A. Derivations

A.1. Accuracy of the 0-1 attack

We note g_1 the binary random variable that indicates whether z_1 was classified correctly, and thus considered part of the training set by the 0-1 attack. The attack is accurate if $g_1 = 1$ on training images and $g_1 = 0$ on other images. This happens with probability

$$p_{\text{bayes}} = \mathbb{P}(m_1 = g_1) = \mathbb{P}(g_1 = 1 \mid m_1 = 1) \mathbb{P}(m_1 = 1) + \mathbb{P}(g_1 = 0 \mid m_1 = 0) \mathbb{P}(m_1 = 0) = \lambda p_{\text{train}} + (1 - \lambda)(1 - p_{\text{test}}).$$
(42)

A.2. Gaussian data

Estimation of average distribution. We assume without loss of generality that $\mu = 0$. θ is the mean of *n* Gaussian variables, centered on μ with covariance *I*. Thus, θ follows a Gaussian distribution, of variance $\frac{1}{n}I$.

$$\int_{t} e^{-\ell(z,t)} p(t) dt = \frac{1}{\sqrt{\det\left(\frac{2\pi}{n}I\right)}} \int_{t} e^{\frac{-\|z-t\|^{2} - n\|t\|^{2}}{2}} dt$$
(43)

Denoting $\omega := \frac{z}{n+1}$, we have

$$n\|t\|^{2} + \|z - t\|^{2} = (n+1)\|t - \omega\|^{2} + \frac{n}{n+1}\|z\|^{2},$$
(44)

hence

$$\int_{t} e^{\frac{-\|z-t\|^{2} - n\|t\|^{2}}{2}} dt = \sqrt{\det\left(\frac{2\pi}{n+1}I\right)} e^{-\frac{n\|z\|^{2}}{2(n+1)}}.$$
 (45)

We have:

$$\log\left(\int_{t} e^{-\ell(z,t)} p(t) dt\right) = C - \frac{n}{2(n+1)} \|z\|^{2}$$
(46)

A.3. Bound on variations of a sigmoid

We show that

$$\sigma(u) \le \sigma(v) + |u - v|_+/4 \quad \forall u, v \in \mathbb{R}.$$
 (47)

Since σ is increasing, the relation is obvious for v > u.

For u > v, we observe that

$$\sup_{u} |\sigma'(u)| = \sup_{u} \frac{e^{-u}}{(1+e^{-u})^2} = \frac{1}{4}.$$
 (48)

Thus, σ is Lipschitz-continuous with constant 1/4, which entails Equation (47).

A.4. Hessian approximations

We give here a rough justification of the approximation conducted in the MATT paragraph of Section 5.

Equation (37) writes:

$$\log \left(\frac{\mathbb{P}(\theta \mid m_1 = 1, z_1, \mathcal{T})}{\mathbb{P}(\theta \mid m_1 = 0, z_1, \mathcal{T})} \right)$$

$$\approx -(\theta - \theta_1^*)^T H(\theta - \theta_1^*) + (\theta - \theta_0^*)^T H(\theta - \theta_0^*).$$
(50)

This approximation holds up to the following quantity:

$$\delta = \underbrace{-\frac{1}{2} \log\left(\frac{\det(H_1)}{\det(H_0)}\right)}_{\delta_1} + \underbrace{(\theta_1^* - \theta_0^*)^T (H_1 - H_0)(\theta_1^* - \theta_0^*)}_{\delta_2}$$
(51)

We reason qualitatively in orders of magnitude. $\theta_1^* - \theta_1^*$ has order of magnitude 1/n, and $H_1 - H_0$ has order of magnitude 1, so δ_2 has order of magnitude $1/n^2$. As for δ_1 , we observe that $H_0^{-1}(H_1 - H_0)$ has order of magnitude 1/n and therefore

$$\delta_1 = -\frac{1}{2} \log \left(\frac{\det(H_1)}{\det(H_0)} \right) \tag{52}$$

$$= -\frac{1}{2} \log \left(\det \left(I + H_0^{-1} (H_1 - H_0) \right) \right)$$
 (53)

$$\approx -\operatorname{Tr}(H_0^{-1}(H_1 - H_0)).$$
 (54)

Hence, δ_1 has order of magnitude 1/n as well. Since the main term in Equation (37) is in the order of $1/\sqrt{n}$, δ_1 and δ_2 can be safely neglected.