≥ δ, we have∣∣∣∣∣detL(x1, . . . , xk) detL(x1, . . . , xk−1, xk+1)∫ 1
0 detL(x1, . . . , xk−1, τ)dτ

− detL(y1, . . . , yk) detL(y1, . . . , yk−1, yk+1)∫ 1
0 detL(y1, . . . , yk−1, τ)dτ

∣∣∣∣∣ ≤ ε.
Therefore, similar to the case for πn, it follows that for any ε, δ > 0, there exists integer m(δ, ε) de-

pending on n(δ, ε) so that for any n ≥ m(δ, ε) and for all t1, . . . , tk−1, s, t ∈
( [n]
k+1

)
with

∑n
i=1 πn(t1, . . . , i) ≥

δ
nk−1 ∣∣∣∣∣Qn({t1, . . . , tk−1, t}, {t1, . . . , tk−1, s})−Q(It ×

k−1∏
i=1

Iti , Is ×
k−1∏
i=1

Iti)

∣∣∣∣∣ ≤ ε

nk+1
. (3.6)

Now, combining the above equation with (3.5), and noting ε and δ can be chosen arbitrary close to
zero, we obtain limn→∞Qn(Sn, Sn) = Q(S, S), which completes the proof.

Remark 3.2. It is straight-forward to use a similar discretization argument to prove Theorem 3.1,
when the domain of the kernel is restricted to a closed subset C ⊂ Rd which can be nicely discretized
as in Theorem 3.1. In particular, we assume C is an sphere in the next section. More precisely, C
could be any closed subset which has the same measure as its interior.

We also point out that, irreducibly of the chain can also be deduced in the same way; More
precisely, it is shown [Brä07] that the support of the chain corresponding to a discrete k-DPP is
the set of bases of a matroid [Brä07, Cor 3.4]; so the chain is irreducible in the discrete case. It
can be extended to the continuous case with the same limiting argument.

4 Proof of the Lemma 4.3 on Starting Distribution

Recall that we use a randomized greedy algorithm to find a starting state and we state the following
lemma in the analysis of our algorithm in the paper.

Lemma 4.1. Let ν be the probability distribution of the output of our to find the starting state.
Also let fν and fπ denote the p.d.f. for ν and π which is the k-DPP defined by L. Then, for any
{x1, . . . , xk} ⊂ C,

fν({x1, . . . , xk}) ≤ (k!)2fπ({x1, . . . , xk}).

As stated the proof essentially follows from a similar argument in [DV07] which appears in a
discrete setting. However, for the sake of completeness we provide a full proof here.
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Proof. For any x ∈ Rd, let fx be the corresponding feature map, i.e. fx : H → R for some Hilbert
space H and for any x, y ∈ Rd, L(x, y) = 〈fx, fy〉. Fix x = {x1, . . . , xk}, and let Sk be the set
of all permutations of {x1, . . . , xk}. Also, for any σ ∈ Sk and for any 1 ≤ i ≤ k − 1, define
H i
σ = 〈fσ(1), . . . , fσ(i)〉. In the above the range of all integrals is Rd. We have

fν(x) =
∑
σ∈Sk

[ ∥∥fσ(1)

∥∥2∫
‖fy‖2 dy

·
d(fσ(2), H

1
σ)2∫

d(fy, H1
σ)2dx

. . .
d(fσ(k), H

k−1
σ )2∫

d(fy, H
k−1
σ )2dy

]
.

Note that the above integrals are well-defined since our kernel is continuous. For any 1 ≤ i ≤ k−1,
let H i

∗ = arg minH=〈fy1 ,...,fyi 〉
∫
d(fy, H)2dy, where y1 . . . , yi range over Rd. Note that, the minimum

of the quantity is defined since L is continuous on a closed set. Combining with the above, and
noting that for any σ, det(x1, . . . , xk) =

∥∥fσ(1)

∥∥2 · d(fσ(2), H
1
σ)2 . . . d(fσ(k), H

k−1
σ )2, we obtain

fν(x) ≤ k! · det(x1, . . . , xk)∫
‖fy‖2 dy ·

∫
d(fy, H1

∗ )
2dy ·

∫
d(fy, H

k−1
∗ dy

≤ k! ·
fπ(x) ·

∫
· · ·
∫
C det(y1, . . . , yk)dyk . . . dy1

k! ·
∫
‖fy‖2 dy ·

∫
d(fy, H1

∗ )
2dx· · ·

∫
d(fy, H

k−1
∗ )2dy

.

So, rearranging the above to show fν(x)
fπ(x) ≤ (k!)2, it suffices to show∫

· · ·
∫

det(y1, . . . , yk)dyk . . . dy1∫
‖fy‖2 dy ·

∫
d(fy, H1

∗ )
2dx· · ·

∫
d(fy, H

k−1
∗ )2dy

≤ (k!)2. (4.1)

To proof the above, we use induction on k. For k = 1, the statement is obvious as for any y ∈ Rd,
det(y) = L(y, y) = ‖fy‖2. It is straight-forward to see, applying the above claim will prove the
induction step, and completes the proof.

Claim 4.2.∫
· · ·
∫

det(y1, . . . , yk)dyk . . . dy1 ≤ k2

(∫
d(fy, H

k−1
∗ )2dy

)(∫
· · ·
∫

det(y1, . . . , yk−1)dyk−1 . . . dy1

)
(4.2)

Proof of Claim 4.2. For any y = {y1, . . . , yk} ⊂ Rd, let Gy be a (k − 1)-dimensional linear

subspace of 〈fy1 . . . , fyk〉 which contains the projection of H
(k−1)
∗ onto 〈fy1 . . . , fyk〉. Now, for any

y, using Lemma 4.3, we get

det(y) ≤

(
k∑
i=1

d(fyi , Gy)
√

det(y − yi)

)2

≤ k

(
k∑
i=1

d(fyi , Gy)2 det(y − yi)

)
Cauchy-Schwarz Inequality.
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By integerating the above, we get∫
· · ·
∫

det(y)dy ≤ k
∫
Rd
· · ·
∫ k∑

i=1

d(fyi , Gy)2 det(y − yi)dy

≤ k2

∫
y∈Rd

∫
z1∈Rd

· · ·
∫
zk−1∈Rd

d(fy, Gz+y)
2 det(z)dzdy (setting z = {z1, . . . , zk−1})

≤
∫
y∈Rd

∫
z1∈Rd

· · ·
∫
zk−1∈Rd

d(fy, H
k−1
∗ )2 det(z)dzdy

=

(∫
d(fy, H

k−1
∗ )2dy

)(∫
z1∈Rd

· · ·
∫
zk−1∈Rd

det(z)dz

)
,

where in the third inequality, the fact d(fy, Gz+y) ≤ d(fy, H
k−1
∗ ) holds because fy ∈ 〈fz1 , . . . , fzk−1

, fy〉,
and Gz+y contains the projection of Hk−1

∗ onto this space. Thus, the proof of the claim and the
theorem is complete.

Lemma 4.3 (Lemma 2 of [DV07]). Let S be a set of k vectors, and H be any (k− 1)-dimesnsional
subspace of 〈S〉. Then

vol(S) ≤
∑
v∈S

d(v,H) vol(S − v),

where volume of a set of vectors, refer to the volume of the parallelopiped spanned by them.

5 Missing Proofs for the Conditional Sampling

Here, we include the analysis of our proposed rejection sampler for polynomial and spherical Gaus-
sian kernels and provide the proof for Lemma 5.3 of the paper. The eigenvalues for Spherical
Gaussian kernels defined on a unit sphere is explicitly given in [MNY06].

Lemma 5.1 ([MNY06]). Let Gσ be the Gaussian kernel with variance σ2 restricted to the unit

sphere with the uniform measure, i.e. for any x, y ∈ Sd−1 : we have Gσ(x, y) = exp(−‖x−y‖2/σ2)
vol(Sd−1)

. For

any integer k ≥ 0, Gσ has an eigenvalue µk with multiplicity N(d, k) = (2k+d−2)(k+d−3)!
k!(d−2)! where(

2e

σ2

)k
· A1

(2k + d− 2)k+ d−1
2

≤ µk ≤
(

2e

σ2

)k
· A2

(2k + d− 2)k+ d−1
2

, (5.1)

for A1 = e−
2
σ2
− 1

12 1√
π

(2e)
d
2
−1Γ

(
d
2

)
and A2 = A1 · e

1
12

+ 1
σ4 .

Proof of Lemma 5.3 of the paper. Let λ0 ≥ λ1 . . . be eigenvalues of Gσ. Note that Gσ(x, x) = 1
for all x. Combining that with Lemma 5.1 and the fact that we are considering the kernel with
respect to the uniform measure 1 we get

E[T ] ≤ 1∑∞
j=k λj

.

1The kernel, we are considering in the paper is not normalized by the uniform measure. Note that, after normalizing
the volume term cancels out.
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We first prove the second part by showing if σ ≤ 1
2
√

log k
, then

∑∞
j=k λj ≥ Ω(1). Using the Cauchy-

Schwarz inequality we have k ·
∑k−1

i=0 λ
2
i ≥

(∑k−1
i=0 λi

)2
=
(

1−
∑∞

j=k λj

)2
. We show

∑k−1
i=0 λ

2
i ≤ 1

k2

which implies
∑∞

j=k λj ≥ (1− 1/
√
k) which completes the proof. To see that, note that

k−1∑
i=0

λ2
i ≤ tr(G2

σ) = Ex,y∼µe−‖x−y‖
2/2σ2

,

where µ is the uniform measure on the sphere. Fix x ∈ Sd−1. It follows from basic concentration
inequalities for Gaussian measures that Ey∼µe−‖x−y‖

2/2σ2 ≤ e−1/2σ2
which implies the bound on

the trace and finishes the proof of this case.
So from now on, we only need to prove for any σ

∞∑
j=k

λj &
e

−2

σ2

t! · σ2t
. (5.2)

Let µ0 > µ1 > . . . be distinct eigenvalues of the kernel given by Lemma 5.1 where for any j, the

multiplicity of µj is nj = N(d, j). It suffices to show ntµt
2 ≥ e

−2
σ2

t!·σ2t where we are using the fact that

for any j, nj ≥ dj

j! , and so nt ≥ 2k. Now using nt ≥ dt

t! , and the bound on µt by Lemma 5.1, we get

ntµt &
dt

t!
·
e

−2

σ2 (2e)t+
d
2 Γ(d2)

σ2t · (2t+ d)t+
d+1
2

&
dt

t!
· e

−2

σ2 (2e)t · d
d+1
2

σ2t(2t+ d)t+
d+1
2

Sterling’s approximation

≥ e
−2

σ2 (2e)t

σ2t · t! · (1 + 2t
d )t+

d+1
2

&
e

−2

σ2 2t

σ2t · t! · e
2t2

d

by (1 + 2t/d) ≤ e2t/d.

Noting that k ≤ exp(d/4) implies t ≤ d
4 and exp(2t/d) ≤ 2, completes the proof of (5.2).
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