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1. Simplification of the VCD

Here we show how to express the simplified expression of
the variational contrastive divergence (VCD) as the differ-
ence of two expectations. We start from the definition in
terms of the Kullback-Leibler (KL) divergences,

LVCD(θ)

= Ldiff(θ) + KL(q(t)θ (z) || qθ(z))

= KL(qθ(z) || p(z |x))− KL(q(t)θ (z) || p(z |x))

+ KL(q(t)θ (z) || qθ(z)).

(1)

We now apply the definition of the KL divergence,

LVCD(θ)

= Eqθ(z)
[
log

qθ(z)

p(z |x)

]
− E

q
(t)
θ (z)

[
log

q
(t)
θ (z)

p(z |x)

]

+ E
q
(t)
θ (z)

[
log

q
(t)
θ (z)

qθ(z)

]
.

(2)

Next we expand the logarithms. The expectation of the
log-density log q

(t)
θ (z) cancels out because it appears with

different signs in the second and third terms. We also rewrite
the posterior p(z |x) = p(x, z)/p(x),

LVCD(θ)

= Eqθ(z)
[
log

qθ(z)p(x)

p(x, z)

]
− E

q
(t)
θ (z)

[
log

qθ(z)p(x)

p(x, z)

]
.

(3)

The marginal log-likelihood log p(x) does not depend on z
and can be taken out of the expectation. Since it appears
with different signs, it cancels out. We now recognize that
the argument of each expectation—after having canceled out
the marginal log-likelihood—is the negative instantaneous
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evidence lower bound (ELBO), defined as

fθ(z) , log p(x, z)− log qθ(z). (4)

Thus, we finally have

LVCD(θ) = −Eqθ(z) [fθ(z)] + E
q
(t)
θ (z)

[fθ(z)] . (5)

2. Generalization of the VCD

The VCD divergence can be generalized with a parameter
α that downweights the two KL terms involving the im-
proved distribution q(t)θ (z). More in detail, we define the
α-generalized VCD as

L(α)
VCD(θ) = KL(qθ(z) || p(z |x)) (6)

+α
[
KL(q(t)θ (z) || qθ(z))− KL(q(t)θ (z) || p(z |x))

]
.

For any 0 ≤ α ≤ 1, the α-generalized VCD is also a proper
divergence because it satisfies the two desired criteria—it is
non-negative and it becomes zero only when qθ = p(z |x).
Moreover, it leads to tractable optimization because the
intractable log-density log q

(t)
θ (z) also cancels out in this

expression.

By varying α, the α-generalized VCD interpolates between
the standard KL divergence of variational inference (VI) (for
α = 0) and the VCD in Eq. 1 (for α = 1). When the number
of Markov chain Monte Carlo (MCMC) steps is large, this
is effectively an interpolation between the standard KL and
the symmetrized KL divergence.

The α-generalized VCD is useful when the MCMC method
does not mix well. To see this, consider that due to slow
mixing, the improved distribution q

(t)
θ (z) ≈ qθ(z). In

this case, the divergence LVCD(θ) ≈ 0 for any value of
the variational parameters, but the α-generalized VCD be-
comes proportional to the standard KL, L(α)

VCD(θ) ≈ (1 −
α)KL(qθ(z) || p(z |x)). Therefore, the α-generalized VCD
may lead to more robust optimization when the MCMC
method does not mix well.

In our experiments, we consider the non-generalized VCD
in Eq. 1 because we did not find any mixing issues with
our MCMC method. The derivations of the gradients in the
main paper can be straightforwardly generalized for the case
where the objective is L(α)

VCD(θ).
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3. Particularizations of the Gradients
Here we derive the gradients of the VCD for two choices of
the variational distribution qθ(z), namely, a Gaussian and a
mixture of Gaussians.

3.1. Gaussian Variational Distribution

We now show how to obtain the gradient of the VCD in the
case where the distribution qθ(z) is Gaussian.

Consider qθ(z) = N (z |µ,Σ), i.e., a Gaussian distribution
with mean µ and covariance Σ. That is,

log qθ(z) =−
D

2
log(2π)− 1

2
log |Σ|

− 1

2
(z − µ)>Σ−1(z − µ)

(7)

Here, θ = [µ,Σ] denotes the variational parameters, and D
is the dimensionality of the latent variable, z ∈ RD.

The definition of the VCD is in Eq. 5. Since it consists
of a difference of two expectations of the same function
fθ(z), the terms that are constant with respect to z in fθ(z)
cancel out. Specifically, the term −D2 log(2π)− 1

2 log |Σ|
from Eq. 7, which appears in fθ(z) (Eq. 4), is constant
with respect to z; therefore it cancels out. This leads to the
simplified objective

LVCD(θ) = −Eqθ(z) [gθ(z)] + E
q
(t)
θ (z)

[gθ(z)] , (8)

where we have introduced the shorthand notation gθ(z) for
the (simplified) argument of the expectation,

gθ(z) , log p(x, z) +
1

2
(z − µ)>Σ−1(z − µ). (9)

Eq. 8 can be further simplified by computing the exact
expectation of the quadratic form that appears in the first
expectation,

LVCD(θ) = −Eqθ(z) [log p(x, z)]−
D

2
+ E

q
(t)
θ (z)

[gθ(z)] .

(10)

These expressions are also valid when using amortized in-
ference with a Gaussian variational distribution. That is,
when µ and Σ are functions of the data x, µ = µθ(x) and
Σ = Σθ(x).

Taking the gradients. We now derive the expressions
for the gradient of the VCD with respect to the variational
parameters. We parameterize the Gaussian in terms of its
mean and the Cholesky decomposition of its covariance.
That is, the variational parameters are µ and L, where L
is a lower triangular matrix such that LL> = Σ. The
reparameterization transformation in terms of a standard
Gaussian q(ε) = N (ε | 0, I) is given as ε ∼ q(ε), z =
hθ(ε) = µ+ Lε.

The gradient of the (negative) first term in Eq. 10 is directly
given by the reparameterization gradient,

∇θEqθ(z) [log p(x, z)]

= Eq(ε)
[
∇z log p(x, z)

∣∣
z=hθ(ε)

×∇θhθ(ε)
]
,

(11)

where θ = [µ,L] denotes the variational parameters.

For the second expectation in Eq. 10, we apply the derivation
in the main paper,

∇θEq(t)θ (z)
[gθ(z)] = E

q
(t)
θ (z)

[∇θgθ(z)]

+ EQ(t)(z | z0)qθ(z0) [gθ(z)×∇θ log qθ(z0)] .
(12)

Note that the gradient ∇θgθ(z) only involves the gradient
of the quadratic form, since the model p(x, z) does not
depend on θ. The gradient∇θ log qθ(z0) is the gradient of
the Gaussian log-density,

∇µ log qθ(z0) = L−>L−1(z0 − µ),
∇L log qθ(z0)

= −Ω +
(
L−>L−1(z0−µ)(z0−µ)>L−>

)
�M,

where Ω is a diagonal matrix whose entries are given by
the element-wise inverse of the diagonal entries of L, the
symbol � denotes the element-wise product, and M is a
lower triangular masking matrix of ones (it contains zeros
above the main diagonal).

The above expressions are also valid when the variational
distribution is a fully factorized Gaussian, in which case L is
a diagonal matrix whose entries correspond to the standard
deviation of each component. This is the setting that we
consider in the paper.

3.2. Mixture of Gaussians

Consider now that the variational distribution qθ(z) is a
mixture of K components,

qθ(z) =

K∑
k=1

wkqθk(z). (13)

where each qθk(z) is a Gaussian,

qθk(z) =
1√

(2π)D|Σk|
e−

1
2 (z−µk)

>Σ−1
k (z−µk). (14)

The variational parameters are θk = [µk, Lk] for each com-
ponent, where Lk is the Cholesky decomposition of Σk, i.e.,
LkL

>
k = Σk, as well as the mixture weights wk.

The VCD objective is given in Eq. 5; however in this case
there are no constant terms in fθ(z) that cancel out as
in the Gaussian case. Thus, we obtain the gradient of
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the VCD by computing the gradients∇θEqθ(z) [fθ(z)] and
∇θEq(t)θ (z)

[fθ(z)] separately.

Taking the gradient of the first term. We first rewrite the
standard ELBO term as a sum over the mixture components,

Eqθ(z) [fθ(z)] =
K∑
k=1

wkEqθk (z) [fθ(z)] . (15)

We next reparameterize each component, with ε ∼ q(ε) =
N (ε ; 0, I) and z = hθk(ε) = µk + Lkε. We rewrite the
ELBO in terms of this reparameterization,

Eqθ(z) [fθ(z)] =
K∑
k=1

wkEq(ε)
[
fθ(z)

∣∣
z=hθk (ε)

]
. (16)

We now take the gradient of the ELBO. The gradient with
respect to each component θk is

∇θkEqθ(z) [fθ(z)]

=

K∑
k′=1

wk′Eq(ε)
[
∇zfθ(z)

∣∣
z=hθ

k′
(ε)
∇θkhθk′ (ε)

]

+

K∑
k′=1

wk′Eqθ
k′

(z) [∇θkfθ(z)]

= wkEq(ε)
[
∇zfθ(z)

∣∣
z=hθk (ε)

∇θkhθk(ε)
]

+ Eqθ(z) [−∇θk log qθ(z)]

= wkEq(ε)
[
∇zfθ(z)

∣∣
z=hθk (ε)

∇θkhθk(ε)
]
.

(17)

We now obtain the gradient of the ELBO w.r.t. the mixture
weights. We build a score function estimator,

∇wkEqθ(z) [fθ(z)]
= Eqθ(z) [fθ(z)∇wk log qθ(z)]

= Eqθ(z)
[
fθ(z)

1

qθ(z)
qθk(z)

]
= Eqθk (z) [fθ(z)] .

(18)

To sum up, we have obtained a reparameterization gradient
for the parameters θk (Eq. 17) and a score function gradient
for the mixture weights wk (Eq. 18).

For the reparameterization gradient, one of the quantities
that we need to evaluate is the gradient ∇z log qθ(z). We
compute this gradient in a numerically stable manner using

the log-derivative trick,

∇z log qθ(z) =
1

qθ(z)

K∑
k=1

wk∇zqθk(z)

=
1

qθ(z)

K∑
k=1

wkqθk(z)∇z log qθk(z)

=

K∑
k=1

qθ(k | z)∇z log qθk(z),

(19)

where qθ(k | z) is the “posterior probability” (under the vari-
ational model) of component k given z, i.e.,

qθ(k | z) ∝ exp {logwk + log qθk(z)} . (20)

Taking the gradient of the second term. The second term
in th VCD of Eq. 5 involves an expectation with respect to
the improved distribution q(t)θ (z). As derived in the main
paper, the gradient of the second term can in turn be split into
two terms. We first obtain the gradient w.r.t. the parameters
θk of each Gaussian component,

∇θkEq(t)θ (z)
[fθ(z)] = E

q
(t)
θ (z)

[−∇θk log qθ(z)]

+ Eqθ(z0) [wθ(z0)∇θk log qθ(z0)] ,
(21)

where we have defined

wθ(z0) , EQ(t)(z | z0) [fθ(z)] . (22)

Now we make use of the definition of qθ(z) and substitute
Eq. 13 in the two expressions above, yielding

∇θkEq(t)θ (z)
[fθ(z)]

=

K∑
k=1

wkEqθk (z0)
[
EQ(t)(z | z0) [−∇θk log qθ(z)]

]
+

K∑
k=1

wkEqθk (z0) [wθ(z0)∇θk log qθ(z0)] .

(23)

We can find an alternative expression for the latter term.
Starting with the latter term in Eq. 23, we first use the
definition in Eq. 13 and then apply the log-derivative trick,
yielding the following expression,

K∑
k=1

wkEqθk (z0) [wθ(z0)∇θk log qθ(z0)]

= Eqθ(z0) [wθ(z0)∇θk log qθ(z0)]

= Eqθ(z0)
[
wθ(z0)

1

qθ(z0)
wkqθk(z0)∇θk log qθk(z0)

]
= wkEqθk (z0) [wθ(z0)∇θk log qθk(z0)] .

(24)
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Finally, we obtain the gradient ∇wkEq(t)θ (z)
[fθ(z)], taken

w.r.t. the mixture weights. We apply the expression derived
in the main paper,

∇wkEq(t)θ (z)
[fθ(z)] = E

q
(t)
θ (z)

[−∇wk log qθ(z)]

+ Eqθ(z0) [wθ(z0)∇wk log qθ(z0)] .
(25)

We rewrite the first term in Eq. 25 by taking the exact ex-
pectation with respect to the mixture indicator,

E
q
(t)
θ (z)

[−∇wk log qθ(z)]

=

K∑
k′=1

wk′Eqθ
k′

(z0)

[
EQ(t)(z | z0)

[
−qθk(z)
qθ(z)

]]
.

(26)

We rewrite the second term in Eq. 25 using the log-derivative
trick,

Eqθ(z0) [wθ(z0)∇wk log qθ(z0)]

= Eqθ(z0)
[
wθ(z0)

1

qθ(z0)
qθk(z0)∇wk log qθk(z0)

]
= Eqθk (z0) [wθ(z0)∇wk log qθk(z0)] .

(27)


