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7. Appendix
7.1. Experiments.

Further details regarding the implementation:

Details on the models used. All models on ImageNet are
taken as pretrained versions from the torchvision4 python
package. For CIFAR10, both CNN75 as well as WResNet6

are available on GitHub as pretrained versions. The CNN4
model is a standard convolutional network with layers of
32, 32, 64 and 64 channels, each using 3 ˆ 3 filters and
each layer being followed by a ReLU nonlinearity and 2ˆ 2
MaxPooling. The final layer is fully connected.

Training procedures. We used pretrained versions of all
models except CNN4, which we trained for 50 epochs with
RMSProp and a learning rate of 0.0001. For adversarial
training, the models were trained for 50, 100 and 150 epochs
using mixed batches of clean and corresponding adversarial
(PGD) samples, matching the respective training schedule
and optimizer settings of the clean models. We report results
for the best performing variant. The exception to this is the
WResNet model, for which an adversarially trained version
was already available.

Setting the thresholds. The thresholds τy,z are set such
that our statistical test achieves the highest possible detec-
tion rate (aka True Positive Rate) at a prespecified False
Positive Rate of less than 1% (5% for Sections 5.6 and 5.7),
computed on a hold-out set of natural and adversarially
perturbed samples.

Determining attack strengths. For the adversarial attacks
we consider, we can choose multiple parameters to influ-
ence the strength of the attack. Usually, as attack strength
increases, at some point there is a sharp increase in the frac-
tion of samples in the dataset where the attack is successful.
We chose our attack strength such that it is the lowest value
after this increase, which means that it is the lowest value
such that the attack is able to successfully attack most of the
datapoints. Note that weaker attacks generate adversarial
samples that are closer to the original samples, which makes
them harder to detect than excessively strong attacks.

Noise sources. Adding noise provides a non-atomic view,
probing the classifiers output in an entire neighborhood
around the input. In practice we sample noise from a mix-
ture of different sources: Uniform, Bernoulli and Gaussian
noise with different magnitudes. The magnitudes are sam-
pled from a log-scale. For each noise source and magnitude,
we draw 256 samples as a base for noisy versions of the
incoming datapoints, although we have not observed a large
drop in performance using only the single best combina-

4https://github.com/pytorch/vision
5https://github.com/aaron-xichen/pytorch-playground
6https://github.com/MadryLab/cifar10 challenge

tion of noise source and magnitude and using less samples,
which speeds up the wall time used to classify a single sam-
ple by an order of magnitude. For detection, we test the
sample in question against the distribution of each noise
source, then we take a majority vote as to whether the sam-
ple should be classified as adversarial.

Plots. All plots containing shaded areas have been repeated
over the dataset. In these plots, the line indicates the mean
measurement and the shaded area represents one standard
deviation around the mean.

Wall time performance. Since for each incoming sample
at test time, we have to forward propagate a batch ofN noisy
versions through the model, the time it takes to classify a
sample in a robust manner using our method scales linearly
with N compared to the same model undefended. The rest
of our method has negligible overhead. At training time,
we essentially have to do perform the same operation over
the training dataset, which, depending on its size and the
number of desired noise sources, can take a while. For a
given model and dataset, this has to be performed only once
however and the computed statistics can then be stored.

7.2. Logistic classifier for reclassification.

Instead of selecting class z according to Eq. (6), we found
that training a simple logistic classifier that gets as input
all the K ´ 1 Z-scores ḡy,zpxq for z P t1, ..,Kuzy can
further improve classification accuracy, especially in cases
where several Z-scores are comparably far above the thresh-
old. Specifically, for each class label y, we train a separate
logsitic regression classifier Cy such that if a sample x of
predicted class y is detected as adversarial, we obtain the
corrected class label as z “ Cypxq. These classifiers are
trained on the same training data that is used to collect the
statistics for detection. Two points are worth noting: First,
as the classifiers are trained using adversarial samples from
a particular adversarial attack model, they might not be valid
for adversarial samples from other attack models. However,
we confirm experimentally that our classifiers (trained using
PGD) do generalize well to other attacks. Second, build-
ing a classifier in order to protect a classifier might seem
tautological, because this metaclassifier could now become
the target of an adversarial attack itself. However, this does
not apply in our case, as the inputs to the metaclassifier are
(i) low-dimensional (there are just K´1 weight-difference
alignments for any given sample), (ii) based on sampled
noise and therefore random variables and (iii) the classi-
fier itself is shallow. All of these make it much harder to
specifically attack the corrected classifier. In Section 5.7
we show that our method performs reasonably well even if
the adversary is fully aware (has perfect knowledge) of the
defense.
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7.3. Additional results mentioned in the main text.

Figure 7. Noise-induced change of logit scores fy (on the vertical
axis) and fz (on the horizontal axis). Different plots correspond
to different classes z P t1, ..,Kuzy. The light red dot shows an
adversarially perturbed example x without noise. The other red
dots show the adversarially perturbed example with added noise.
Color shades reflect noise magnitude: light “ small, dark “ large
magnitude. The light blue dot indicates the corresponding natural
example without noise. The candidate class z in the upper-left
corner is selected. See Figure 1 for an explanation.
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Figure 8. (Left) Detection rates and accuracies vs. number of PGD
iterations. (Right) Noise-induced weight-difference alignment
along x˚`tη and x`tη respectively. For the adversarial example,
the alignment with the weight-difference vector between the true
and adversarial class is shown. For the natural example, the largest
alignment with any weight-difference vector is shown.

Table 7. Proximity to nearest neighbor. The table shows the ratio
of the ‘distance between the adversarial and the corresponding
unperturbed example’ to the ‘distance between the adversarial
example and the nearest other neighbor (in either training or test
set)’, i.e. ||x´ x˚||2{||x´ xnn||2.

PGD ε8“2 ε8“4 ε8“8

L8 0.021˘ 0.005 0.039˘ 0.010 0.075˘ 0.018

L2 0.023˘ 0.006 0.043˘ 0.012 0.088˘ 0.019
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Figure 9. (Left) Softmax predictions Fypx` tηq when adding ran-
dom noise to the adversarial example. (Right) Softmax predictions
Fypx

˚
` t∆xq along the ray from natural to adversarial example

and beyond. For the untargeted attack shown here, the probability
of the source class stays low, even at t “ 10.

7.4. ROC Curves.

Figure 10 shows how our method performs against a PGD
attack under different settings of thresholds τ .
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Figure 10. ROC-curves. Test set accuracies and detection rates on
clean and PGD-perturbed samples for a range of thresholds τ on
CIFAR10.


