A. Derivations

A.1. Accuracy of the 0-1 attack

We note g_{1} the binary random variable that indicates whether z_{1} was classified correctly, and thus considered part of the training set by the 0-1 attack. The attack is accurate if $g_{1}=1$ on training images and $g_{1}=0$ on other images. This happens with probability

$$
\begin{align*}
p_{\text {bayes }} & =\mathbb{P}\left(m_{1}=g_{1}\right) \\
& =\mathbb{P}\left(g_{1}=1 \mid m_{1}=1\right) \mathbb{P}\left(m_{1}=1\right)+\mathbb{P}\left(g_{1}=0 \mid m_{1}=0\right) \mathbb{P}\left(m_{1}=0\right) \\
& =\lambda p_{\text {train }}+(1-\lambda)\left(1-p_{\text {test }}\right) . \tag{42}
\end{align*}
$$

A.2. Gaussian data

Estimation of average distribution. We assume without loss of generality that $\mu=0 . \theta$ is the mean of n Gaussian variables, centered on μ with covariance I. Thus, θ follows a Gaussian distribution, of variance $\frac{1}{n} I$.

$$
\begin{equation*}
\int_{t} e^{-\ell(z, t)} p(t) d t=\frac{1}{\sqrt{\operatorname{det}\left(\frac{2 \pi}{n} I\right)}} \int_{t} e^{\frac{-\|z-t\|^{2}-n\|t\|^{2}}{2}} d t \tag{43}
\end{equation*}
$$

Denoting $\omega:=\frac{z}{n+1}$, we have

$$
\begin{equation*}
n\|t\|^{2}+\|z-t\|^{2}=(n+1)\|t-\omega\|^{2}+\frac{n}{n+1}\|z\|^{2} \tag{44}
\end{equation*}
$$

hence

$$
\begin{equation*}
\int_{t} e^{\frac{-\|z-t\|^{2}-n\|t\|^{2}}{2}} d t=\sqrt{\operatorname{det}\left(\frac{2 \pi}{n+1} I\right)} e^{-\frac{n\| \| \|^{2}}{2(n+1)}} \tag{45}
\end{equation*}
$$

We have:

$$
\begin{equation*}
\log \left(\int_{t} e^{-\ell(z, t)} p(t) d t\right)=C-\frac{n}{2(n+1)}\|z\|^{2} \tag{46}
\end{equation*}
$$

A.3. Bound on variations of a sigmoid

We show that

$$
\begin{equation*}
\sigma(u) \leq \sigma(v)+|u-v|_{+} / 4 \quad \forall u, v \in \mathbb{R} \tag{47}
\end{equation*}
$$

Since σ is increasing, the relation is obvious for $v>u$.
For $u>v$, we observe that

$$
\begin{equation*}
\sup _{u}\left|\sigma^{\prime}(u)\right|=\sup _{u} \frac{e^{-u}}{\left(1+e^{-u}\right)^{2}}=\frac{1}{4} \tag{48}
\end{equation*}
$$

Thus, σ is Lipschitz-continuous with constant $1 / 4$, which entails Equation (47).

A.4. Hessian approximations

We give here a rough justification of the approximation conducted in the MATT paragraph of Section 5.
Equation (37) writes:

$$
\begin{align*}
& \log \left(\frac{\mathbb{P}\left(\theta \mid m_{1}=1, z_{1}, \mathcal{T}\right)}{\mathbb{P}\left(\theta \mid m_{1}=0, z_{1}, \mathcal{T}\right)}\right) \tag{49}\\
& \quad \approx-\left(\theta-\theta_{1}^{*}\right)^{T} H\left(\theta-\theta_{1}^{*}\right)+\left(\theta-\theta_{0}^{*}\right)^{T} H\left(\theta-\theta_{0}^{*}\right) \tag{50}
\end{align*}
$$

This approximation holds up to the following quantity:

$$
\begin{equation*}
\delta=\underbrace{-\frac{1}{2} \log \left(\frac{\operatorname{det}\left(H_{1}\right)}{\operatorname{det}\left(H_{0}\right)}\right)}_{\delta_{1}}+\underbrace{\left(\theta_{1}^{*}-\theta_{0}^{*}\right)^{T}\left(H_{1}-H_{0}\right)\left(\theta_{1}^{*}-\theta_{0}^{*}\right)}_{\delta_{2}} \tag{51}
\end{equation*}
$$

We reason qualitatively in orders of magnitude. $\theta_{0}^{*}-\theta_{1}^{*}$ has order of magnitude $1 / n$, and $H_{1}-H_{0}$ has order of magnitude 1 , so δ_{2} has order of magnitude $1 / n^{2}$. As for δ_{1}, we observe that $H_{0}^{-1}\left(H_{1}-H_{0}\right)$ has order of magnitude $1 / n$ and therefore

$$
\begin{align*}
\delta_{1} & =-\frac{1}{2} \log \left(\frac{\operatorname{det}\left(H_{1}\right)}{\operatorname{det}\left(H_{0}\right)}\right) \tag{52}\\
& =-\frac{1}{2} \log \left(\operatorname{det}\left(I+H_{0}^{-1}\left(H_{1}-H_{0}\right)\right)\right) \tag{53}\\
& \approx-\operatorname{Tr}\left(H_{0}^{-1}\left(H_{1}-H_{0}\right)\right) . \tag{54}
\end{align*}
$$

Hence, δ_{1} has order of magnitude $1 / n$ as well. Since the main term in Equation (37) is in the order of $1 / \sqrt{n}, \delta_{1}$ and δ_{2} can be safely neglected.

