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Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest
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paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.
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Figure 1. Schematic illustration of our proposed P-WL feature generation process for a labelled graph G. Step 1: In an initial neighbour-
hood propagation step, Weisfeiler–Lehman (WL) label multisets are generated for each node (depicted by vertex annotations in curly
braces). Step 2: Next, we calculate a metric between these multisets according to Definition 2 in order to obtain edge weights. Together
with the compressed multisets (X, Y, Z), we thus construct a weighted relabelled graph G′. Step 3: Finally, we calculate persistent
homology (PH) features as described in Section 2.3.2 and attribute them to each node in G′. The set of graph features is iteratively
extended by h repetitions of Steps 1–3 with G′ and extending its feature vector.

2. Method
Our method builds on the seminal Weisfeiler–Lehman sta-
bilisation algorithm (Douglas 2011, Weisfeiler & Lehman
1968) and on recent advances in topological data analysis,
namely persistent homology (Edelsbrunner & Harer 2008).
In the following, we first give a brief overview of the WL
algorithm. We then show how to leverage multi-scale infor-
mation to obtain a set of features based on topological in-
variants (connected components and cycles) and elucidate
its connection to the WL subtree features (Shervashidze &
Borgwardt 2009, Shervashidze et al. 2011).

2.1. Weisfeiler–Lehman Stabilisation

The 1-dimensional WL stabilisation algorithm was initially
developed as a test for graph isomorphism (Weisfeiler &
Lehman 1968). It is also known as colour refinement or
canonical labelling. In the following, we assume that
we are given a graph G = (V,E) with a label function
l : V → Σ that assigns each vertex v ∈ V a label l(v). The
labels constitute the initial colours C(0) of the algorithm
so that C(0)(v) = l(v) for every vertex v ∈ V . For each
vertex v and each iteration h, the algorithm creates a new
set of colours from the colour C(h−1)(v) and the colours
C(h−1)(w) of every vertex w that is adjacent to v. This
multiset of colours is then mapped to a new colour. The
mapping is unique in the sense that the same multiset al-
ways maps to the same colour. Afterwards, the next iter-
ation begins, and the process stops as soon as the list of
colours stabilises, meaning that for some h, no new colours
are being created.

This procedure can be used to detect whether two graphs G
and G′ are isomorphic to each other, i.e. whether there ex-
ists a bijection between their vertex sets V and V ′: for two
graphs with at most n vertices each, the algorithm may stop
as soon as n+1 distinct colours have been encountered. In
this case, the two graphs are guaranteed not to be isomor-
phic to each other. If, however, the two colour sequences

of the graphs are equal, there is a high probability that the
two graphs are isomorphic (Babai & Kucera 1979).

On an abstract level, the WL iteration can be seen as a
process that, given two labelled graphs G and G′, gener-
ates a sequence of labelled graphs (G0, G

′
0), . . . , (Gh, G

′
h).

To simplify the notation, we will also write l(h)u to denote
the label of a vertex u in iteration h of the procedure,
and thus drop the notion of vertex colours. Shervashidze
et al. (2011) showed that any valid (graph) kernel can be
used to obtain a valid graph kernel for the whole sequence
of graphs. Among others, they present the Weisfeiler–
Lehman subtree kernel, which represents each iteration of
the algorithm by a set of feature vectors that contain the
counts of each individual label. Each iteration h of the sta-
bilisation procedure thus results in a feature vector

ϕ
(h)
WL :=

[
c(h)(l0), c

(h)(l1), . . .
]
, (1)

where li denotes the ith compressed label that appears in
iteration h, and c(h) is a counting function. Feature vectors
of all iterations are concatenated to form one large feature
vector ϕWL(G) for every graph G. The similarity of two
graphs is then assessed by calculating a linear kernel be-
tween their feature vectors. This feature vector assignment
only requires a perfect hashing function; by definition of
the algorithm, no more than 2n unique labels are required
per iteration. The algorithm is highly efficient, having a
runtime complexity of O(hm), where h denotes the num-
ber of iterations and m denotes the number of edges. One
disadvantage is that the perfect hashing scheme is some-
what brittle—one change of a label in a neighbourhood
will result in two vertices never getting assigned the same
compressed label again. The assignment of counts to a cer-
tain label is thus somewhat arbitrary. We aim to address
this issue by providing an algorithm that also takes into ac-
count how much any label contributes to the topology of
the graph at multiple scales. This requires using methods
from the field of computational topology.
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2.2. Computational Topology

Computational topology refers to a family of methods
that captures topological features such as connected com-
ponents. Originally developed for the analysis of high-
dimensional manifold data sets (Edelsbrunner & Harer
2010), it has recently seen increased use in the analysis
of graphs or networks (Carstens 2016, Horak et al. 2009,
Rieck et al. 2018, Rieck et al. 2019). We briefly review the
most important topics to formalise the problem and develop
some intuition.

2.2.1. TOPOLOGICAL FEATURES

Given a topological space M, such as a manifold, k-
dimensional topological features are represented as ele-
ments of the kth homology group Hk(M). In lower di-
mensions, i.e. for k ∈ {0, 1, 2}, these features are also
known as connected components, cycles, and voids, respec-
tively. Even though there are several algorithms for the
extraction of higher-dimensional topological features from
graphs (Jonsson 2008), we restrict1 ourselves to k ∈ {0, 1}
in this paper, which corresponds to connected components
and cycles. Given a graph G, the Euler characteristic for-
mula (Gross & Tucker 1987, p. 135) relates these two con-
cepts. It states that the number of cycles in G is

β1 = m− n+ β0, (2)

where m denotes the number of edges, n denotes the num-
ber of vertices, and β0 denotes the number of connected
components. Using a disjoint set data structure (Cormen
et al. 2009, Chapter 21), the number of connected compo-
nents of a graph can be determined in almost linear time of
its size (Hopcroft & Tarjan 1973).

The number of connected components β0 and the num-
ber of cycles β1 constitute a simple graph invariant: if
(β0, β1) ̸= (β′

0, β
′
1) for two graphs G, G′, the graphs can-

not be isomorphic (Hatcher 2002, pp. 103–133). Equality
of the tuples is a necessary—but not sufficient—condition
for the existence of an isomorphism.

2.2.2. PERSISTENT HOMOLOGY

For many graphs, in particular labelled ones, information
of the form (β0, β1) is too coarse to be useful. Thus, per-
sistent homology (Edelsbrunner & Harer 2008, Edelsbrun-
ner & Morozov 2014) was developed to describe topologi-
cal spaces in terms of multi-scale topological features. For
clarity of exposition, we only describe this process in terms
of graphs2. Given a graph G = (V,E), persistent homol-

1It is possible to generalise our methods to include higher-
dimensional features, even though their calculation has a higher
computational complexity.

2It works equally well for higher-dimensional manifolds, but
this is beyond the scope of this paper.

ogy requires a filtration, i.e. a sequence of nested subgraphs
such that

∅ ⊆ G0 ⊆ G1 ⊆ · · · ⊆ Gk−1 ⊆ Gk = G (3)

and each Gi is of the form Gi = (V,Ei ⊆ E). Hence, only
the edges change between different steps of the iteration.
There are alternative formulations of filtrations that permit
the vertex set to vary (Rieck et al. 2018), but we do not con-
sider them in this paper because of their higher complex-
ity. Since the vertex set remains fixed and only edges are
added in each step, the number of connected components
can only decrease (by introducing an edge that merges two
connected components, thus “destroying” one of them) or
remain the same (by introducing an edge that connects two
vertices that are already in the same connected component)
as we go from Gi to Gi+1. Analogously, the number of cy-
cles can only increase (by introducing an edge that closes
or “creates” a cycle).

Persistent homology thus tracks changes in connected com-
ponents and cycles over the complete filtration: for each
component that is destroyed in a graph Gi of the filtration,
a tuple of the form (0, i) is stored by the algorithm, while
every cycle that is created in, say, a graph Gj is assigned
the tuple (j,∞). These tuples are also known as index per-
sistence tuples (Zomorodian & Carlsson 2005). Given an
associated sequence of real-valued weights

a0 ≤ a1 ≤ · · · ≤ ak−1 ≤ ak (4)

with the same cardinality as the filtration, each tuple (i, j)
corresponds to a pair (ai, aj) that can be seen as a point
in R2

∞ := R × {R ∪ {∞}}. If both ai and aj are fi-
nite, the quantity pers(ai, aj) := |aj − ai| is referred to
as the persistence of a pair (Edelsbrunner et al. 2002);
large values imply that a feature persists over multiple
scales because it appears in many subgraphs of the filtra-
tion and might thus have a higher importance (Carlsson
2009, Edelsbrunner et al. 2002). If aj = ∞, we set
pers(ai, aj) := |ai|. These pairs are often represented
as horizontal line segments in R2, where the vertical co-
ordinate y may be assigned arbitrarily, so that each pair
becomes a line from (ai, y) to (aj , y) while segments of in-
finite length are cropped. This representation is known as a
persistence barcode (Ghrist 2008); together with a related
representation, it can be shown to be a stable descriptor of
topological activity (Cohen-Steiner et al. 2007).

Similar to the Euler characteristic formula from Eq. 2, per-
sistence tuples induce a relation on the graph: for tuples
that correspond to the merge of two connected components,
one vertex is paired with one edge, while for tuples that
give rise to a cycle, exactly one edge of the cycle is marked.
An edge cannot be paired with a vertex and marked at the
same time (Edelsbrunner et al. 2002), so a graph with n
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vertices and m edges always gives rise to exactly n + m
persistence tuples. The uniqueness of the pairing relation
permits us to write pers(v) and pers(u, v) to denote the
persistence of a vertex v (which we consider to create a
certain connected component) or an edge (u, v) (which we
consider to create a cycle), respectively. Hence, we do not
have to calculate the persistence of edges that are paired
with a vertex because they are already being accounted for.

2.3. A Persistent Weisfeiler–Lehman Procedure

In the following, we describe our methods. We first de-
fine a novel procedure for leveraging the WL multisets to
obtain weighted graphs, after which we describe how to
obtain persistent subtree features. We also explain how to
rephrase the original WL subtree features as a special case
of our method. Furthermore, we demonstrate how to in-
clude cycle features, which (a) have been largely ignored
in the literature so far due to their computational complex-
ity (Horváth et al. 2004), and (b) turn out to be beneficial
for the classification performance.

2.3.1. A FILTRATION FOR NODE-LABELLED GRAPHS

Typically, filtrations in computational topology require the
use of a metric3, i.e. a distance function, defined on sub-
structures of the objects in an input data set (Ghrist 2008).
The resulting topological features then represent the data
set at different scales; features that only exist at small scales
are considered to be noise. However, there are currently
no algorithms for obtaining a filtration that handles graphs
with node labels. We thus propose a new method that em-
ploys the WL stabilisation procedure (Section 2.1). More
precisely, in iteration h of the procedure, we define a dis-
tance between the label multisets C(h)(u) and C(h)(v) of
two vertices u and v. We then use this distance to obtain
edge weights, which in turn can be used to obtain a filtra-
tion. First, we define a distance between multisets.

Definition 1 (Multiset distance). Let A = {la1
1 , la2

2 , . . . }
and B = {lb11 , lb22 , . . . } be two multisets that are defined
over the same label alphabet {l1, l2, . . . }, where ai and bi
refer to the number of occurrences of label li in each multi-
set, respectively. We transform each set into a vector of its
counts, leading to x := [a1, a2, . . . ] and y := [b1, b2, . . . ].
Given p ∈ R>0, we calculate the multiset distance between
x and y as

dM(x,y) :=

(∑
i

|ai − bi|p
) 1

p

, (5)

i.e. the pth Minkowski distance. The parameter p has the
role of a smoothing parameter.

3In the supplementary materials, we discuss alternative dissim-
ilarity measures, such as the Kullback–Leibler divergence.

For a vertex u and its neighbour v in a graph, we extend
the previous distance to a distance between the compressed
label of the previous WL iteration (h− 1) and the multiset
label of the current iteration (h).

Definition 2 (Label distance). Given two adjacent vertices
u and v in a graph, let l(h)u and l(h)v refer to their multiset
label in iteration h of the stabilisation procedure. We define
their distance as

dL(u, v) :=
[
l(h−1)
u ̸= l(h−1)

v

]
+ dM

(
l(h)u , l(h)v

)
+ τ, (6)

where [·] is an Iverson bracket, i.e. a function that is 1 when-
ever the condition in the bracket is satisfied, and 0 other-
wise, and τ ∈ R>0 is an offset. We use τ := 1 in this paper.

We can show that this function4 constitutes a metric on la-
belled graphs, thus yielding a suitable filtration.

Theorem 1. dL(·, ·) is a metric on a node-labelled graph
provided that the graph does not have self-loops, i.e. edges
whose source and target node are the same.

Proof. We first note that the function in the Iverson bracket
is a metric, namely the discrete metric on a topological
space (Ó Searcóid 2007, p. 4). Moreover, the multiset dis-
tance is a metric by its definition because the Minkowski
distance is a metric for p > 0. Last, τ can be seen as
a uniform metric on the graph edges, assigning each edge
(u, v) the same value. This only violates the conditions of a
metric if self-loops exist, because a metric d has to satisfy
d(x, y) = 0 if and only if x = y. This case never occurs
unless the graph has a self-loop. We may thus treat each
term as a metric on the graph vertices. Since the sum of
two metrics is a metric, the claim follows.

Using the preceding theorem, we thus obtain a weighted
graph at each stabilisation step h, from which we derive a
filtration by sorting all edge weights in ascending order, i.e.
w0 ≤ w1 ≤ w2 ≤ . . . , and define the set of edges Ei for
Gi in Eq. 3 as

Ei := {(u, v) | (u, v) ∈ E,w(u, v) ≤ wi}, (7)

where w(u, v) refers to the weight of an edge (u, v). Since
weights encode distances, large edge weights are assigned
whenever the two vertices of an edge are dissimilar in terms
of their neighbouring labels.

It is interesting to observe the effect of h on the distances.
Intuitively, larger values of h have a “smoothing” effect on
the distance between two nodes. For the initial case h = 0,

4We also present a recursively-defined variant of this function
in the supplementary materials.
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Algorithm 1 Persistent Subtree Feature Generation

Input: Graph G = (V,E), number of iterations H
1: for h ∈ {0, . . . , H − 1} do
2: ϕ

(h)
P-WL := ∅, ϕ(h)

P-WL-C := ∅
3: // Get WL multiset labels (Shervashidze et al. 2011)
4: L(h) := {l(h)v | v ∈ V } ← WL_LABELS(G,h)
5: // Use Eq. 6 to assign each edge (u, v) its weight
6: for all (u, v) ∈ E do
7: w(u, v)← dL(u, v)
8: end for
9: // Compress and re-assign vertex labels

10: for all v ∈ V do
11: l(h)v ← COMPRESS

(
l(h−1)
v , l(h)v

)
12: end for
13: // Calculate persistent subtree features
14: for all v ∈ V do
15: ϕ

(h)
P-WL

[
l(h)v

]
← ϕ

(h)
P-WL

[
l(h)v

]
+ pers(v)

p

16: end for
17: // Calculate persistent cycle features
18: for all (u, v) ∈ E do
19: ϕ

(h)
P-WL-C

[
l(h)v

]
← ϕ

(h)
P-WL-C

[
l(h)v

]
+ pers(u, v)

p

20: end for
21: end for
22: return

[
ϕ
(0)
P-WL, ϕ

(0)
P-WL-C, . . . ϕ

(H−1)
P-WL , ϕ

(H−1)
P-WL-C

]

Eq. 6 reduces to

dL(u, v) =

{
τ if l(u) = l(v)

τ + 1 otherwise
(8)

because there are no previous labels to fall back to.
Since subsequent iterations include more information about
neighbours, this rigid initial distance will become progres-
sively smoother.

2.3.2. P-WL FOR NODE-LABELLED GRAPHS

Having introduced the required terminology and developed
a suitable filtration, we are now ready to describe a persis-
tent form of the WL subtree feature generation method for
node-labelled graphs. We refer to this method as P-WL;
Algorithm 1 shows the full feature calculation procedure.
In the following, we will provide details for the individual
steps. A high-level description of our algorithm in iteration
h consists of the following operations:

1. Perform the WL stabilisation procedure and assign ev-
ery vertex v in the graph a multiset label l(h)u .

2. Use the metric from Definition 6 to assign a weight to
each edge of the graph. Create a filtration by sorting
all edges according to their edge weight.

3. Use the filtration to calculate persistent homology of
the weighted graph.

For a graph G with n vertices and m cycles, this
procedure results in n persistence tuples of the form
{(0, wi1), (0, wi2), . . . , (0, win)} and m tuples of the form
{(wj1 ,∞), (wj2 ,∞), . . . , (wjm ,∞)}, where each w rep-
resents a certain edge weight of the graph. Letting
{l0, l1, . . . } refer to the sequence of compressed vertex la-
bels at iteration h, we define the persistent subtree feature
vector as

ϕ
(h)
P-WL :=

[
p(h)(l0), p

(h)(l1), . . .
]
, (9)

where p(h)(·) sums persistence values of vertices with a
given label, i.e.

p(h)(li) :=
∑

l(v)=li

pers(v)
p
, (10)

and p > 0 is a smoothing factor, which we choose to be
the same as the one used for the distance calculations in
Eq. 5. Subsequently, we will use ϕ

(h)
P-WL[l(v)] to denote the

respective component of a label l(v) in a feature vector.

This equation can be seen as a more complex variant of
Eq. 1. It does not merely count how often a certain la-
bel occurs, but each occurrence is weighted according to
its persistence, i.e. according to the relevance of the corre-
sponding topological feature in the graph. Feature vectors
are then concatenated for different values of h just like for
the original WL subtree features. In addition to these fea-
tures, our filtration also results in information about the cy-
cles, without any computational overhead. More precisely,
while listing cycles in graphs is known to be computation-
ally demanding (Horváth et al. 2004), the pairing relation
as introduced at the end of Section 2.2.2 makes it possible
to count cycles in a graph. This leads us to define the per-
sistent cycle feature vector as

ϕ
(h)
P-WL-C :=

[
z(h)(l0), z

(h)(l1), . . .
]
, (11)

where z(h)(·) sums persistence values of cycle edges whose
source or target node matches a given label, i.e.

z(h)(li) :=
∑

li∈l(u,v)

pers(u, v)
p
, (12)

where p > 0 is the same smoothing factor as in Eq. 10,
(u, v) ∈ E, and l(u, v) := {l(u), l(v)}. This counts all
cycles twice, which does not impact classification perfor-
mance. Subsequently, we refer to the method that inte-
grates cycle features as P-WL-C. As we will demonstrate
in the experimental section, the integration of cycle features
can be beneficial for several data sets, in particular those
that exhibit pronounced cycles (such as the PTC-MR data
set of molecular graphs).
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Properties of ϕ(h)
P-WL and ϕ

(h)
P-WL-C Since we use the dis-

tance from Definition 2, we know that pers(v) ≥ τ for ev-
ery vertex v: in the worst case, all labels coincide, such that
all parts of the sum become zero except for τ . As τ > 0, the
ith entry in ϕ

(h)
P-WL is zero if and only if the ith label does not

occur in the respective graph. This demonstrates the neces-
sity of using τ ; a classifier trained on these features should
be able to distinguish between features that are not impor-
tant for the topological structure (small persistence values)
and those that are non-existent (zero). The same reasoning
applies to the persistent cycle features.

Computational complexity Calculating persistent fea-
tures from a filtration requires an additional sorting of
all edges, which has a computational complexity of
O(m logm) for a graph with m edges. The calculation
of persistence tuples has a complexity of O(m · α(m)),
where α(·) is the extremely slow-growing inverse of the
Ackermann function; in practice, it is linear in the number
of edges (Chen & Kerber 2013). This brings up the total
runtime complexity to O(hm logm), in comparison to the
complexity O(hm) of the original WL subtree feature cal-
culation (Shervashidze et al. 2011).

2.3.3. ϕ(h)
WL AS A SPECIAL CASE OF ϕ

(h)
P-WL

It is possible to rephrase the generation of the original WL
subtree feature vectors, i.e. ϕ(h)

WL, in terms of persistent fea-
ture vectors, provided the graph does not exhibit self-loops.
In this case, let d(u, v) := 1 for all edges (u, v) in the graph.
Since no self-loops exist, this is a discrete metric. Now
wi1 = wi2 = · · · = 1 for all persistence tuples, so Eq. 9
simplifies to a count function again. As a consequence, the
feature vector is equal to the one calculated in Eq. 1, mak-
ing ϕ

(h)
WL a special case of ϕ(h)

P-WL.

This permits us to define a variant of P-WL for uniform
edge weights. In the preceding paragraph, we already estab-
lished the equivalence of the vertex features to the original
subtree features. Our filtration additionally leads to cycle
features, which degenerate to cycle counts in the uniform
case. We use these counts to obtain a feature vector anal-
ogously to Eq. 11. The resulting method, which we refer
to as P-WL-UC (uniform metric with cycles), enriches the
WL subtree features with cycle counts.

2.3.4. P-WL FOR NON-ATTRIBUTED GRAPHS

Application domains such as social network analysis tend
to make use of non-attributed graphs, i.e. graphs without
any attributes (node labels, edge labels, etc.). While it is
possible to apply the WL subtree feature generation ap-
proach here through the assignment of uniform labels in the
first step of the algorithm, we propose a new method that
is inspired by the stabilisation procedure while also being

able to leverage more topological information. Our method
is motivated by the insight that non-attributed graphs result
in a set of compressed WL labels that correspond to the de-
gree of a vertex. The distance between each of these labels
is uniform by construction; hence the algorithm treats all
different degrees the same. By contrast, we can incorporate
degree information in a continuous manner if we restrict
ourselves to topological descriptors. For a non-attributed
graph G = (V,E), we perform the following steps:

1. Assign each vertex v ∈ V its degree deg(v) as an
initial attribute value f(v).

2. Replace f(v) by (deg(v)+1)−1(f(v)+
∑

u∼v f(u)),
where u ∼ v denotes adjacent vertices u and v.

3. Assign each edge (u, v) ∈ E a weight of
max(f(u), f(v)) and obtain a filtration by sorting all
edges according to their edge weight.

4. Calculate persistent homology of the filtration.

Step 2 can be repeated multiple times. This has the effect of
smoothing degree information within a graph; in the limit,
all vertices will have a similar f(v) value. The topological
features calculated by this procedure are of the same form
as in Section 2.3.2. LettingD refer to the persistence tuples
of G that correspond to the vertices, i.e. the tuples of the
form {(0, wi1), (0, wi2), . . . , (0, win)}, we can calculate a
topological kernel kPSS between the tuples D and D′ of
two graphs G and G′ as

kPSS
(h)(D,D′) := c−1

∑
x∈D, y∈D′

e
−∥x−y∥2

8σ − e
−∥x−y∥2

8σ , (13)

where c := 8πσ for a smoothing parameter σ ∈ R, and
ȳ denotes a set of tuples that has been “mirrored” such
that (0, wi1) becomes (wi1 , 0), for example. This expres-
sion, the persistence scale-space-kernel (Reininghaus et al.
2015), is a valid kernel between sets of persistence tuples.
We define the degree-based persistent WL kernel as

kP-WL(D,D′) :=
∑
h

kPSS
(h)(DG,DG′), (14)

which is a valid kernel because the sum of kernels is also a
kernel (Hofmann et al. 2008). In practice, kPSS is general
and can be applied to all valid filtrations; we restrict its us-
age, and hence our kP-WL kernel, to the (smoothed) degree
information in this paper. In the experimental section, we
will use P-WL-D to denote this kernel.

3. Experiments
In the following, we describe the practical performance of
our methods on numerous graph classification benchmark
data sets. Since all of our methods can be seen as gen-
eralised variants of WL subtree features (Shervashidze &
Borgwardt 2009, Shervashidze et al. 2011), we primarily
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compare against them under the same training conditions.
Moreover, we show histogram kernels to establish base-
lines for each of the data sets. Methods marked with an
asterisk indicate that the results have initially been reported
in another paper.

Setup We follow the standard setup for graph classifica-
tion and perform a 10-fold cross-validation that we repeat
10 times, reporting the average and standard deviation for
all runs. For hyperparameter tuning, we use an inner 5-fold
cross-validation on each of the training splits to perform a
grid search. Since we want to show that our proposed en-
richment of the original subtree features is beneficial, we
use a random forest classifier (Breiman 2001) to compare
P-WL, P-WL-C, and P-WL-UC against WL. For P-WL-
D and for the histogram kernels, we use a support vec-
tor machine (Cortes & Vapnik 1995). As for the hyperpa-
rameters, we choose p ∈ {1, 2} for P-WL and P-WL-C,
and h ∈ {0, . . . , 10} for methods based on WL features,
whereas we choose C ∈ {0.1, 1, 10} for training an SVM
on the P-WL-D kernel values. Moreover, since we did
not observe an effect in changing σ for P-WL-D, we leave
σ = 1.0 fixed.

Data sets We use common graph benchmark data sets
in our experiments, comprising graphs from chemoinfor-
matics problems (Debnath et al. 1991), toxicology predic-
tion (Helma et al. 2001), protein function/structure predic-
tion (Borgwardt et al. 2005, Dobson & Doig 2003), carcino-
genicity prediction (Wale et al. 2008), and social network
analysis (Leskovec et al. 2005, Yanardag & Vishwanathan
2015).

Implementation We implemented our methods in
Python. Please refer to our repository5 for the code and
additional experiments.

3.1. Results for Node-Labelled Graphs

Table 1 shows the results of our methods for the classifica-
tion of node-labelled graphs. Two histogram kernel meth-
ods (one using vertices, the other one using edges) pro-
vide a simple baseline. Moreover, we show the accuracies
that we obtain for the Weisfeiler–Lehman (WL) subtree
features, plus the accuracies for the deep variant of these
features (DEEP-WL). This framework (Yanardag & Vish-
wanathan 2015) involves a weight scheme for the subtree
features, but unlike our novel topology-based assignment
described in Section 2.3.2, DEEP-WL aims to learn those
weights based on the data set. As the most recent state-
of-the-art (SOTA) comparison partner, we use RETGK, a
graph kernel based on the return probabilities of random
walks (Zhang et al. 2018).

5https://github.com/BorgwardtLab/P-WL

Overall, we observe that our novel persistent features are
favourable: their mean accuracy is either higher than that of
the original subtree features, or very close to them; we use
a bold font to indicate the highest mean accuracy, marking
multiple cells whenever one of our methods is able to out-
perform the respective SOTA method. Interestingly, P-WL,
which only uses persistent variants of the subtree features,
does not outperform any method on these data sets, except
for PTC-MM. On NCI1 and NCI109, P-WL performance
gets close to the best result, with a slightly smaller standard
deviation. For D&D, P-WL exhibits the best mean accu-
racy of our methods, but it is still unable to match RETGK.
In general, we observe that the addition of cycle features
following Eq. 11 is beneficial for most data sets, and even
the uniform-weighted variant of our algorithm that includes
cycles, i.e. P-WL-UC, is seen to perform well.

For the toxicology challenge data sets (Helma et al. 2001)
PTC-MR, PTC-FR, PTC-MM, and PTC-FM, our features
are favourable in comparison to the original subtree fea-
tures and the deep graph kernel features. Each of these data
sets is known to be hard to classify, but our methods im-
prove on the accuracies reported for RETGK on three out
of the four data sets. Again, we observe that the inclusion
of cycles positively impacts predictive performance. P-WL
exhibits a higher mean accuracy than WL on PTC-MM,
while staying very close to its performance on the other
data sets. Interestingly, while P-WL-C performs best over-
all, the unweighted cycle-based variant P-WL-UC also has
a higher mean accuracy than the SOTA method on three of
these data sets, which demonstrates the relevance of cycles.

3.2. Investigating the Influence of h

By changing the parameter h, the WL sequence of graphs
starts to include more global information about the neigh-
bourhoods, while at the same time increasing the runtime.
It is thus beneficial to keep h as small as possible while
maintaining high predictive accuracy. To analyse the effect
of h on accuracy, we exemplarily use the PTC-MR data set
and train the same classifier with both the WL subtree fea-
tures and our novel persistent features (using p = 1). Since
the purpose of this experiment is to compare the behaviour
of both types of features at the same subtree depth h, we do
not perform an additional grid search, leading to slightly
different accuracies than the ones reported in Table 1.

Figure 2 depicts the results. We observe that persistent
features (orange, violet) tend to reach higher mean accu-
racies at smaller values of h. In particular P-WL-C, with
its usage of cycle features, reaches its maximum accuracy
for smaller values of h than WL. In our other experiments,
we also observed that whenever one of our methods outper-
forms WL in terms of mean accuracy, it requires on aver-
age a lower value of h to do so. As h influences the size of

https://github.com/BorgwardtLab/P-WL
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D & D MUTAG NCI1 NCI109 PROTEINS PTC-MR PTC-FR PTC-MM PTC-FM

V-Hist 78.32 ± 0.35 85.96 ± 0.27 64.40 ± 0.07 63.25 ± 0.12 72.33 ± 0.32 58.31 ± 0.27 68.13 ± 0.23 66.96 ± 0.51 57.91 ± 0.83
E-Hist 72.90 ± 0.48 85.69 ± 0.46 63.66 ± 0.11 63.27 ± 0.07 72.14 ± 0.39 55.82 ± 0.00 65.53 ± 0.00 61.61 ± 0.00 59.03 ± 0.00

RETGK∗ 81.60 ± 0.30 90.30 ± 1.10 84.50 ± 0.20 75.80 ± 0.60 62.15 ± 1.60 67.80 ± 1.10 67.90 ± 1.40 63.90 ± 1.30

WL 79.45 ± 0.38 87.26 ± 1.42 85.58 ± 0.15 84.85 ± 0.19 76.11 ± 0.64 63.12 ± 1.44 67.64 ± 0.74 67.28 ± 0.97 64.80 ± 0.85
DEEP-WL∗ 82.94 ± 2.68 80.31 ± 0.46 80.32 ± 0.33 75.68 ± 0.54 60.08 ± 2.55

P-WL 79.34 ± 0.46 86.10 ± 1.37 85.34 ± 0.14 84.78 ± 0.15 75.31 ± 0.73 63.07 ± 1.68 67.30 ± 1.50 68.40 ± 1.17 64.47 ± 1.84
P-WL-C 78.66 ± 0.32 90.51 ± 1.34 85.46 ± 0.16 84.96 ± 0.34 75.27 ± 0.38 64.02 ± 0.82 67.15 ± 1.09 68.57 ± 1.76 65.78 ± 1.22
P-WL-UC 78.50 ± 0.41 85.17 ± 0.29 85.62 ± 0.27 85.11 ± 0.30 75.86 ± 0.78 63.46 ± 1.58 67.02 ± 1.29 68.01 ± 1.04 65.44 ± 1.18

Table 1. Classification accuracies for node-labelled graphs. Empty cells are used to indicate data sets that do not report accuracies on a
certain data set. We used the highest available accuracy values from the respective publications for all cited algorithms (marked with ∗).
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Figure 2. Performance of the WL subtree features and the persis-
tent features for the PTC-MR data set. WL requires higher values
of h to reach a suitable predictive performance.

the subtree features, obtaining higher accuracies for lower
values of h is a desirable property.

3.3. Results for Non-Attributed Graphs

For non-attributed graphs, a common strategy is to use
uniform labels before applying a subtree-based method.
This is equivalent to using vertex degrees as categorical
node labels. To determine the information carried by these
labels, we remove all node labels from the PROTEINS
data and apply the degree propagation procedure from Sec-
tion 2.3.4. For a maximum of h = 5 accumulation op-
erations, P-WL-D achieves an accuracy of 73.31± 0.53.
While this is not on a par with WL, it demonstrates the po-
tential of using only degree information: filtrations can be
made sparse (Sheehy 2013), so P-WL-D could scale better
to larger data sets than subtree features, thus providing a
trade-off between runtime and predictive performance.

We also applied P-WL-D to IMDB-BINARY, a non-
attributed graph data set. Using node degrees without any
propagation, i.e. h = 0, we obtain a mean accuracy of
72.88± 0.55, which is higher than the accuracy reported
by RETGK (72.3± 0.6). We can obtain an accuracy of

73.02± 0.95 using P-WL-UC (with uniform node labels
as described above). However, on average, P-WL-UC uses
subtree features with h = 2. This shows the favourable
performance of topological features in a continuous setting.
These results are to be taken with a grain of salt, though, be-
cause a recent preprint (Cai & Wang 2018) reports that all
non-attributed graph data sets that are currently available
to the community can equally well be classified by simple
low-dimensional local degree features.

4. Discussion
We augmented Weisfeiler–Lehman (WL) subtree features
with topological information to improve graph classifica-
tion performance. To this end, we developed a distance
between multiset labels and defined a subgraph-based fil-
tration that generalises WL subtree features. Our method
manages to efficiently include low-dimensional topological
features—connected components and cycles—for classify-
ing node-labelled and non-attributed graphs. Experiments
on several data sets show a generally favourable perfor-
mance of our persistent feature vectors. The integration
of cycle-based features is thus shown to be capable of im-
proving classification performance.

Future work will involve analysing different metrics for
multiset labels; we also conjecture that “robust” filtra-
tions (Anai et al. 2018, Chazal et al. 2018) will be bene-
ficial. The use of other kernels for comparing subtree fea-
tures might also lead to performance increases. Optimal
assignment kernels (Kriege et al. 2016) are particularly in-
teresting because of their favourable performance and con-
ceptual similarity to distance measures for persistence tu-
ples (Cohen-Steiner et al. 2007). Similarly, for P-WL-D,
different kernels between persistence representations can
be investigated (Carrière et al. 2017, Kusano et al. 2018).
The extension of this method to higher-dimensional con-
tinuous node features is also desirable. While the theory
behind multidimensional persistence (Carlsson & Zomoro-
dian 2009) is considerably more involved than for the one-
dimensional case, a recent preprint (Corbet et al. 2018) in-
troduces a new kernel method for these representations.
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mology of complex networks. Journal of Statistical Me-
chanics: Theory and Experiment, 2009(03):P03034:1–
P03034:24, 2009.

Horváth, T., Gärtner, T., and Wrobel, S. Cyclic pattern ker-
nels for predictive graph mining. In Proceedings of the
10th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pp. 158–167,
New York, NY, USA, 2004. ACM.

Jonsson, J. Simplicial complexes of graphs, volume 1928
of Lecture Notes in Mathematics. Springer, Heidelberg,
Germany, 2008.

Kashima, H., Tsuda, K., and Inokuchi, A. Marginalized
kernels between labeled graphs. In Fawcett, T. and
Mishra, N. (eds.), Proceedings of the 20th International
Conference on Machine Learning (ICML), pp. 321–328.
AAAI Press, 2003.

Kriege, N. M., Giscard, P.-L., and Wilson, R. On valid op-
timal assignment kernels and applications to graph clas-
sification. In Lee, D. D., Sugiyama, M., Luxburg, U. V.,
Guyon, I., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 29, pp. 1623–1631. Cur-
ran Associates, Inc., 2016.

Kusano, G., Fukumizu, K., and Hiraoka, Y. Kernel
method for persistence diagrams via kernel embedding
and weight factor. Journal of Machine Learning Re-
search, 18(189):1–41, 2018.

Lei, T., Jin, W., Barzilay, R., and Jaakkola, T. Deriving
neural architectures from sequence and graph kernels. In
Precup, D. and Teh, Y. W. (eds.), Proceedings of the 34th
International Conference on Machine Learning (ICML),
volume 70, pp. 2024–2033. PMLR, 2017.

Leskovec, J., Kleinberg, J., and Faloutsos, C. Graphs over
time: Densification laws, shrinking diameters and pos-
sible explanations. In Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge Dis-
covery in Data Mining (KDD), pp. 177–187, New York,
NY, USA, 2005. ACM.

Munch, E. A user’s guide to topological data analysis. Jour-
nal of Learning Analytics, 4(2):47–61, 2017.

Ó Searcóid, M. Metric spaces. Springer Undergraduate
Mathematics Series. Springer, London, England, 2007.

Ramon, J. and Gärtner, T. Expressivity versus efficiency
of graph kernels. In Proceedings of the 1st International
Workshop on Mining Graphs, Trees and Sequences, pp.
65–74, 2003.

Reininghaus, J., Huber, S., Bauer, U., and Kwitt, R. A sta-
ble multi-scale kernel for topological machine learning.
In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 4741–4748,
2015.

Rieck, B., Fugacci, U., Lukasczyk, J., and Leitte, H. Clique
community persistence: A topological visual analysis ap-
proach for complex networks. IEEE Transactions on
Visualization and Computer Graphics, 24(1):822–831,
2018.

Rieck, B., Togninalli, M., Bock, C., Moor, M., Horn, M.,
Gumbsch, T., and Borgwardt, K. Neural persistence: A
complexity measure for deep neural networks using alge-
braic topology. In International Conference on Learning
Representations (ICLR), 2019.

Sheehy, D. R. Linear-size approximations to the Vietoris–
Rips filtration. Discrete & Computational Geometry, 49
(4):778–796, 2013.

Shervashidze, N. and Borgwardt, K. Fast subtree kernels on
graphs. In Bengio, Y., Schuurmans, D., Lafferty, J. D.,
Williams, C. K. I., and Culotta, A. (eds.), Advances in
Neural Information Processing Systems 22, pp. 1660–
1668. Curran Associates, Inc., 2009.



A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn,
K., and Borgwardt, K. Efficient graphlet kernels for
large graph comparison. In van Dyk, D. and Welling,
M. (eds.), Proceedings of the 12th International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
volume 5, pp. 488–495. PMLR, 2009.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler–
Lehman graph kernels. Journal of Machine Learning
Research, 12:2539–2561, 2011.

Sizemore, A., Giusti, C., and Bassett, D. S. Classification
of weighted networks through mesoscale homological
features. Journal of Complex Networks, 5(2):245–273,
2017.

Sugiyama, M. and Borgwardt, K. Halting in random walk
kernels. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 28, pp. 1639–1647.
Curran Associates, Inc., 2015.

Vishwanathan, S., Schraudolph, N. N., Kondor, R., and
Borgwardt, K. M. Graph kernels. Journal of Machine
Learning Research, 11:1201–1242, 2010.

Wale, N., Watson, I. A., and Karypis, G. Comparison of
descriptor spaces for chemical compound retrieval and
classification. Knowledge and Information Systems, 14
(3):347–375, 2008.

Weisfeiler, B. and Lehman, A. A. The reduction of a graph
to canonical form and the algebra which appears therein.
Nauchno–Technicheskaja Informatsia, 9:12–16, 1968.

Yanardag, P. and Vishwanathan, S. Deep graph kernels.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing (KDD), pp. 1365–1374, New York, NY, USA, 2015.
ACM.

Zhang, Z., Wang, M., Xiang, Y., Huang, Y., and Neho-
rai, A. RetGK: Graph kernels based on return proba-
bilities of random walks. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 31, pp. 3968–3978. Curran Associates, Inc.,
2018.

Zomorodian, A. J. and Carlsson, G. Computing persistent
homology. Discrete & Computational Geometry, 33(2):
249–274, 2005.


