
Efficient learning of smooth probability functions from Bernoulli tests with guarantees

A. Proofs

In this appendix, we provide all proofs for Theorems and Corollaries stated in the paper. We emphasize that we are aware of
existing theoretical tools provided in (van der Vaart et al., 2008) and (Knapik et al., 2011), but our approach is different and
specific to the current setup.

A.1. Proofs of point-wise Bayesian update in dynamic case

Theorem 5. Suppose ⇡̃(x) ⇠
Pn

i=0 C
n
i B(↵+ i,� + n� i) with

Pn
i=0 C

n
i = 1, and we observe the result s of a sample

from a Bernoulli random variable with parameter A⇡(x) +B. Then the Bayesian posterior for ⇡̃(x) conditioned on this

observation is:

⇡̃(x|s) ⇠
n+1X

i=0

Cn+1
i B(✓,↵+ i,� + n� i) (10)

where 8i = 0, ..., n+ 1:

Cn+1
i =

1

En
s

(BCn
i (� + n� i) + (A+B)Cn

i�1(↵+ i� 1))

if s = 1 and

Cn+1
i =

1

En
f

((1�B)Cn
i (� + n� i) + (1�A�B)Cn

i�1(↵+ i� 1))

if s = 0. En
s and En

f are normalization factors that ensure
Pn

i=0 C
n+1
i = 1. For simplicity of notation Cn

�1 = Cn
n+1 = 0

8n.

Proof. Suppose the observation is a success, i.e. s = 1. Let f⇡̃(x) : [0, 1] ! [0, 1] be the density function of the random
variable ⇡̃(x), and let f⇡̃(x)|s=1 : [0, 1] ! [0, 1] be its the density function conditioned on this observation. Then,

f⇡̃(x)|s=1(✓) =
Pr(s = 1|⇡̃(x) = ✓)f⇡̃(x)(✓)

Pr(s = 1)

/ (A✓ +B)
nX

i=0

Cn
i B(↵+ i,� + n� i)

= (B(1� ✓) + (A+B)✓)
nX

i=0

Cn
i
✓↵+i�1(1� ✓)�+n�i�1

B(↵+ i,� + n� i)

= B
nX

i=0

Cn
i

✓↵+i�1(1� ✓)�+n�i

B(↵+ i,� + n� i+ 1)

B(↵+ i,� + n� i+ 1)

B(↵+ i,� + n� i)

+ (A+B)
nX

i=0

Cn
i

✓↵+i(1� ✓)�+n�i�1

B(↵+ i+ 1,� + n� i)

B(↵+ i+ 1,� + n� i)

B(↵+ i,� + n� i)

= B
nX

i=0

Cn
i B(↵+ i,� + n� i+ 1)

� + n� i

↵+ � + n

+ (A+B)
nX

i=0

Cn
i B(↵+ i+ 1,� + n� i)

↵+ i

↵+ � + n

/

n+1X

i=0

(BCn
i (� + n� i) + (A+B)Cn

i�1(↵+ i� 1))B(↵+ i,� + n� i)

/

n+1X

i=0

Cn+1
i B(✓,↵+ i,� + n� i)

where B is the Beta function, and satisfies B(↵+1,�)
B(↵,�) = ↵

↵+� and B(↵,�+1)
B(↵,�) = �

↵+� .
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In order to ensure that this remains a probability distribution, coefficients Cn+1
i must satisfy

Pn+1
i=0 Cn+1

i = 1. The result
for s = 0 can be showed similarly.

Theorem 2 is a special case of this result, for n = 0. Corollary 1 directly follows from this theorem, by applying it recursively
for each observations.
Corollary 2. Suppose ⇡̃(x) ⇠ B(↵,�) and we observe the outputs of experiments S = {(si, x, 1�B,B)}i=1,...,t where

si ⇠ Bernoulli((1�B)⇡(x) +B). Then the Bayesian posterior ⇡̃(x|S) conditioned on these observations is given by

⇡̃(x|S) ⇠
SX

i=0

Ct
iB(↵+ i,� + t� i) (11)

where S =
Pt

i=1 si is the total number of successes and

Ct
i /

✓
S

i

◆
(↵� 1 + i)!(� + t� 1� i)!BS�i (12)

8i = 0, ..., S. Using the relation Ct
i+1 = (S�i)(↵+i)

B(i+1)(�+t�1�i)C
t
i , we can compute all Ct

i ’s in time O(t).

Proof. We want to prove that the iterative process for computing the coefficients Ct
i ’s in Corollary 1 ends with coefficients

Ct
i ’s of equation (12). We prove this by induction over t. For t = 0, the result is obvious, since S = 0, and C0

0 = 1.

Now suppose the result is true for some time n and let us prove that it remains true for time n + 1. Let Sn be the total
number of successes observed up to time n, and let sn+1 be the new observation at time n+ 1. Suppose sn+1 = 1. Then
Sn+1 = Sn + 1, and 8i = 1, ..., Sn+1:

Cn+1
i / BCn

i (� + n� i) + Cn
i�1(↵+ i� 1)

/

✓
Sn

i

◆
(↵� 1 + i)!(� + n� 1� i)!BSn+1�i(� + n� i)

+

✓
Sn

i� 1

◆
(↵� 1 + i� 1)!(� + n� i)!BSn+1�i(↵+ i� 1)

=

✓
Sn+1

i

◆
(↵� 1 + i)!(� + (n+ 1)� 1� i)!BSn+1�i

Similarly, if sn+1 = 0, then Sn+1 = Sn, and 8i = 1, ..., Sn+1:

Cn+1
i / (1�B)Cn

i (� + n� i)

/

✓
Sn+1

i

◆
(↵� 1 + i)!(� + (n+ 1)� 1� i)!BSn+1�i

In particular, we can see that the number of coefficients increases only when we observe a success.

A.2. Proof of convergence in the static case

Theorem 1. Let ⇡ : [0, 1]d ! [0, 1] be L-Lipschitz continuous. Suppose we measure the results of experiments S =
{(xi, si)}i=1,...,t where si is a sample from a Bernoulli distribution with parameter ⇡(xi). Experiment points {xi}i=1,...,t

are assumed to be i.i.d. and uniformly distributed over the space. Then, starting with a uniform prior ↵(x) = �(x) =
1 8x 2 [0, 1]d, the posterior ⇡̃(x|S) obtained from Algorithm 1 uniformly converges in L2-norm to ⇡(x), i.e.

sup
x2[0,1]d

ES
�
E
�
(⇡̃(x|S)� ⇡(x))2

��
= O

⇣
t�

2
d+2

⌘
, (13)
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where the outer expectation is performed over experiment points {xi}i=1,...,t and their results {si}i=1,...,t. Moreover,

Algorithm 1 computes the posterior in time O(t).

Proof. For simplicity, suppose we start with a uniform prior for each x, i.e. ⇡̃(x) ⇠ B(1, 1). Let x 2 X , � 2 [0, 1] be
arbitrary. Suppose we fix the experiment points X = {xi}i=1,...,t and that among these t points, n of them are at most
� far from x along all of d dimensions. We assume without loss of generality that these points are x1, ..., xn. Let Dx be
the random variable denoting the number of experiments occurring at most � far from x along each dimension. Since we
assume that experiment points {xi}i=1,...,t are uniformly distributed over [0, 1]d, it follows that Dx ⇠ Bin(t,�d).

Let Sx denote the number of successes that occurred among these n experiments. Sx can be written as a Sx =
Pn

i=1 si
where s = {si}i=1,...,n are sampled independently, and si ⇠ Bernoulli(⇡(xi)) denotes whether experiment on xi was
successful or not. Thus, Sx follows a Poisson-Binomial distribution, and it follows:

E(Sx|Dx = n) =
nX

i=1

⇡(xi) (14)

and

E(S2
x|Dx = n) =

nX

i=1

⇡(xi)(1� ⇡(xi)) +

 
nX

i=1

⇡(xi)

!2

(15)

Note that after s successes among n experiments, the update rule 3 leads to the posterior:

⇡̃(x|S) ⇠ B(1 + s, 1 + n� s). (16)

Using the properties of the Beta distribution, we have:

E(⇡̃(x|S)|Sx = s,Dx = n) =
s+ 1

n+ 2
(17)

and

E(⇡̃(x|S)2|Sx = s,Dx = n) =
(s+ 1)(n+ 1� s)

(n+ 2)2(n+ 3)
+

(s+ 1)2

(n+ 2)2

=
(s+ 1)(s+ 2)

(n+ 2)(n+ 3)

=
s2

(n+ 2)2
+O

✓
1

n+ 1

◆

Therefore:

EX,s

�
E
�
(⇡̃(x|S)� ⇡(x))2

��
=

tX

n=0

Pr(Dx = n)Ex1,...,xn

"
nX

s=0

Pr(Sx = s|Dx = n)
�
E(⇡̃(x|S)2|Sx = s,Dx = n)

�2⇡(x)E(⇡̃(x|S)|Sx = s,Dx = n) + ⇡(x)2
�⇤

=
tX

n=0

Pr(Dx = n)Ex1,...,xn

"
nX

s=0

Pr(Sx = s|Dx = n)

✓
s2

(n+ 2)2
+O

✓
1

n+ 1

◆
� 2⇡(x)

s

n+ 2
+ ⇡(x)2

◆#

=
tX

n=0

Pr(Dx = n)Ex1,...,xn

2

4 1

(n+ 2)2

0

@
nX

i=0

⇡(xi)(1� ⇡(xi)) +

 
nX

i=0

⇡(xi)

!2
1

A

�
2

n+ 2
⇡(x)

nX

i=0

⇡(xi) + ⇡(x)2 +O

✓
1

n+ 1

◆����� kx� xik  � 8i = 1, ..., n

#

=
tX

n=0

Pr(Dx = n)Ex1,...,xn

"
1

(n+ 2)2

nX

i=0

⇡(xi)(1� ⇡(xi))
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+
1

(n+ 2)2

0

@
nX

i,j=0

(⇡(x)� ⇡(xi))(⇡(x)� ⇡(xj))

1

A+O

✓
1

n+ 1

◆������
kx� xik  � 8i = 1, ..., n

3

5



tX

n=0

Pr(Dx = n)

✓
1

4(n+ 2)
+O

✓
1

n+ 1

◆◆
+ L2�2

= L2�2 +O

✓
1

�d(t+ 1)

◆

Therefore, assuming L > 0, we can choose � = 1

L
2

d+2
t�

1
d+2 , and we obtain:

EX,s

�
E((⇡̃(x)� ⇡(x))2

�
= O

⇣
L

2d
d+2 t�

2
d+2

⌘
(18)

In particular, we observe that the smaller L, the larger �. Indeed, the smoother the function, the more we can share
experience between points {xi}.

A.3. Proof of convergence in the simplified dynamic case

Theorem 3. Let ⇡ : [0, 1]d !]0, 1] be L-Lipschitz continuous. Suppose we observe the results of experiments S =
{(xi, si, 1�B,B)}i=1,...,t where si ⇠ Bernoulli((1�Bi)⇡(x) +Bi). Experiment points {xi}i=1,...,t are assumed to be

uniformly distributed over the space. Then, 8x 2 X , the posterior ⇡̃(x|S) obtained from Algorithm 2 converges in L2-norm

to ⇡(x):

ES
�
E
�
(⇡̃(x)� ⇡(x))2

��
= O

⇣
((1�B)t)�

2
d+2

⌘
. (19)

Moreover, Algorithm 2 computes the posterior in time O(t).

Proof. Let x 2 X , � 2]0, 1] be arbitrary. Suppose we fix the experiment points X and that among these t points, n of them
are at most � far from x, i.e. Dx = n where Dx ⇠ Bin(t,�d) is the random variable as defined in A.2. We assume without
loss of generality that these points are x1, ..., xn. For simplicity, we treat the case where ↵ = � = 1, i.e. the prior for ⇡̃(x)
is uniform 8x 2 X . Note that in this case, the coefficients Ci’s in Corollary 2 can be written as:

Cn
i =

1

E0

✓
n� i

S � i

◆
BS�i, (20)

i = 0, ..., S where E0 is the normalization factor and S is the number of observed successes.

Es [E(⇡̃(x|S))|Dx = n] =
nX

s=0

Pr(Sx = s)
sX

i=0

Cn,s
i (x)

i+ 1

n+ 2

=
nX

s=0

Pr(Sx = s)

Ps
i=0

�n�i
s�i

�
Bs�i i+1

n+2Ps
j=0

�n�j
s�j

�
Bs�j

=
nX

s=0

Pr(Sx = s)

 
s+ 1

n+ 2
�

Ps
i=0

�n�s+i
i

�
Bi i

n+2Ps
j=0

�n�s+j
j

�
Bj

!

=
nX

s=0

Pr(Sx = s)

 
s+ 1

n+ 2
�

B

1�B

✓
1�

s+ 1

n+ 2

◆ 
1�

�n+1
s

�
Bs

Ps
j=0

�n+1
j

�
Bj(1�B)s�j

!!

=
1 +

Pn
i=1(B + (1�B)⇡(xi))

(n+ 2)(1�B)
�

B

1�B

+
B

1�B

nX

s=0

Pr(Sx = s)

✓
1�

s+ 1

n+ 2

◆ �n+1
s

�
Bs(1�B)n�s+1

Ps
j=0

�n+1
j

�
Bj(1�B)n+1�j
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=

Pn
i=1 ⇡(xi)

n+ 2
+

1� 2B

(1�B)(n+ 2)

+
B

1�B

nX

s=0

Pr(Sx = s)

✓
1�

s+ 1

n+ 2

◆ �n+1
s

�
Bs(1�B)n�s+1

Ps
j=0

�n+1
j

�
Bj(1�B)n+1�j

At the fourth equality, we used the fact that
Ps

j=0

�n�j
s�j

�
Bs�j =

Ps
j=0

�n+1
j

�
Bj(1 � B)s�j , which can be shown by

induction over s. We also used the following calculations:

sX

i=0

✓
n� s+ i

i

◆
Bii = (n� s+ 1)

sX

i=1

✓
n� s+ i

i� 1

◆
Bi

= B(n� s+ 1)
s�1X

i=0

✓
n� s+ 1 + i

i

◆
Bi

= B(n� s+ 1)

 
s�1X

i=0

✓
n� s+ i

i

◆
Bi +

s�1X

i=1

✓
n� s+ i

i� 1

◆
Bi

!

= B(n� s+ 1)

 
sX

i=0

✓
n� s+ i

i

◆
Bi

�

✓
n

s

◆
Bs +B

s�1X

i=0

✓
n� s+ 1 + i

i

◆
Bi

�

✓
n+ 1

s

◆
Bs

!

Therefore, by equaling lines 2 and 4 and using
�n+1
s+1

�
=
�n+1

s

�
+
�n
s

�
, we get:

s�1X

i=0

✓
n� s+ 1 + i

i

◆
Bi =

1

1�B

 
sX

i=0

✓
n� s+ i

i

◆
Bi

�

✓
n+ 1

s+ 1

◆
Bs

!
(21)

Thus:
sX

i=0

✓
n� s+ i

i

◆
Bii =

B

1�B

✓
1�

s+ 1

n+ 2

◆ sX

i=0

✓
n� s+ i

i

◆
Bi

�

✓
n+ 1

s+ 1

◆
Bs

!
(22)

Let Z ⇠ Bin(n+ 1, B). Then:
�����

nX

s=0

Pr(Sx = s)

✓
1�

s+ 1

n+ 2

◆ �n+1
s

�
Bs(1�B)n�s+1

Ps
j=0

�n+1
j

�
Bj(1�B)n+1�j

����� 
tX

s=0

Pr(Sx = s)
Pr(Z = s)

Pr(Z  s)
(23)

We know that E(Z) = (n+ 1)B and E(Sx) = nB +
Pn

i=1(1�B)⇡(xi). We then have:

nX

s=0

Pr(Sx = s)
Pr(Z = s)

Pr(Z  s)
=

E(Z)+E(Sx)
2X

s=0

Pr(Sx = s)
Pr(Z = s)

Pr(Z  s)
+

nX

s= E(Z)+E(Sx)
2 +1

Pr(Sx = s)
Pr(Z = s)

Pr(Z  s)

 Pr

✓
Sx 

E(Z) + E(Sx)

2

◆
+ 2Pr

✓
Z �

E(Z) + E(Sx)

2

◆

 3e�
(E(Sx)�E(Z))2

2n

 Ce�
(1�B)2⇡̄n

2

where C 2 R, ⇡̄ = 1
n

Pn
i=1 ⇡(xi) > 0. In the second step, we used Pr(Z  s) � 1

2 for any s � E(Z). The last step
follows from Hoeffding’s inequality. So the previous upper bound decays exponentially to 0. We thus have:

Es [E(⇡̃(x|S))|Dx = n] =

Pn
i=1 ⇡(xi)

n+ 2
+

1� 2B

(1�B)(n+ 2)
(24)
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We now bound the second moment of ⇡̃(x|S). With the same notations as previously, we have:

Es

⇥
E(⇡̃(x|S)2)|Dx = n

⇤
=

nX

s=0

Pr(Sx = s|Dx = n)
sX

i=0

Cn,s
i

(i+ 1)(i+ 2)

(n+ 2)(n+ 3)

=
nX

s=0

Pr(Sx = s|Dx = n)

 
(s+ 1)(s+ 2)

(n+ 2)(n+ 3)
� 2

s+ 1

n+ 3

sX

i=0

Cn,s
s�i

i

n+ 2
+

sX

i=0

Cn,s
s�i

i(i� 1)

(n+ 2)(n+ 3)
+O

✓
1

n+ 2

◆!

=
nX

s=0

Pr(Sx = s|Dx = n)

 
(s+ 1)(s+ 2)

(n+ 2)(n+ 3)
� 2

B

1�B

(s+ 1)(n� s+ 1)

(n+ 2)(n+ 3)

 
1�

�n+1
s

�
Bs

Ps
j=0

�n+1
j

�
Bj(1�B)s�j

!

+
B2

1�B2

(n� s+ 1)(n� s+ 2)

(n+ 2)(n+ 3)

 
1 +B

1�B
�

2
�n+1

s

�
Bs+1

1�B +
�n+2

s

�
Bs +

�n+1
s�1

�
Bs�1

Ps
j=0

�n+1
j

�
Bj(1�B)s�j

!!

=
1

(n+ 2)(n+ 3)

nX

s=0

Pr(Sx = s|Dx = n)

✓
s2

(1�B)2
� 2sn

B

(1�B)2
+

B2

(1�B)2
n2

◆
+O

✓
1

(1�B)(n+ 2)

◆

=
1

(1�B)2(n+ 2)2

nX

s=0

Pr(Sx = s|Dx = n)

0

@
 

nX

i=1

(B + (1�B)⇡(xi))

!2

�2Bn
nX

i=1

(B + (1�B)⇡(xi)) +B2n2

!
+O

✓
1

(1�B)(n+ 2)

◆

=
1

(n+ 2)2

nX

s=0

Pr(Sx = s|Dx = n)

 
nX

i=1

⇡(xi)

!2

+O

✓
1

(1�B)(n+ 2)

◆

where the four terms with denominator
Ps

j=0

�n+1
j

�
Bj(1�B)s�j in the third line can be shown to decay exponentially

fast to 0 similarly as previously. We computed
Ps

i=0 C
n,s
s�i

i(i�1)
(n+2)(n+3) in the second line using similar calculations as were

done for
Ps

i=0 C
n,s
s�i

i
n+2 :

sX

i=0

✓
n� s+ i

i

◆
Bii(i� 1) = B2(n� s+ 1)(n� s+ 2)

s�2X

i=0

✓
n� s+ 2 + i

i

◆
Bi (25)

Using the identity
�n+2
k+2

�
=
� n
k+2

�
+ 2
� n
k+1

�
+
�n
k

�
, we have:

s�2X

i=0

✓
n� s+ 2 + i

i

◆
Bi =

s�2X

i=0

✓
n� s+ i

i

◆
Bi + 2

s�2X

i=1

✓
n� s+ i

i� 1

◆
Bi +

s�2X

i=2

✓
n� s+ i

i� 2

◆
Bi

=
s�2X

i=0

✓
n� s+ i

i

◆
Bi + 2

s�3X

i=1

✓
n� s+ i+ 1

i

◆
Bi+1 +

s�3X

i=2

✓
n� s+ i+ 2

i

◆
Bi+2

=
sX

i=0

✓
n� s+ i

i

◆
Bi

�

✓
n� 1

s� 1

◆
Bs�1

�

✓
n

s

◆
Bs

+ 2B
s�1X

i=1

✓
n� s+ i+ 1

i

◆
Bi

� 2

✓
n� 1

s� 2

◆
Bs�1

� 2

✓
n

s� 1

◆
Bs

+B2
s�2X

i=2

✓
n� s+ i+ 2

i

◆
Bi

�

✓
n� 1

s� 3

◆
Bs�1

�

✓
n

s� 2

◆
Bs

Therefore, by isolating the term
Ps�2

i=0

�n�s+2+i
i

�
Bi, simplifying binomial coefficients and using equation (21), we get:

s�2X

i=0

✓
n� s+ 2 + i

i

◆
Bi =

1

1�B2

 
1 +B

1�B

sX

i=0

✓
n� s+ i

i

◆
Bi

�

✓
n+ 2

s

◆
Bs

� 2

✓
n+ 1

s

◆
Bs+1

1�B
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�

✓
n+ 1

s� 1

◆
Bs�1

◆

Thus:

Es

⇥
E((⇡̃(x|S)� ⇡(x))2)|Dx = n

⇤
= Es

⇥
E(⇡̃(x|S)2)|Dx = n

⇤
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By taking the expectation over X , we finally get:
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If we choose � = 1

L
2

d+2
((1�B)t)�

1
d+2 , we obtain the desired result.

A.4. Proof of convergence in the general dynamic case

Theorem 4. Let ⇡ : [0, 1]d !]0, 1] be L-Lipschitz continuous. Suppose we observe the results of experiments S =
{(xi, si, 1�Bi, Bi)}i=1,...,t where si ⇠ Bernoulli((1� (Bi + ✏i))⇡(xi) +Bi + ✏i), i.e. contextual features are noisy. We

assume ✏i’s are independent random variables with zero mean and variance �2
. Experiment points {xi}i=1,...,t are assumed

to be uniformly distributed over the space. Then, 8x 2 X , the posterior ⇡̃(x|S) obtained from Algorithm 3 converges in

L2-norm to ⇡(x) :
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�
E
�
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c(B,�2)t�

2
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⌘
, (26)

where c(B,�2) is a constant depending on {Bi}i=1,...,t and the noise �2
. Moreover, Algorithm 3 computes the posterior in

time O(t).

Proof. The proof of theorem 3 can be completely adapted to this new setting. Let x 2 X , � 2 [0, 1] be arbitrary. Suppose
we fix the experiment points X and that among these t points, n of them are at most � far from x. We assume without loss
of generality that these points are x1, ..., xn. We then define BX = 1
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Let Z ⇠ Bin(n+ 1, BX). Then:
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We know that E(Z) = (n + 1)BX and E(Sx) = nBX +
Pn

i=1(1 � Bi)⇡(xi) +
Pn

i=1 ✏i(1 � ⇡(xi)). Since E(✏i) = 0,
then E(Sx)� E(Z) will also increase linearly with n and thus the previous upper bound also decreases exponentially with
n to 0 with very high probability. We thus have:
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We now bound the second moment of ⇡̃(x|S). With the same notations as previously, we have:

ES

⇥
E(⇡̃(x|S)2)|Dx = n

⇤
=

nX

s=0

Pr(Sx = s|Dx = n)
sX

i=0

Cn,s
i

(i+ 1)(i+ 2)

(n+ 2)(n+ 3)

=
nX

s=0

Pr(Sx = s|Dx = n)

 
(s+ 1)(s+ 2)

(n+ 2)(n+ 3)
� 2

s+ 1

n+ 3

sX

i=0

Cn,s
s�i

i

n+ 2
+

sX

i=0

Cn,s
s�i

i(i� 1)

(n+ 2)(n+ 3)
+O

✓
1

n+ 2

◆!

=
nX

s=0

Pr(Sx = s|Dx = n)

 
(s+ 1)(s+ 2)

(n+ 2)(n+ 3)
� 2

BX

1�BX

(s+ 1)(n� s+ 1)

(n+ 2)(n+ 3)

 
1�

�n+1
s

�
Bs

XPs
j=0

�n+1
j

�
Bj

X(1�BX)s�j

!

+
B2

X

1�B2
X

(n� s+ 1)(n� s+ 2)

(n+ 2)(n+ 3)

0

@1 +BX

1�BX
�

2
�n+1

s

� Bs+1
X

1�BX
+
�n+2

s

�
Bs

X +
�n+1
s�1

�
Bs�1

XPs
j=0

�n+1
j

�
Bj

X(1�BX)s�j

1

A

1

A

=
1

(n+ 2)(n+ 3)

nX

s=0

Pr(Sx = s|Dx = n)

✓
s2

(1�BX)2
� 2sn

BX

(1�BX)2
+

B2
X

(1�BX)2
n2

◆
+O

✓
1

(1�BX)(n+ 2)

◆

=
1

(1�BX)2(n+ 2)2

nX

s=0

Pr(Sx = s|Dx = n)

 
nX

i=1

(Bi + ✏i + (1�Bi � ✏i)⇡(xi))
2

�2BXn
nX

i=1

(Bi + ✏i + (1�Bi � ✏i)⇡(xi)) +B2
Xn2

!
+O

✓
1

(1�BX)(n+ 2)

◆

=
1

(1�BX)2(n+ 2)2

nX

s=0

Pr(Sx = s|Dx = n)

0

@2
nX

i,j=1

✏i(1� ⇡(xi))⇡(xj) +
nX

i,j=1

✏i✏j(1� ⇡(xi))(1� ⇡(xj))



Efficient learning of smooth probability functions from Bernoulli tests with guarantees
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where the four terms with denominator
Ps

j=0
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X(1�BX)s�j in the third line can be shown to decay exponentially
fast to 0 similarly as previously. Taking the expectation over ✏, we then get:
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Finally, by taking the expectation over experiment points X , we get:
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i
. Therefore, if we choose � = 1

L
2
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t�

1
d+2 , then we obtain the desired result.

B. Smooth Beta processes for classification

In this appendix, we extend the convergence rates in L2 function approximation to L1 and Bayes risk (misclassification
error). These are to be understood as corollaries to the proofs presented in Sec. A. Furthermore, we establish the connection
between SBPs in the static setting and nearest neighbor techniques. However, our method allows for precise prior knowledge
injection, whose efficiency is empirically demonstrated on a synthetic classification experiment.

B.1. Convergence in L1 norm

Leaving out constants, Theorems 1, 3, and 4 provide convergence rates of the type O

⇣
t�

2
d+2

⌘
. In all three settings, we

obtain the following corollary for the error in L1 norm:
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Corollary 3 (Convergence in L1). Under the assumptions of Theorems 1, 3, and 4, the corresponding Algorithms 1, 2, and

3 converge in L1 norm to ⇡(x):

sup
x2[0,1]d

ES (E |⇡̃(x|S)� ⇡(x)|) = O

⇣
t�

1
d+2

⌘
,

where we leave out the constants of the respective theorems.

Proof. For all three cases, the statement follows from the application of Jensen’s inequality. We have

ES (E |⇡̃(x|S)� ⇡(x)|) = ES

✓
E
✓q

(⇡̃(x|S)� ⇡(x))2
◆◆



r
ES

⇣
E
⇣
(⇡̃(x|S)� ⇡(x))2

⌘⌘
, (28)

which yields the presented convergence rates by taking the square root of the rates of the respective Theorems for L2

convergence.

B.2. Convergence in Bayes risk

In the classification setting, it is natural to use the posterior predictive of the Beta-Bernoulli model. Therefore, we have the
classifier s̃(x|S) based on the posterior parameters ↵̃(x), �̃(x):

s̃(x|S) =

(
1 if ↵̃(x)

↵̃(x)+�̃(x)
� 0.5,

0 otherwise.
(29)

To estimate the performance of a classifier, the agreement with the Bayes optimal classifier is used. The Bayes risk of a
classification problem is minimized by the omniscient Bayes classifier:

Definition 1 (Bayes risk and optimal classifier). For any x 2 X , the Bayes risk of a classifier s̃ : X ! {0, 1} is given by

R(s̃, x) = Ps⇠B(⇡(x)) [s 6= s̃(x)] . (30)

The Bayes optimal classifier is given based on the underlying probability function ⇡(x). The corresponding decision rule is

s⇤(x) = ⇡(x)�0.5, (31)

where {·} denotes the indicator function. This decision rule incurs the following optimal Bayes risk:

R⇤(x) = R(s⇤, x) = min{⇡(x), 1� ⇡(x)}. (32)

To relate the convergence in L1 to Bayes risk, the following simple Lemma is useful and allows to establish convergence in
Bayes risk in Thm. 6.

Lemma 1. Suppose B(·) denotes a Bernoulli distribution, p, q 2 [0, 1] and s0 2 {0, 1}. Then we have

Ps⇠B(p) [s 6= s0]  Ps⇠B(q) [s 6= s0] + |p� q| , (33)

which relates the misclassification directly to `1 loss.

Proof. Suppose s0 = 1. Then the left-hand side is p and the right-hand side gives q + |p� q|. If p >= q, we have for the
right-hand side q + p� q = p and equality holds. If p < q, we have for the right-hand side q + q � p and 2p  2q by the
assumption p < q. The same argument works for s0 = 0 by symmetry.

Theorem 6 (Convergence in Bayes risk). Under the assumptions of Theorems 1, 3, and 4, the classifier in Eq. (29) based

on the posterior parameters obtained by the corresponding Algorithms 1, 2, and 3 uniformly converges to the risk of the

Bayes optimal classifier s⇤, i.e. for any x 2 X :

ES [R(s̃, x)]  R⇤(x) +O

⇣
t�

1
d+2

⌘
, (34)
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Figure 4. Bayes risk of SBP with specified informative prior, which is identical to the underlying function ⇡(x), compared to fixed-radius
NN which can not specify a prior in its standard framework.

where constants of the respective theorems are left out (see Sec. B.1).

Proof. Using Lemma 1, we have the following for any x 2 X :

R(s̃, x) = Ps⇠B(⇡(x)) [s 6= s̃(x|S)]  Ps⇠B(⇡̃(x|S)) [s 6= s̃(x|S)] + |⇡̃(x|S)� ⇡(x)|

= min{⇡̃(x|S), 1� ⇡̃(x|S)}+ |⇡̃(x|S)� ⇡(x)|

 min{⇡(x), 1� ⇡(x)}+ 2 |⇡̃(x|S)� ⇡(x)|

= R⇤(x) + 2 |⇡̃(x|S)� ⇡(x)| (35)

Now, we can apply the convergence in L1 of Corollary 3 and get the desired result:

ES
�
Ps⇠B(⇡(x)) (s 6= s̃(x|S))

�
 R⇤(x) +O

⇣
t�

1
d+2

⌘
. (36)

B.3. Related methods and practical considerations

Smooth Beta processes are designed for probability function approximation, in which case the estimation of the standard
deviation on top of the function approximation is useful. In the particular static classification setting, SBPs are tightly
connected to the fixed-radius nearest neighbors (NN) classifier. SBPs have the advantage to specify a prior, which is useful
to incorporate knowledge or combat biased data. In contrast to fixed-radius NN, SBPs perform additive smoothing like the
famous Krichevsky-Trofimov estimator (Krichevsky & Trofimov, 1981) by adding pseudo-counts. Despite the introduced
bias, SBPs converge optimally to the Bayes classifier: the rate proven in Thm. 6 matches the lower-bound established by
Audibert et al. (2007) for classification.

On a practical side, faster inference methods are available due to the algorithmic fixed-radius nearest neighbors problem.
Both exact (e.g. k-d and ball trees) and approximate (e.g. hashing-based) methods can be used for faster inference schemes.
For further practical considerations and background on the fixed-radius NN algorithm, we refer to Chen et al. (2018).

We conduct a synthetic experiment in order to show how the specification of a prior can help in the low data regime. We
compare the convergence of SBP with various priors and the standard fixed-radius NN algorithm. For an informative
prior, we set the prior ⇡̃(x) ⇠ Beta(↵(x),�(x)) such that E[⇡̃(x)] = ⇡(x) and V[⇡̃(x)] = v. In Fig. 4, we compare the
convergence for different values of v: in the low data regime, SBPs can profit strongly from an informative prior. With
increasing number of observations, the approximation quality varies less as we expect it to happen for a Bayesian method.
Asymptotically, the convergence rate is the same.


