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Abstract

We examine popular gradient-based algorithms
for nonlinear control in the light of the mod-
ern complexity analysis of first-order optimiza-
tion algorithms. The examination reveals that
the complexity bounds can be clearly stated in
terms of calls to a computational oracle related
to dynamic programming and implementable by
gradient back-propagation using machine learn-
ing software libraries such as PyTorch or Tensor-
Flow. Finally, we propose a regularized Gauss-
Newton algorithm enjoying worst-case complex-
ity bounds and improved convergence behavior
in practice. The software library based on Py-
Torch is publicly available.

Introduction
Finite horizon discrete time nonlinear control has been
studied for decades, with applications ranging from space-
craft dynamics to robot learning (Bellman, 1971; Bert-
sekas, 2005). Popular nonlinear control algorithms, such
as differential dynamic programming or iterative linear
quadratic Gaussian algorithms, are commonly derived us-
ing a linearization argument relating the nonlinear control
problem to a linear control problem (Todorov & Li, 2003;
Li & Todorov, 2007).

We examine nonlinear control algorithms based on itera-
tive linearization techniques through the lens of the modern
complexity analysis of first-order optimization algorithms.
We first reformulate the problem as the minimization of
an objective that is written as a composition of smooth
functions. Owing to this reformulation, we can frame sev-
eral popular nonlinear control algorithms as first-order op-
timization algorithms applied to this objective.

1Department of Statistics, University of Washington, Seattle,
USA 2Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA 3Department of Mathe-
matics, University of Washington, Seattle, USA. Correspondence
to: Vincent Roulet <vroulet@uw.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

We highlight the equivalence of dynamic programming and
gradient back-propagation in this framework and underline
the central role of the corresponding automatic differenti-
ation oracle in the complexity analysis in terms of conver-
gence to a stationary point of the objective. We show that
the number of calls to this automatic differentiation ora-
cle is the relevant complexity measure given the outreach
of machine learning software libraries such as PyTorch or
TensorFlow (Paszke et al., 2017; Abadi et al., 2015).

Along the way we propose several improvements to the it-
erative linear quadratic regulator (ILQR) algorithm, result-
ing in an accelerated regularized Gauss-Newton algorithm
enjoying a complexity bound in terms of convergence to
a stationary point and displaying stable convergence be-
havior in practice. Regularized Gauss-Newton algorithms
give a template for the design of algorithms based on
partial linearization with guaranteed convergence (Bjorck,
1996; Burke, 1985; Nesterov, 2007; Lewis & Wright, 2016;
Drusvyatskiy & Paquette, 2018). The proposed accelerated
regularized Gauss-Newton algorithm is based on a Gauss-
Newton linearization step stabilized by a proximal regu-
larization and boosted by a Catalyst extrapolation scheme,
potentially accelerating convergence while preserving the
worst-case guarantee.

Related work. Differential dynamic programming
(DDP) and iterative linearization algorithms are popular
algorithms for finite horizon discrete time nonlinear con-
trol (Tassa et al., 2014). DDP is based on approximating
the Bellman equation at the current trajectory in order to
use standard dynamic programming. Up to our knowl-
edge, the complexity analysis of DDP has been limited;
see (Mayne, 1966; Jacobson & Mayne, 1970; Todorov &
Li, 2003) for classical analyses of DDP.

Iterative linearization algorithms such as the iterative lin-
ear quadratic regulator (ILQR) or the iterative linearized
Gaussian algorithm (ILQG) linearize the trajectory in or-
der to use standard dynamic programming (Li & Todorov,
2004; 2007). Again, the complexity analysis of ILQG for
instance has been limited. It is worthwhile to mention re-
lated approaches in the nonlinear model predictive control
area (Grüne & Pannek, 2017; Richter et al., 2012; Dontchev
et al., 2018).
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We adopt the point of view of the complexity theory of
first-order optimization algorithms. The exact form of a
Newton step and Gauss-Newton step in a nonlinear con-
trol problem is well-known; see (Dunn & Bertsekas, 1989;
Sideris & Bobrow, 2005). However, while the importance
of the addition of a proximal term is now well-understood,
several algorithms involving such steps have not been re-
visited yet, such as ILQR (Liao & Shoemaker, 1992; Li &
Todorov, 2004). Our work shows how to make these im-
provements.

We also show how gradient back-propagation, i.e., auto-
matic differentiation (Griewank & Walther, 2008), a popu-
lar technique usually derived using either a chain rule argu-
ment or a Lagrangian framework (Bertsekas, 2005; LeCun
et al., 1988), allows one to solve the dynamic programming
problems arising in linear quadratic control. Consequently,
the subproblems that arise when using iterative lineariza-
tion for nonlinear control can be solved with calls to an au-
tomatic differentiation oracle implementable in PyTorch or
TensorFlow (Abadi et al., 2015; Paszke et al., 2017; Kakade
& Lee, 2018).

The regularized Gauss-Newton method was extensively
studied to minimize the nonlinear least squares objec-
tives arising in inverse problems (Bjorck, 1996; Nocedal
& Wright, 2006; Kaltenbacher et al., 2008; Hansen et al.,
2013). The complexity-based viewpoint used in (Nes-
terov, 2007; Cartis et al., 2011; Drusvyatskiy & Paque-
tte, 2018) informs our analysis and offers generalizations
to locally Lipschitz objectives. We build upon these re-
sults in particular when equipping the proposed regularized
Gauss-Newton algorithm with an extrapolation scheme in
the spirit of (Paquette et al., 2018).

All proofs and notations are presented in the longer ver-
sion of the paper (Roulet et al., 2019). The code for
this project is available at https://github.com/
vroulet/ilqc.

1. Discrete time control
We first present the framework of finite horizon discrete
time nonlinear control.

Exact dynamics. Given state variables x ∈ Rd and con-
trol variables u ∈ Rp, we consider the control of finite tra-
jectories x̄ = (x1; . . . ;xτ ) ∈ Rτd whose dynamics are
controlled by a command ū = (u0; . . . ;uτ−1) ∈ Rτp,
through

xt+1 = φt(xt, ut), for t = 0, . . . , τ − 1, (1)

starting from a given x̂0 ∈ Rd until a horizon τ , where the
functions φt : Rd × Rp → Rd are assumed to be continu-
ously differentiable.

Optimality is measured through the convex costs ht, gt, on
the state and control variables xt, ut respectively, defining
the discrete time nonlinear control problem

min
x0,...,xτ∈Rd

u0,...,uτ−1∈Rp

τ∑
t=1

ht(xt) +

τ−1∑
t=0

gt(ut) (2)

subject to xt+1 = φt(xt, ut), x0 = x̂0,

where, here and thereafter, the dynamics must be satisfied
for t = 0, . . . , τ − 1.

Noisy dynamics. The discrepancy between the model
and the dynamics can be taken into account by consider-
ing noisy dynamics as

xt+1 = φt(xt, ut, wt), (3)

where wt ∼ N (0, Iq) for t = 0, . . . , τ − 1. The resulting
discrete time control problem consists of optimizing the av-
erage cost under the noise w̄ = (w0; . . . ;wτ−1) as

min
x0,...,xτ∈Rd

u0,...,uτ−1∈Rp

Ew̄

[
τ∑
t=1

ht(xt)

]
+

τ−1∑
t=0

gt(ut)

subject to xt+1 = φt(xt, ut, wt), x0 = x̂0.

(4)

Costs and penalties. The costs on the trajectory can be
used to force the states to follow a given orbit x̂1, . . . , x̂τ
as

ht(xt) =
1

2
(xt− x̂t)>Qt(xt− x̂t), with Qt � 0, (5)

which gives a quadratic tracking problem, while the reg-
ularization penalties on the control variables are typically
quadratic functions

gt(ut) =
1

2
u>t Rtut, with Rt � 0. (6)

The regularization penalties can also encode constraints on
the control variable such as the indicator function of a box

gt(ut) = ι{u:c−t ≤u≤c
+
t }

(ut), with c−t , c
+
t ∈ Rp, (7)

where ιS denotes the indicator function of a set S.

Iterative Linear Control algorithms. We are interested
in the complexity analysis of algorithms such as the iter-
ative linear quadratic regulator (ILQR) algorithm of Li &
Todorov (2007), used for exact dynamics, which iteratively
computes the solution of

min
y0,...yτ∈Rd

v0,...,vτ−1∈Rp

τ∑
t=1

qht(x
(k)
t + yt) +

τ−1∑
t=0

qgt(u
(k)
t + vt)

subject to yt+1 = `φt(yt, vt), y0 = 0, (8)

https://github.com/vroulet/ilqc
https://github.com/vroulet/ilqc
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where ū(k) is the current command, x̄(k) is the correspond-
ing trajectory given by (1), qht , qgt are quadratic approx-
imations of the costs ht, gt around respectively x(k)

t , u
(k)
t

and `φt is the linearization of φt around (x
(k)
t , u

(k)
t ). The

next iterate is then given by ū(k+1) = ū(k) +αv̄∗ where v̄∗

is the solution of (8) and α is a step-size given by a line-
search method. To understand this approach, we frame the
problem as the minimization of a composition of functions.

Formulation as a composite optimization problem.
We call an optimization problem a composite optimization
problem if it consists in the minimization of a composition
of functions. For a fixed command ū ∈ Rτp, denote by
x̃(ū) = (x̃1(ū); . . . ; x̃τ (ū)) ∈ Rτd the trajectory given by
the exact dynamics

x̃1(ū) = φ0(x̂0, u0), x̃t+1(ū) = φt(x̃t(ū), ut). (9)

Similarly denote by x̃(ū, w̄) ∈ Rτd the trajectory in
the noisy case. Denoting the total cost by h(x̄) =∑τ
t=1 ht(xt), the total penalty by g(ū) =

∑τ−1
t=0 gt(ut),

the discrete time control problem (2) with exact dynamics
reads

min
ū∈Rτp

f(ū) , h(x̃(ū)) + g(ū), (10)

and with noisy dynamics,

min
ū∈Rτp

f(ū) , Ew̄ [h(x̃(ū, w̄))] + g(ū), (11)

i.e., we obtain a composite optimization problem whose
structure can be exploited to derive oracles on the objec-
tive.

2. Oracles in discrete time control
We adopt here the viewpoint of the complexity theory
of first-order optimization. Given the composite prob-
lem (10), what are the relevant oracles and what are the
complexities of calls to these oracles? We highlight how
classical algorithms in discrete time control can be seen as
standard optimization algorithms. We first consider exact
dynamics φt of the form (1) and unconstrained cost penal-
ties such as (6).

2.1. Exact and unconstrained setting

Model minimization. Each step of the optimization al-
gorithm is defined by the minimization of a regularized
model of the objective. For example, a gradient step on
a point ū with step-size γ corresponds to linearizing both h
and x̃ and defining the linear model

`f (ū+ v̄; ū) = `h
(
x̃(ū) +∇x̃(ū)>v̄; x̃(ū)

)
+`g(ū+ v̄; ū)

of the objective f , where `h(x̄+ ȳ; x̄) = h(x̄) +∇h(x̄)>ȳ
and `g(ū+ v̄; ū) is defined similarly. Then, this model with
a proximal regularization is minimized in order to get the
next iterate

ū+ = ū+ arg min
v̄∈Rτp

{
`f (ū+ v̄; ū) +

1

2γ
‖v̄‖22

}
. (12)

Different models can be defined to better approximate the
objective. For example, if only the mapping x̃ is linearized,
this corresponds to defining the convex model at a point ū

cf (ū+ v̄; ū) = h
(
x̃(ū) +∇x̃(ū)>v̄

)
+ g(ū+ v̄). (13)

We get then a regularized Gauss-Newton step on a point
ū ∈ Rτp with step size γ > 0 as

ū+ = ū+ arg min
v̄∈Rτp

{
cf (ū+ v̄; ū) +

1

2γ
‖v̄‖22

}
. (14)

Although this model better approximates the objective, its
minimization may be computationally expensive for gen-
eral functions h and g. We can use a quadratic approxima-
tion of h around the current mapping x̃(ū) and linearize the
trajectory around ū which defines the quadratic model

qf (ū+v̄; ū) = qh
(
x̃(ū) +∇x̃(ū)>v̄; x̃(ū)

)
+qg(ū+v̄; ū),

(15)
where qh(x̄+ ȳ; x̄) , h(x̄) +∇h(x̄)>ȳ + ȳ>∇2h(x̄)ȳ/2
and qg(ū + v̄; ū) is defined similarly. A Levenberg-
Marquardt step with step-size γ consists in minimizing the
model (15) with a proximal regularization

ū+ = ū+ arg min
v̄∈Rτp

{
qf (ū+ v̄; ū) +

1

2γ
‖v̄‖22

}
. (16)

Model-minimization steps by linear optimal control.
Though the chain rule gives an analytic form of the gra-
dient, we can use the definition of a gradient step as an op-
timization sub-problem to understand its implementation.
Formally, the above steps (12), (14), (16), define a model
of the discrete time control objective f in (10) on a point ū

mf (ū+v̄; ū)=mh

(
x̃(ū)+∇x̃(ū)>v̄; x̃(ū)

)
+mg(ū+v̄; ū),

where mh =
∑τ
t=1mht , mg =

∑τ−1
t=0 mgt are models of

h and g respectively, composed of models on the individual
variables. The model-minimization step with step-size γ,

ū+ = ū+ arg min
v̄∈Rτp

{
mf (ū+ v̄; ū) +

1

2γ
‖v̄‖22

}
, (17)

amounts then to a linear control problem as shown in the
following proposition.
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Proposition 2.1. The model-minimization step (17) for dis-
crete time control problem (2) written as (10) is given by
ū+ = ū+ v̄∗ where v̄∗ = (v∗0 ; . . . , v∗τ−1) is the solution of

min
y0,...yτ∈Rd

v0,...,vτ−1∈Rp

τ∑
t=1

mht(xt+yt;xt) +

τ−1∑
t=0

m̃gt(ut+vt;ut)

subject to yt+1 = Φ>t,xyt + Φ>t,uvt, y0 = 0, (18)

where m̃gt(ut+vt;ut) = mgt(ut+vt;ut)+(2γ)−1‖vt‖22,
Φt,x=∇xφt(xt, ut), Φt,u=∇uφt(xt, ut) and xt = x̃t(ū).

Proof. Recall that the trajectory defined by ū reads

x̃1(ū) = φ0(x̂0, F
>
0 ū), x̃t+1(ū) = φt(x̃t(ū), F>t ū),

where Ft = et+1⊗Ip ∈ Rτp×p, et ∈ Rτ is the tth canonical
vector in Rτ , such that F>t ū = ut. The gradient reads
∇x̃1(ū) = F0∇uφ0(x0, u0) followed by

∇x̃t+1(ū) = ∇x̃t(ū)∇xφt(xt, ut) + Ft∇uφt(xt, ut),
where xt = x̃t(ū) and x0 = x̂0. For a given v̄ =
(v0; . . . ; vτ−1), the product ȳ = (y1; . . . ; yτ ) = ∇x̃(ū)>v̄
reads y1 = ∇uφ0(x0, u0)>v0 followed by

yt+1 = ∇xφt(xt, ut)>yt +∇uφt(xt, ut)>vt,

where we used that yt = ∇x̃t(ū)>v̄. Plugging this
into (17) gives the result.

Dynamic programming. If the models used in (17) are
linear or quadratic in the states and quadratic in the con-
trols, the resulting linear control problems (18) can be
solved efficiently using dynamic programming, i.e., with
a linear cost in τ , as presented in the following proposition.
The cost is O(τp3d3). Details on the implementation for
quadratic costs are provided in (Roulet et al., 2019).

Since the leading dimension of the discrete time control
problem is the length of the trajectory τ , all of the above
optimization steps have roughly the same cost. This means
that, in discrete time control problems, second order steps
such as (16) are roughly as expensive as gradient steps.

Proposition 2.2. Model-minimization steps of the
form (17) for discrete time control problem (2) written
as (10) with linear or quadratic convex models mh and
mg can be solved in linear time with respect to the length
of the trajectory τ by dynamic programming.

The proof of the proposition relies on the dynamic pro-
gramming approach explained below. The linear optimal
control problem (18) can be divided into smaller subprob-
lems and then solved recursively. Consider the linear opti-

mal control problem (18) as

min
y1,...,yτ
v0,...,vτ−1

τ∑
t=1

qht(yt) +

τ−1∑
t=0

qgt(vt) (19)

subject to yt+1 = `t(yt, vt), y0 = 0,

where `t is a linear dynamic in state and control vari-
ables, qgt are strictly convex quadratics and qht are convex
quadratic or linear functions. For 0 ≤ t ≤ τ , given ŷt,
define the cost-to-go from ŷt, as the solution of

ct(ŷt) = min
yt,...,yτ
vt,...,vτ

τ∑
t′=t

qht′ (yt′) +

τ−1∑
t′=t

qgt′ (vt′) (20)

subject to yt′+1 = `t′(yt′ , vt′), yt = ŷt.

The cost-to-go functions can be computed recursively by
the Bellman equation for t ∈ {τ − 1, . . . , 0},

ct(ŷt) = qht(ŷt)+min
vt
{qgt(vt) + ct+1(`t(ŷt, vt))} (21)

solved for v∗t (ŷt)= arg minvt
{
qgt′ (vt)+ct+1(`t(ŷt, vt))

}
.

The final cost initializing the recursion is defined as
cτ (ŷτ ) = qhτ (ŷτ ). For quadratic costs and linear dynam-
ics, the problems defined in (21) are themselves quadratic
problems that can be solved analytically to get an expres-
sion for ct.

The solution of (19) is given by computing c0(0), which
amounts to iteratively solving the Bellman equations start-
ing from ŷ0 = 0, i.e. getting the linear optimal control at
the given state and moving along the dynamics to define
the next cost-to-go function to minimize

v∗t = v∗t (yt), yt+1 = `t(yt, v
∗
t ). (22)

The cost of the overall dynamic procedure that involves a
backward pass to compute the cost-to-go functions and a
roll-out pass to compute the optimal controls is therefore
linear in the length of the trajectory τ . The main costs
lie in solving linear or quadratic problems in the Bellman
equation (21) which only depend on the state and control
dimensions d and p.

Back-propagation as dynamic programming. We il-
lustrate the derivations for a gradient step in the following
proposition that shows a cost of O(τ(pd + d2)). We re-
cover the well-known gradient back-propagation algorithm
used to compute the gradient of the objective. The dynamic
programming viewpoint provides here a natural derivation.

Proposition 2.3. A gradient step (12) for discrete time con-
trol problem (2) written as (10) and solved by dynamic pro-
gramming amounts to
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1. a forward pass that computes the derivatives
∇xφt(xt, ut), ∇uφt(xt, ut), ∇ht(xt), ∇gt(ut) for
t = 0, . . . , τ along the trajectory xt+1 = φt(xt, ut),

2. a backward pass that computes linear cost-to-go func-
tions as ct(yt) = λ>t yt + µt where λτ = ∇hτ (xτ ),
λt = ∇h(xt)+∇xφt(xt, ut)λt+1, for t = τ−1, . . . 0,

3. an update pass that outputs u+
t = ut −

γ(∇uφt(xt, ut)λt +∇gt(ut)), for t = 0, . . . τ − 1.

2.2. Noisy or constrained settings

Noisy dynamics. For inexact dynamics defining the
problem (11), we consider a Gaussian approximation of
the linearized trajectory around the exact current trajec-
tory. Formally, the Gaussian approximation of the ran-
dom linearized trajectory `x̃(ū + v̄; ū, w̄) = x̃(ū, w̄) +
∇ūx̃(ū, w̄)>v̄ around the exact linearized trajectory given
for w̄ = 0 reads

ˆ̀̃
x(ū+ v̄; ū, w̄) =x̃(ū, 0) +∇ūx̃(ū, 0)>v̄ +∇w̄x̃(ū, 0)>w̄

+∇2
ūw̄x̃(ū, 0)[ū, w̄, ·],

which satisfies Ew̄[ ˆ̀̃x(ū+v̄; ū, w̄)]=x̃(ū, 0)+∇ūx̃(ū, 0)>v̄,
see (Roulet et al., 2019) for gradient and tensor notations.

The quadratic model we consider for the state cost is then
of the form

Ew̄
[
qh

(
ˆ̀̃
x(ū+ v̄; ū, w̄); x̃(ū, 0)

)]
. (23)

For simple dynamics φt, their minimization with an addi-
tional proximal term amounts to a linear quadratic Gaus-
sian control problem as stated in the following proposition.

Proposition 2.4. Assume∇2
xxφt,∇2

xwφt and∇2
uxφt to be

zero. The model minimization step (17) for model (23) is
given by ū+ = ū+ v̄∗ where v̄∗ is the solution of

min
ȳ,v̄

τ∑
t=1

Ew̄ [qht(xt + yt;xt)] +

τ−1∑
t=0

q̃gt(ut + vt;ut)

s.t. yt+1 = Φ>t,xyt + Φ>t,uvt + Φ>t,wwt + φt,w,u[wt, ut, ·],
y0 = 0, (24)

where Φt,x = ∇xφt(xt, ut, 0), Φt,u = ∇uφt(xt, ut, 0),
Φt,w = ∇wφt(xt, ut, 0), φt,w,u = ∇2

wuφt(xt, ut, 0), xt =
x̃t(ū, 0), and q̃gt = qgt + (2γ)−1‖ut − ·‖2.

The linear control problem (24) can again be solved by
dynamic programming by modifying the Bellman equa-
tion (21) in the backward pass, i.e., by solving analytically
for white noise wt,

ct(ŷt)=qt,x(ŷt)+ min
vt

qt,u(vt)+ Ewt [ct+1(`t(ŷt, vt, wt))] .

Dealing with constraints. For constrained control prob-
lems with exact dynamics, the model-minimization steps
will amount to linear control problems under constraints,
which cannot be solved directly by dynamic programming.
However their resolution by an interior point method boils
down to solving linear quadratic control problems each of
which has a low computational cost as shown before.

Formally, the resulting subproblems we are interested in
are linear quadratic control problems under constraints of
the form

min
y0,...,yτ∈Rd

v0,...,vτ−1∈Rp

τ∑
t=1

qht(yt) +

τ−1∑
t=0

qgt(vt) (25)

subject to yt+1 = `t(yt, vt), y0 = 0, vt ∈ Ut,

where Ut = {u : Ctu ≤ dt}, qht are convex quadratics,
qgt are strictly convex quadratics and `t are linear dynam-
ics. Interior point methods introduce a log-barrier function
Bt(u) = log(dt − Ctu) and minimize

min
y0,...,yτ∈Rd

v0,...,vτ−1∈Rp

τ∑
t=1

qht(yt) +

τ−1∑
t=0

qgt(vt) + µkBt(vt)

subject to yt+1 = `t(yt, vt), y0 = 0,

where µk increases along the iterates k of the interior point
method. We leave the exploration of constrained problems
to future work.

3. Automatic-differentiation oracle
We now focus on problems where the cost depends only
on the last state. These problems arise when only the final
target is defined. See (Roulet et al., 2019) for discussion.
They also arise in optimization problems involving succes-
sive compositions of functional transformations of a given
input as

min
u0,...,uτ−1

h(φτ−1(φτ−2(. . . φ0(x̂0, u0) . . . , uτ−2), uτ−1)).

We formalize this class of composite functions in (Roulet
et al., 2019). We summarize now the complexity of oracles
for problems of the form

min
ū∈Rτp

h(ξ(ū)) + g(ū), (26)

where h : Rd → R, g : Rτp → R are convex twice dif-
ferentiable and ξ : Rτp → Rd is defined as ξ(ū) = x̃τ (ū)
where

x̃1(ū) = φ0(x̂0, u0), x̃t+1(ū) = φt(x̃t(ū), ut), (27)

with x̂0 ∈ Rd and continuously differentiable functions φt :
Rd × Rp → R.
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We can take advantage of automatic-differentiation pro-
cedures for this class of problems. An automatic-
differentiation procedure can compute any gradient vector
product of the form∇ξ(ū)z for z ∈ Rd. In our setting, this
amounts to solving minv̄∈Rτp −z>∇ξ(ū)>v̄ + 1

2‖v̄‖
2
2 by

dynamic programming. We therefore identify calls to a tar-
get function oracle as calls to an automatic-differentiation
procedure.

Definition 3.1 (Automatic-differentiation oracle). An
automatic-differentiation oracle is any procedure that com-
putes ∇ξ(ū)z for ξ : Rτp → Rd defined by successive
compositions as in (27), ū ∈ Rτp and z ∈ Rd.

Derivatives of the gradient vector product can then be com-
puted at twice the cost of computing the gradient vector
product. See (Roulet et al., 2019) for the proof.

Lemma 3.2. For a function ξ : Rτp → Rd defined
by successive compositions as in (27), an automatic-
differentiation oracle and a differentiable function f :
Rτp → R, the derivative of z → f(∇ξ(ū)z) for ū ∈ Rτp

can be computed at twice the cost of computing∇ξ(ū)z.

We now detail the feasibility and the complexity of the
inner-steps of the steps defined in Sec. 2 in terms of
automatic-differentiation oracles defined above. The total
complexity of the algorithms, when available, is detailed
in (Roulet et al., 2019).

Gradient step. For a problem of the form (26), a gradient
step amounts to computing∇ξ(ū)∇h(ξ(ū)) and∇g(ū) i.e.
a single call to the automatic-differentiation oracle.

Regularized Gauss-Newton step. For any problem of
the form (26), the regularized Gauss-Newton step (14)
amounts to solving

min
v̄∈Rτp

h
(
ξ(ū)+∇ξ(ū)>v̄

)
+g(ū+v̄)+

1

2γ
‖v̄‖22. (28)

For smooth objectives h and g and Lipschitz continuous
dynamics φt, this is a smooth strongly convex problem
that can be solved approximately by a linearly convergent
method, leading to the inexact regularized Gauss-Newton
procedures described by Nesterov (2007); Drusvyatskiy &
Paquette (2018). The overall cost of an approximated reg-
ularized Gauss-Newton step is then given by the following
proposition.

Proposition 3.3. For any problem of the form (26), given
smooth objectives h and g and smooth and Lipschitz con-
tinuous dynamics φt, a regularized Gauss-Newton step
given by (28) is solved up to ε accuracy by a fast gradi-
ent method with at most

O
(√

LhM2
ξ γ + Lgγ + 1 log(ε)

)
,

calls to an automatic-differentiation oracle, where Mξ is
the Lipschitz continuity constant of ξ, Lh and Lg are
smoothness constants of respectively h and g.

Levenberg-Marquardt step. For any problem of the
form (26), the Levenberg-Marquardt step (16) amounts to
solving

min
v̄∈Rτp

qh
(
ξ(ū)+∇ξ(ū)>v̄; ξ(ū)

)
+qg(ū+v̄; ū)+

1

2γ
‖v̄‖22,

(29)

where qh and qg are quadratic approximations of h and g
respectively, assumed to be twice differentiable. Here, du-
ality offers a fast resolution of the step as shown in the fol-
lowing proposition. It shows that the cost of the step (29) is
only 2d+ 1 times more than that of a gradient step. Recall
also that for quadratic h, g, the Levenberg-Marquardt step
amounts to a regularized Gauss-Newton step.

Proposition 3.4. For any problem of the form (26), a
Levenberg-Marquardt step (29) is solved exactly with at
most 2d+ 1 calls to an automatic-differentiation oracle.

4. Composite optimization
Before analyzing the methods of choice for composite opti-
mization, we review classical algorithms for nonlinear con-
trol and highlight improvements for better convergence be-
havior. All algorithms are completely detailed in (Roulet
et al., 2019).

Differential Dynamic Programming. Differential Dy-
namic Programming (DDP) is an algorithm motivated as
a dynamic programming procedure applied to a second-
order approximation of the Bellman equation. Formally at
a given command ū with associated trajectory x̄ = x̃(ū),
DDP consists in approximating the cost-to-go functions as

ct(y) =qht(xt + y;xt) + min
v
{qgt(ut + v;ut)

+ qct+1◦φt(xt + y, ut + v;xt, ut)},

where for a function f , qf (x + y;x) denotes its second
order approximation around x. We detail the interpretation
of DDP as optimization on the state variables in (Roulet
et al., 2019).

ILQR as Gauss-Newton. DDP was superseded by the
Iterative Linearized Quadratic Regulator (ILQR) method
of Li & Todorov (2004), presented in Sec. 1. In the case
of noisy dynamics, the Linear Quadratic Regulator prob-
lem (8) is replaced by a Linear Quadratic Gaussian problem
where the objectives are averaged with respect to the noise.
The iterative procedure is then called ILQG as presented by
Li & Todorov (2007).
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GD ILQR RegILQR
Global conv. rate Yes No Yes
Local fast conv. No Yes Yes

Oracle cost τ(pd+ d2) τp3d3 τp3d3

Auto-diff cost 1 2d+ 1 2d+ 1

Table 1. Convergence properties and oracle costs of Gradient De-
scent (GD), ILQR, and regularized ILQR (RegILQR) for prob-
lem (2) with quadratic h, g . The automatic-differentiation cost is
stated for problems of the form (26) .

Proposition 2.1 clarifies that these procedures amount to
Gauss-Newton steps which compute

v̄∗ = arg min
v̄∈Rτp

qf (ū+ v̄; ū) (30)

to perform a line-search along the direction v̄∗ such that
f(ū+ αv̄∗) ≤ f(ū). Compared to a Levenberg-Marquardt
step (16), that reads

ū+ = ū+ arg min
v̄∈Rτp

{
qf (ū+ v̄; ū) +

1

2γ
‖v̄‖22

}
, (31)

we see that this Gauss-Newton step does not take into ac-
count the inaccuracy of the model far from the current
point. Although a line-search can help ensuring conver-
gence, no rate of convergence is known. For quadratics
ht, gt, the Levenberg-Marquardt steps become regularized
Gauss-Newton steps. The regularization term in (31) is
critical for convergence to a stationary point.

Regularized ILQR via regularized Gauss-Newton. We
present convergence guarantees of the regularized Gauss-
Newton method for composite optimization problems of
the form

min
ū∈Rτd

f(ū) , h(x̃(ū)) + g(ū), (32)

where h : Rτd → R and g : Rτp → R are convex quadratic,
x̃ : Rτp → Rτd is differentiable with continuous gradients.
The regularized Gauss-Newton method then naturally leads
to a regularized ILQR. In the following, we denote by Lh
and Lg the smoothness constants of respectively h and g
and by `x̃,S the Lipschitz constant of x̃ on the initial sub-
level set S = {ū : f(ū) ≤ f(ū0)}.

The regularized Gauss-Newton method consists in iterat-
ing, starting from a given ū0,

ūk+1=ūk+ arg min
v̄∈Rτp

{
cf (ūk+v̄; ūk)+

1

2γk
‖v̄‖22

}
, (33)

We use ūk+1 = GN(uk; γk) to denote (33) hereafter. Con-
vergence is stated in terms of the difference of iterates that,

in this case, can directly be linked to the norm of the gradi-
ent, denoting H = ∇2h(x̄) and G = ∇2g(ū),

ūk+1=ūk−(∇x̃(ūk)H∇x̃(ūk)>+G+γ−1
k Iτp)

−1∇f(ūk).
(34)

Convergence to a stationary point is guaranteed as long as
we are able to get a sufficient decrease condition when min-
imizing this model as stated in the following proposition.
Proposition 4.1. Consider composite objectives f as
in (32) with convex models cf (·; ū) defined in (13). As-
sume that the step sizes γk of the regularized Gauss-Newton
method (33) method are chosen such that

f(ūk+1) ≤ cf (ūk+1; ūk) +
1

2γk
‖ūk+1 − ūk‖22 (35)

and γmin ≤ γk ≤ γmax.

Then objective values decrease and the iterates satisfy

min
k=0,...,N

‖∇f(ūk)‖2 ≤ 2L(f(ū0)− f∗)
N + 1

,

where L = maxγ∈[γmin,γmax] γ(`2x̃,SLh + Lg + γ−1)2 and
f∗ = limk→+∞ f(ūk).

To ensure the sufficient decrease condition, one needs the
model to approximate the objective up to a quadratic error
which is ensured on any compact set as stated in the fol-
lowing proposition.
Lemma 4.2. Consider composite objectives f as in (32)
with convex models cf (·; ū) defined in (13). For any com-
pact set C ⊂ Rτp there exists MC > 0 such that for any
ū, v̄ ∈ C,

|f(v̄)− cf (v̄; ū)| ≤ MC

2
‖v̄ − ū‖22. (36)

Finally one needs to ensure that the iterates stay in a
bounded set which is the case for sufficiently small step-
sizes such that the sufficient decrease condition is ensured
along the iterates generated by the algorithm.
Lemma 4.3. Consider composite objectives f as in (32).
For any k such that ūk ∈ S, where S = {ū : f(ū) ≤
f(ū0)} is the initial sub-level set, any step-size

γk ≤ γ̂ = min{`−1
f,S ,M

−1
C } (37)

ensures that the sufficient decrease condition (35) is sat-
isfied, where `f,S is the Lipschitz constant of f on S,
C = S + B1 with B1 the unit Euclidean ball and MC

ensures (36).

Combining Proposition 4.1 and Lemma 4.2, we can guar-
antee that the iterates stay in the initial sub-level set and
satisfy the sufficient decrease condition for sufficiently
small step-sizes γk. At each iteration the step-size can
be found by a line-search guaranteeing sufficient decrease;
see (Roulet et al., 2019) for details. The final complexity
of the algorithm with line-search then follows.
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Algorithm 1 Accelerated Regularized Gauss-Newton

Input:Initial point ū0 ∈ Rm, desired accuracy ε.
Initialize: α1 := 1, z̄0 := ū0

Repeat: for k = 1, 2, . . .
1: Compute regularized step

Get v̄k = GN(ūk−1; γk) by line-search on γk s.t.
f(v̄k) ≤ cf (v̄k; ūk−1) + (2γk)−1‖v̄k − ūk−1‖22.

2: Compute extrapolated step
- Set ȳk = αkz̄k−1 + (1− αk)ūk−1.
- Get w̄k = GN(ȳk; δk) by line-search on δk s.t.
f(w̄k) ≤ cf (w̄k; ȳk) + (2δk)−1‖w̄k − ȳk‖22. (38)

- Set z̄k = ūk−1 + (w̄k − ūk−1)/αk.
- Pick αk+1 ∈ (0, 1) s.t. (1− αk+1)/α2

k+1 = 1/α2
k.

3: Pick best of two steps
Choose ūk such that

f(ūk) ≤ min {f(v̄k), f(w̄k)} (39)

until ε-near stationarity ‖∇f(ūk)‖ < ε

Corollary 4.4. For composite objectives f as in (32), the
regularized Gauss-Newton method (33) with a decreasing
line-search starting from γ0 ≥ γ̂ with decreasing factor ρ
finds an ε-stationary point after at most

2L(f(ū0)− f∗)
ε2

+ log(γ0/γ̂)/ log(ρ−1)

calls to the regularized Gauss-Newton oracle, with γ̂ de-
fined in (37), f∗ = limk→+∞ f(ūk) and

L = max
γ∈[γ̂,γ0]

γ(`2x̃,SLh + Lg + γ−1)2.

Accelerated regularized Gauss-Newton. In Algo-
rithm 1 we present an accelerated variant of the regularized
Gauss-Newton algorithm that blends a regularized Gauss-
Newton step and an extrapolated step to potentially capture
convexity in the objective. See (Roulet et al., 2019) for the
proof.

Proposition 4.5. Consider Algorithm 1 applied to com-
posite objectives f as in (32) with decreasing step-sizes
(γk)k≥0 and (δk)k≥0. Then Algorithm 1 satisfies the con-
vergence of the regularized Gauss-Newton method (33)
with line-search as presented in Corollary 4.4. Moreover,
if the convex models cf (v̄; ū) defined in (13) lower bound
the objective as

cf (v̄; ū) ≤ f(v̄) (40)
for any ū, v̄ ∈ Rτp, then after N iterations of Algorithm 1,

f(ūN )− f∗ ≤ 4δ−1 ‖ū∗ − ū0‖2

(N + 1)2
,

where δ = mink∈{1,...N} δk, f∗ = minū f(ū) and ū∗ ∈
arg minū f(ū).
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Figure 1. Convergence of ILQR, regularized ILQR and acceler-
ated regularized ILQR on the inverted pendulum (top) and two-
links arm (bottom) control problems for an horizon τ = 100.

5. Experiments
We illustrate the performance of the algorithms consid-
ered including the proposed accelerated regularized Gauss-
Newton algorithm on two classical problems drawn from Li
& Todorov (2004): swing-up a pendulum, and move a two-
links robot arm. Detailed derivations of the control settings
are given in (Roulet et al., 2019).

We use the automatic differentiation capabilities of Py-
Torch (Paszke et al., 2017) to implement the automatic
differentiation oracles introduced in Sec. 3. The Gauss-
Newton-type steps in Algorithm 1 were computed by solv-
ing the dual problem associated as presented in Sec. 3. See
Table 1 and (Roulet et al., 2019) for details.

In Figure 1, we compare the convergence, in terms of func-
tion value and gradient norm, of ILQR (based on Gauss-
Newton), regularized ILQR (based on regularized Gauss-
Newton), and accelerated regularized ILQR (based on ac-
celerated regularized Gauss-Newton). These algorithms
were presented and introduced in Sec. 4.

For ILQR, we use an Armijo line-search to compute the
next step. For both the regularized ILQR and the accel-
erated regularized ILQR, we use a constant step-size se-
quence tuned after a burn-in phase of 5 iterations. We leave
sophisticated line-search strategies for future work.

The plots show stable convergence of the regularized ILQR
on these problems. The proposed accelerated regular-
ized Gauss-Newton algorithm displays stable and fast con-
vergence. Applications of accelerated regularized Gauss-
Newton algorithms to reinforcement learning problems
would be interesting to explore (Recht, 2018; Fazel et al.,
2018; Dean et al., 2018).
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Grüne, L. and Pannek, J. Nonlinear model predictive con-
trol. Springer, 2017.

Hansen, P. C., Pereyra, V., and Scherer, G. Least squares
data fitting with applications. JHU Press, 2013.

Jacobson, D. H. and Mayne, D. Q. Differential Dynamic
Programming. Elsevier, 1970.

Kakade, S. M. and Lee, J. D. Provably correct automatic
sub-differentiation for qualified programs. In Advances
in Neural Information Processing Systems, pp. 7125–
7135, 2018.

Kaltenbacher, B., Neubauer, A., and Scherzer, O. Iterative
regularization methods for nonlinear ill-posed problems,
volume 6. Walter de Gruyter, 2008.

LeCun, Y., Touresky, D., Hinton, G., and Sejnowski, T. A
theoretical framework for back-propagation. In Proceed-
ings of the 1988 connectionist models summer school,
volume 1, pp. 21–28, 1988.

Lewis, A. S. and Wright, S. J. A proximal method for com-
posite minimization. Mathematical Programming, 158:
501–546, 2016.

Li, W. and Todorov, E. Iterative linear quadratic regulator
design for nonlinear biological movement systems. In
1st International Conference on Informatics in Control,
Automation and Robotics, volume 1, pp. 222–229, 2004.

Li, W. and Todorov, E. Iterative linearization methods for
approximately optimal control and estimation of non-
linear stochastic system. International Journal of Con-
trol, 80(9):1439–1453, 2007.

Liao, L.-Z. and Shoemaker, C. A. Advantages of differ-
ential dynamic programming over Newton’s method for
discrete-time optimal control problems. Technical re-
port, Cornell University, 1992.

Mayne, D. A second-order gradient method for deter-
mining optimal trajectories of non-linear discrete-time
systems. International Journal of Control, 3(1):85–95,
1966.

https://www.tensorflow.org/


Iterative Linearized Control: Stable Algorithms and Complexity Guarantees

Nesterov, Y. Modified Gauss-Newton scheme with worst
case guarantees for global performance. Optimization
Methods & Software, 22(3):469–483, 2007.

Nocedal, J. and Wright, S. J. Numerical Optimization.
Springer, 2nd edition, 2006.

Paquette, C., Lin, H., Drusvyatskiy, D., Mairal, J., and Har-
chaoui, Z. Catalyst for gradient-based nonconvex opti-
mization. In 21st International Conference on Artificial
Intelligence and Statistics, pp. 1–10, 2018.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. Automatic differentiation in PyTorch, 2017.
URL https://pytorch.org/.

Recht, B. A tour of reinforcement learning: The view from
continuous control. Annual Review of Control, Robotics,
and Autonomous Systems, 2018.

Richter, S., Jones, C. N., and Morari, M. Computational
complexity certification for real-time MPC with input
constraints based on the fast gradient method. IEEE
Transactions on Automatic Control, 57(6):1391–1403,
2012.

Roulet, V., Srinivasa, S., Drusvyatskiy, D., and Harchaoui,
Z. Iterative linearized control: Stable algorithms and
complexity guarantees. In Proceedings of the 36th In-
ternational Conference on Machine Learning, 2019.

Sideris, A. and Bobrow, J. E. An efficient sequential linear
quadratic algorithm for solving nonlinear optimal con-
trol problems. In Proceedings of the American Control
Conference, pp. 2275–2280, 2005.

Tassa, Y., Mansard, N., and Todorov, E. Control-limited
differential dynamic programming. In IEEE Interna-
tional Conference on Robotics and Automation, pp.
1168–1175, 2014.

Todorov, E. and Li, W. Optimal control methods suitable
for biomechanical systems. In Proceedings of the 25th
Annual International Conference of the IEEE, volume 2,
pp. 1758–1761, 2003.

https://pytorch.org/

