
White-box vs Black-box: Bayes Optimal Strategies for Membership Inference

A. Derivations
A.1. Accuracy of the 0-1 attack

We note g1 the binary random variable that indicates whether
z1 was classified correctly, and thus considered part of the
training set by the 0-1 attack. The attack is accurate if
g1 = 1 on training images and g1 = 0 on other images.
This happens with probability

pbayes = P(m1 = g1)

= P(g1=1 |m1=1)P(m1=1) + P(g1=0 |m1=0)P(m1=0)
= λptrain + (1− λ)(1− ptest). (42)

A.2. Gaussian data

Estimation of average distribution. We assume without
loss of generality that µ = 0. θ is the mean of n Gaussian
variables, centered on µ with covariance I . Thus, θ follows
a Gaussian distribution, of variance 1
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Denoting ω := z
n+1 , we have
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We have:
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A.3. Bound on variations of a sigmoid

We show that

σ(u) ≤ σ(v) + |u− v|+/4 ∀u, v ∈ R. (47)

Since σ is increasing, the relation is obvious for v > u.

For u > v, we observe that
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Thus, σ is Lipschitz-continuous with constant 1/4, which
entails Equation (47).

A.4. Hessian approximations

We give here a rough justification of the approximation
conducted in the MATT paragraph of Section 5.

Equation (37) writes:
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≈ −(θ − θ∗1)TH(θ − θ∗1) + (θ − θ∗0)TH(θ − θ∗0).
(50)

This approximation holds up to the following quantity:
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We reason qualitatively in orders of magnitude. θ∗0 − θ∗1
has order of magnitude 1/n, and H1 − H0 has order of
magnitude 1, so δ2 has order of magnitude 1/n2. As for
δ1, we observe that H−10 (H1−H0) has order of magnitude
1/n and therefore
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≈ −Tr(H−10 (H1 −H0)). (54)

Hence, δ1 has order of magnitude 1/n as well. Since the
main term in Equation (37) is in the order of 1/

√
n, δ1 and

δ2 can be safely neglected.


