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Abstract
We derive finite time error bounds for estimating
general linear time-invariant (LTI) systems from
a single observed trajectory using the method of
least squares. We provide the first analysis of the
general case when eigenvalues of the LTI system
are arbitrarily distributed in three regimes: stable,
marginally stable, and explosive. Our analysis
yields sharp upper bounds for each of these cases
separately. We observe that although the under-
lying process behaves quite differently in each of
these three regimes, the systematic analysis of a
self–normalized martingale difference term helps
bound identification error up to logarithmic fac-
tors of the lower bound. On the other hand, we
demonstrate that the least squares solution may be
statistically inconsistent under certain conditions
even when the signal-to-noise ratio is high.

1 Introduction
Finite time system identification—the problem of estimat-
ing the parameters of an unknown dynamical system given
a finite time series of its output—is an important problem
in the context of time-series analysis, control theory, eco-
nomics and reinforcement learning. In this work we will
focus on obtaining sharp non–asymptotic bounds for linear
dynamical system identification using the ordinary least
squares (OLS) method. Such a system is described by
Xt+1

= AXt + ⌘t+1

where Xt 2 Rd is the state of the
system and ⌘t is the unobserved process noise. The goal
is to learn A by observing only Xt’s. Our techniques can
easily be extended to the more general case when there is a
control input Ut, i.e., Xt+1

= AXt + BUt + ⌘t+1

. In this
case (A, B) are unknown, and we can choose Ut.

Linear systems are ubiquitous in control theory. For exam-
ple, proportional-integral-derivative (PID) controller is a
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popular linear feedback control system found in a variety
of devices, from planetary soft landing systems for rock-
ets (see e.g. (Açıkmeşe et al., 2013)) to coffee machines.
Further, linear approximations to many non–linear systems
have been known to work well in practice. Linear systems
also appear as auto–regressive (AR) models in time series
analysis and econometrics. Despite its importance, sharp
non–asymptotic characterization of identification error in
such models was relatively unknown until recently.

In the statistics literature, correlated data is often dealt with
using mixing–time arguments (see e.g. (Yu, 1994)). How-
ever, a fundamental limitation of the mixing-time method is
that bounds deteriorate when the underlying process mixes
slowly. For discrete linear systems, this happens when
⇢(A)—the spectral radius of A—approaches 1. As a result
these methods cannot extend to the case when ⇢(A) � 1.
More recently there has been renewed effort in obtaining
sharp non–asymptotic error bounds for linear system identi-
fication (Faradonbeh et al., 2017; Simchowitz et al., 2018).
Specifically, (Faradonbeh et al., 2017) analyzed the case
when the system is either stable (⇢(A) < 1) or purely ex-
plosive (⇢(A) > 1). For the case when ⇢(A) < 1 the
techniques in (Faradonbeh et al., 2017) are similar to the
standard mixing time arguments and, as a result, suffer from
the same limitations. When the system is purely explo-
sive, the authors of (Faradonbeh et al., 2017) show that
finite time identification is only possible if the system is
regular, i.e., if the geometric multiplicity of eigenvalues
greater than unity is one. However, as discussed in (Sim-
chowitz et al., 2018), the bounds obtained in (Faradonbeh
et al., 2017) are suboptimal due to a decoupled analysis
of the sample covariance,

PT
t=1

XtX
0
t, and the martingale

difference term
PT

t=1

Xt⌘
0
t+1

. A second approach, based
on Mendelson’s small–ball method, was studied in (Sim-
chowitz et al., 2018). Such a technique eschewed the need
for mixing-time arguments and sharper error bounds for
1 � C/T  ⇢(A)  1 + C/T could be obtained. The au-
thors in (Simchowitz et al., 2018) argue that a larger signal-
to-noise ratio, measured by �

min

(

PT�1

t=0

AtAt0
), makes it

easier to estimate A. Although this intuition is consistent
for the case when ⇢(A)  1, it does not extend to the
case when eigenvalues are far outside the unit circle. Since
XT =

PT
t=1

AT�t⌘t, the behavior of XT is dominated by
{⌘

1

, ⌘
2

, . . .}, i.e., the past, due to exponential scaling by
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{AT�1, AT�2, . . .}. As a result, X
1

depends strongly on
{X

2

, . . . , XT } and standard techniques of creating “inde-
pendent” blocks of covariates fail.

The problem of system identification has received a lot
of attention. Asymptotic results on identification of AR
models can be found in (Lai & Wei, 1983). Some of the
earlier work on finite time identification in systems theory
include (Campi & Weyer, 2002; Vidyasagar & Karandikar,
2006). A more general setting of the problem considered
here is when Xt is observed indirectly via its filtered version,
i.e., Yt = CXt where C is unknown. The single input single
output (SISO) version of this problem, i.e., when Yt, Ut are
numbers, has been studied in (Hardt et al., 2016) under
the assumption that system is stable. Provable guarantees
for system identification in general linear systems was also
studied in (Oymak & Ozay, 2018). However, the analysis
there requires that ||A||< 1. Generalization bounds for
time series forecasting of non–stationary and non–mixing
processes have been developed in (Kuznetsov & Mohri,
2018).

2 Contributions
In this paper we offer a new statistical analysis of the or-
dinary least squares estimator of the dynamics Xt+1

=

AXt + ⌘t+1

with no inputs. Unlike previous work, we do
not impose any restrictions on the spectral radius of A and
provide nearly optimal rates (up to logarithmic factors) for
every regime of ⇢(A). The contributions of our paper can
be summarized as follows

• At the center of our techniques is a systematic analysis
of the sample covariance

PT
t=1

XtX
0
t and a certain

self normalized martingale difference term. Although
such a coupled analysis is similar in flavor to (Sim-
chowitz et al., 2018), it comes without the overhead
of choosing a block size and applies to a general case
when covariates grow exponentially in time.

• Specifically, for the case when ⇢(A)  1, we recover
the optimal finite time identification error rates previ-
ously derived in (Simchowitz et al., 2018). For the
case when all eigenvalues are outside the unit circle,
we argue that small ball methods cannot be used. In-
stead we use anti–concentration arguments discussed
in (Faradonbeh et al., 2017; Lai & Wei, 1983). By lever-
aging subgaussian tail inequalities we sharpen previous
error bounds by removing polynomial factors. We also
show that this analysis is indeed tight by deriving a
matching lower bound.

• We provide the first analysis of the general case when
eigenvalues of A are arbitrarily distributed in three
regimes: stable, marginally stable and explosive. This
involves a careful analysis of the noise-covariate cross
terms as the underlying process behaves differently in
each of these regimes.

• We show that when A does not satisfy certain reg-
ularity conditions, OLS identification is statistically
inconsistent, even when signal-to-noise ratio is high.
Our result indicates that consistency of OLS identifi-
cation depends on the condition number of the sample
covariance matrix, rather than the signal-to-noise ratio
itself.

3 Notation and Definitions
A linear time invariant system (LTI) is parametrized by a
matrix, A, where the observed variable, Xt, indexed by t
evolves as

Xt+1

= AXt + ⌘t+1

. (1)

Here ⌘t is the noise process. Denote by ⇢i(A) the absolute
value of the ith eigenvalue of the d ⇥ d matrix A. Then

⇢
max

(A) = ⇢
1

(A) � ⇢
2

(A) � . . . � ⇢d(A) = ⇢
min

(A).

Similarly the singular values of A are denoted by �i(A).
For any matrix M , ||M ||op= ||M ||

2

.
Definition 1. A stable LTI system is that where ⇢

max

(A) <
1. An explosive LTI system is that where ⇢

min

(A) > 1.

For simplicity of exposition, we assume that X
0

= 0 with
probability 1. All the results can be obtained by assuming
X

0

to be some bounded vector.
Definition 2. A random vector X 2 Rd is called isotropic
if for all x 2 Rd we have

EhX, xi2 = ||x||2
2

Assumption 1. {⌘t}1t=1

are i.i.d isotropic subgaussian and
coordinates of ⌘t are i.i.d. Further, let f(x) be the pdf of
each noise coordinate then the essential supremum of f(·)
is bounded above by C < 1.

We will deal with only regular systems, i.e., LTI systems
where eigenvalues of A with absolute value greater than
unity have geometric multiplicity one. We will show that
when A is not regular, OLS is statistically inconsistent.

Define the data matrix X and the noise matrix E as

X =

2

6

6

6

4

X 0
0

X 0
1

...
X 0

T

3

7

7

7

5

, E =

2

6

6

6

4

⌘0
1

⌘0
2

...
⌘0T+1

,

3

7

7

7

5

where the superscript a0 denotes the transpose. Then X, E
are (T + 1) ⇥ d matrices. Consider the OLS solution

ˆA = arg min

B

T
X

t=0

||Xt+1

� BXt||2
2

.

One can show that

A � ˆA = ((X0X)

+X0E)

0 (2)
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where M+ is the pseudo inverse of M. We define

YT = X0X =

T
X

t=0

XtX
0
t, ST = X0E =

T
X

t=0

Xt⌘
0
t+1

.

To analyze the error in estimating A, we will aim to bound
the norm of (X0X)

+X0.

We will occasionally replace Xt (or X(t)) with the lower-
case counterparts xt (or x(t)) to denote state at time t, when-
ever this does not cause confusion. Further, we will use C, c
to indicate universal constants that can change from line to
line. Define the Gramian as

�t(A) =

t
X

k=0

AkAk0 (3)

and a Jordan block matrix Jd(�) as

Jd(�) =

2

6

6

6

6

6

4

� 1 0 . . . 0

0 � 1 . . . 0

...
...

. . . . . .
...

0 . . . 0 � 1

0 0 . . . 0 �

3

7

7

7

7

7

5

d⇥d

(4)

We present the three classes of matrices that will be of
interest to us:

• The perfectly stable matrix class, S
0

⇢i(A)  1 � C

T

for 1  i  d.
• The marginally stable matrix, S

1

1 � C

T
< ⇢i(A)  1 +

C

T

for 1  i  d.
• The regular and explosive matrix, S

2

⇢i > 1 +

C

T

for 1  i  d.

Slightly abusing the notation, whenever we write A 2 Si [
Sj we mean that A has eigenvalues in both Si, Sj .

Critical to obtaining refined error rates, will be a result
from the theory of self–normalized martingales. We let
F t = �(⌘

1

, ⌘
2

, . . . , ⌘t, X1

, . . . , Xt) to denote the filtration
generated by the noise and covariate process.

Proposition 3.1. Let V be a deterministic matrix with V �
0. For any 0 < � < 1 and {⌘t, Xt}Tt=1

defined as before,

we have with probability 1 � �

||( ¯YT�1

)

�1/2
T�1

X

t=0

Xt⌘
0
t+1

||
2

 R

v

u

u

t

8d log

 

5det( ¯YT�1

)

1/2ddet(V )

�1/2d

�1/d

!

(5)

where ¯Y �1

⌧ = (Y⌧ + V )

�1 and R2 is the subGaussian
parameter of ⌘t.

The proof can be found in appendix as Proposition 9.2. It
rests on Theorem 1 in (Abbasi-Yadkori et al., 2011) which is
itself an application of the pseudo-maximization technique
in (Peña et al., 2008) (see Theorem 14.7).

Finally, we define several A-dependent quantities that will
appear in time complexities in the next section.

Definition 3 (Outbox Set). For the space Rd define the
a–outbox, Sd(a), as the following set

Sd(a) = {v| min

1id
|vi|� a}

Sd(a) will be used to quantify the following norm–like quan-
tities of a matrix:

�
min

(A) =

v

u

u

t

inf

v2S
d

(1)

�
min

⇣

T
X

i=1

⇤

�i+1vv0⇤�i+10
⌘

(6)

�
max

(A) =

v

u

u

t

sup

||v||
2

=1

�
max

⇣

T
X

i=1

⇤

�i+1vv0⇤�i+10
⌘

(7)

where A = P�1

⇤P is the Jordan normal form of A.

 (A) is defined in Proposition 3.2 and is needed for error
bounds for explosive matrices.

Proposition 3.2 (Proposition 2 in (Faradonbeh et al., 2017)).
Let ⇢

min

(A) > 1 and P�1

⇤P = A be the Jordan decom-
position of A. Define zT = A�T

PT
i=1

AT�i⌘i and

 (A, �) = sup

(

y 2 R : P

 

min

1id
|P

0

i zT |< y

!

 �

)

where P = [P
1

, P
2

, . . . , Pd]
0
. Then

 (A, �) �  (A)� > 0

Here  (A) =

1

2d sup

1id

C
|P 0

i

z

T

|
where CX is the essential

supremum of the pdf of X .

We summarize some definitions in Table 1 for convenience
in representing our results.
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T⌘(�) = C
⇣

log

2

� + d log 5

⌘

Ts(�) = C
⇣

d log (tr(�T (A)) + 1) + 2d log

5

�

⌘

c(A, �) = Ts(
2�
3T )

�
0

(�) = inf

n

�|�2�
min

(�b 1

�

c(A)) �
⇣

16ec(A,�)
T�

min

(AA0
)

⌘o

Tms(�) = inf

n

T
�

�

�

T � Cc(A,�)
�
min

(AA0
)

o

Tu(�) =

n

T
�

�

�

⇣

4T 2�2

1

(A�bT+1

2

c
)tr(�T (A�1

)) +

T tr(A�T�1

�

T

(A�1

)A�T�10
)

�

⌘

 �
min

(A)

2 (A)

2�2

2�
max

(P )

2

o

�(A, �) =

4�
max

(A)

2�2

max

(A)

�
min

(A)

2�2

min

(A) (A)

2�2
(1 +

1

c log

1

� )tr(P (�T (A�1

))P 0
)I

�s(A, �) =

r

8d
⇣

log

⇣

5

�

⌘

+

1

2

log

⇣

4tr(�T (A)) + 1

⌘⌘

�ms(A, �) =

r

16d log (tr(�T (A)) + 1) + 32d log

⇣

15T
2�

⌘

�e(A, �) =

p
d�

max

(P )

�
min

(A) (A)�

q

log

2

� + 2 log 5 + log (1 + �(A, �))

Table 1. Definitions of key quantities in the paper

4 Main Results
We will first show non–asymptotic rates for the three sep-
arate regimes, followed by the case when A has a general
eigenvalue distribution.
Theorem 1. The following non-asymptotic bounds hold,
with probability at least 1 � �, for the least squares estima-
tor:

• For A 2 S
0

[ S
1

||A � ˆA||
2


r

C

T
�s

⇣

A,
�

4

⌘

| {z }

=O(

p
log (

1

�

))

whenever T � max

⇣

T⌘

⇣

�
4

⌘

, Ts

⇣

�
4

⌘⌘

.
• For A 2 S

1

||A � ˆA||
2

 C�
max

(A�1

)

q

T�
min

(�b 1

�

0

(�)

c(A))

�ms

⇣

A,
�

2

⌘

2

| {z }

=O(log (

T

�

))

whenever

T � max

⇣

2T⌘

⇣ �

3T

⌘

| {z }

=O(log T )

, 2Ts

⇣ �

3T

⌘

| {z }

=O(log T )

, Tms

⇣�

2

⌘

| {z }

=O(log T )

⌘

Since �
min

(�b 1

�

0

(�)

c(A)) � ↵(d)

T
log T , we have that

||A � ˆA||
2



s

log T

↵(d)

�ms

⇣

A, �
2

⌘

2

T

• For A 2 S
2

||A � ˆA||
2

 C�
max

(A�T
) �e

⇣

A,
�

5

⌘

| {z }

=O(

1

�

)

whenever T 2 Tu

⇣

�
5

⌘

. Since �
max

(A�T
) 

↵(d)(⇢
min

(A))

�T for A 2 S
2

, the identification er-
ror decays exponentially with T .

Here C, c are absolute constants and ↵(d) is a function that
depends only on d.
Remark 1. Tu(�) is a set where there exists a minimum
T⇤ < 1 such that T 2 Tu(�) whenever T � T⇤. However,
there might be T < T⇤ for which the inequality of Tu(�)
holds. Whenever we write T 2 Tu(�) we mean T � T⇤.

Proof. We start by writing an upper bound

||A � ˆA||op  ||Y +

T ST ||op

 ||(Y +

T )

1/2||op||(Y +

T )

1/2ST ||op. (8)

The rest of the proof can be broken into two parts:

• Showing invertibility of YT and lower bounds on the
least singular value

• Bounding the self-normalized martingale term given
by (Y +

T )

1/2ST

The invertibility of YT is where most of the work lies. Once
we have a tight characterization of YT , one can simply ob-
tain the error bound by using Proposition 3.1. Here we
sketch the basis of our approach. First, we find determinis-
tic Vup, Vdn, T

0

such that

E
0

= {0 � Vdn � YT � Vup, T � T
0

} (9)
P(E

0

) � 1 � � (10)

The next step is to bound the self–normalized term. Under
E
0

, it is clear that YT is invertible and we have

(Y +

T )

1/2ST = Y
�1/2
T ST .
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Define event E
1

in the following way

E
1

=

(

||ST ||
(Y

T

+V
dn

)

�1

v

u

u

t

8d log

 

5det(YTV �1

dn + I)

1/2d

�1/d

!)

It follows from Proposition 3.1 that P(E
1

) � 1 � �. Then

E
0

=) YT + Vdn � 2YT =) (YT + Vdn)

�1 ⌫ 1

2

Y �1

T ,

and we have that under E
0

||ST ||Y �1

T


p

2||ST ||
(Y

T

+V
dn

)

�1 .

Now considering the intersection E
0

\ E
1

, we get

E
0

\ E
1

=)

E
0

\
(

||ST ||Y �1

T



v

u

u

t

16d log

 

5det(VupV
�1

dn + I)

1/2d

�1/d

!)

(11)

We replaced the LHS of E
1

by the lower bound obtained
above and in the RHS replaced YT by its upper bound under
E
0

, Vup. Further, observe that P(E
0

\ E
1

) � 1 � 2�. Under
E
0

\ E
1

we get

||A � ˆA||op

 1

�
min

(Vdn)

| {z }

↵
T

v

u

u

t

16d log

 

5det(VupV
�1

dn + I)

1/2d

�1/d

!

| {z }

�
T

(12)

where ↵T goes to zero with T and �T is typically a constant.
This shows that OLS learns A with increasing accuracy as T
grows. The deterministic Vup, Vdn, T

0

differ for each regime
of ⇢(A) and typically depend on the probability threshold
�. We now sketch the approach for finding these for each
regime.

YT behavior when A 2 S
0

[ S
1

The key step here is to characterize YT in terms of YT�1

.

YT = x
0

x
0

0

+ AYT�1

A
0
+

+

T�1

X

t=0

(Axt⌘
0

t+1

+ ⌘t+1

x
0

tA
0
) +

T
X

t=1

⌘t⌘
0

t

⌫ AYT�1

A
0
+

+

T�1

X

t=0

(Axt⌘
0

t+1

+ ⌘t+1

x
0

tA
0
) +

T
X

t=1

⌘t⌘
0

t. (13)

Since {⌘t}Tt=1

are i.i.d. subgaussian we can show that
PT

t=1

⌘t⌘
0
t concentrates near TId⇥d with high probability.

Using Proposition 3.1 once again, we will show that with
high probability
T�1

X

t=0

(Axt⌘
0

t+1

+ ⌘t+1

x
0

tA
0
) ⌫ �✏(AYT�1

A
0
+

T
X

t=1

⌘t⌘
0
t)

where ✏  1/2 whenever ⇢i(A)  1 + C/T and T � T
0

for some T
0

depending only on A. As a result with high
probability we have

YT ⌫ (1 � ✏)AYT�1

A
0
+ (1 � ✏)

T
X

t=1

⌘t⌘
0
t

⌫ (1 � ✏)

T
X

t=1

⌘t⌘
0
t. (14)

The details of this proof are provided in appendix as Sec-
tion 10. When 1 � C/T  ⇢i(A)  1 + C/T we note
that the bound in Eq. (14) is not tight. The key to sharp-
ening the lower bound is the following observation: for
T > max

⇣

2T⌘

⇣

�
3T

⌘

, 2Ts

⇣

�
3T

⌘

, Tms

⇣

�
2

⌘⌘

we can ensure
with high probability

t
X

⌧=1

⌘⌧⌘
0
⌧ = tI

Yt ⌫ (1 � ✏)AYt�1

A
0
+ (1 � ✏)tI (15)

simultaneously for all t � T/2. Then we will show that
✏ = �

0

(�) in Table 1. The sharpening of ✏ from 1/2 to �
0

(�)
is only possible because all the eigenvalues of A are close
to unity. In that case by successively expanding Eq. (15) we
get

YT ⌫ (1 � ✏)1/�0

(�)AYT/2�1

A
0
+

T

2

1/�
0

(�)
X

t=1

(1 � ✏)tAtAt0

(16)
and then Eq. (16) can be reduced to

YT ⌫ (1 � ✏)1/�0

(�)AYT/2�1

A
0
+

T (�

1/�
0

(�)(A) � I)

4e
.

We show that

1/�
0

(�) � ↵(d)TR2�
min

(AA0
)

8ec(A, �)

and by Proposition 8.5, YT ⌫ ↵(d)T 2 for some function
↵(·) that depends only on d. The details of the proof are
provided in appendix as Section 11.

To get deterministic upper bounds for YT with high proba-
bility, we note that

YT � tr

 

T
X

t=1

XtX
0
t

!

I.
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Then we can use Hanson–Wright inequality or Markov in-
equality to get an upper bound as shown in appendix as
Proposition 9.4.

YT behavior when A 2 S
2

The concentration arguments used to show the convergence
for stable systems do not work for unstable systems. As
discussed before Xt =

PT
⌧=1

At�⌧⌘t and, consequently,
XT depends strongly on X

1

, X
2

, . . .. Due to this depen-
dence we are unable to use typical techniques where Xis
are divided into roughly independent blocks of covariates.
to obtain concentration results. Motivated by (Lai & Wei,
1983), we instead work by transforming xt as

zt = A�txt

= x
0

+

t
X

⌧=1

A�⌧⌘⌧ . (17)

The steps of the proof proceed as follows. Define

UT = A�T
T
X

t=1

xtx
0
tA

�T 0
= A�TYTA�T 0

=

T
X

t=1

A�T+tztz
0
tA

�T+t0

FT =

T�1

X

t=0

A�tzT z
0

TA�t0 (18)

We show that
||FT � UT ||op ✏.

Here ✏ decays exponentially fast with T . Then the lower and
upper bounds of UT can be shown by proving correspond-
ing bounds for FT . A necessary condition for invertibility
of FT is that the matrix A should be regular (in a later sec-
tion we show that it is also sufficient). If A is regular, the
deterministic lower bound for FT is fairly straightforward
and depends on �

min

(A) defined in Definition 3. The upper
bound can be obtained by using Hanson–Wright inequality.
The complete steps are given in appendix as Section 12.

The analysis presented here is sharper than (Faradonbeh
et al., 2017) as we use subgaussian matrix inequalities such
as Hanson–Wright Inequality (Theorem 4) to bound the er-
ror terms in contrast to uniformly bounding each noise vari-
able and applying a less efficient Bernstein inequality. An-
other minor difference is that (Lai & Wei, 1983),(Faradon-
beh et al., 2017) consider ||UT �F1|| instead and as a result
they require a martingale concentration argument to show
the existence of z1.

Lower bounds for identification error when ⇢(A)  1 have
been derived in (Simchowitz et al., 2018). In Table 1 and

Theorem 1, the error in identification for explosive matri-
ces depends on � as 1

� unlike stable and marginally stable
matrices where the dependence is log

1

� . Typical minimax
analyses, such as the one in (Simchowitz et al., 2018), are
unable to capture this relation between error and �. Here we
show that such a dependence is unavoidable:

Proposition 4.1. Let A = a � 1.1 be a 1–D matrix and
ˆA = â be its OLS estimate. Then whenever Ca2T 2a�T >
�2, we have with probability at least � that

|a � â|� C(1 � a�2

)�

�a2

(log �)3

where C is a universal constant. If Ca2T 2a�T  �2 then
with probability at least � we have

|a � â|�
⇣C(1 � a�2

)

�� log �

⌘

a�T

Our lower bounds indicate that 1

� is inevitable in Theorem 1,
i.e., when Ca2T 2a�T  �2. Second, when Ca2T 2a�T >
�2, our bound sharpens Theorem B.2 in (Simchowitz et al.,
2018). The proof and an explicit comparison is provided in
Section 17.

For the general case we use a well known fact for matrices,
namely, that there exists a similarity transform ˜P such that

A =

˜P�1

2

4

Ae 0 0

0 Ams 0

0 0 As

3

5

˜P (19)

Here Ae 2 S
0

, Ams 2 S
1

, As 2 S
2

. Although one might
be tempted to use Theorem 1 to provide error bounds, mix-
ing between different components due to the transformation
˜P requires a careful analysis of identification error. We
show that error bounds are limited by the slowest compo-
nent as we describe below. We do not provide the exact
characterization due to a shortage of space. The details are
given in appendix as Section 14.

Theorem 2. For any regular matrix A we have with proba-
bility at least 1 � �,

• For A 2 S
1

[ S
2

, ||A � ˆA||
2

 poly(log T,log 1

�

)

T when-
ever

T � poly
⇣

log

1

�

⌘

• For A 2 S
0

[ S
1

[ S
2

, ||A � ˆA||
2

 poly(log T,log 1

�

)p
T

whenever

T � poly
⇣

log

1

�

⌘

Here poly(·) is a polynomial function.
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Proof. Define the partition of A as Eq. (19). Since

Xt =

t
X

⌧=1

A⌧�1⌘t�⌧+1

˜Xt =

˜P�1Xt =

t
X

⌧=1

˜A⌧�1

˜P�1⌘t�⌧+1

| {z }

⌘̃
t�⌧+1

(20)

then the transformed dynamics are as follows:

˜Xt+1

=

˜A ˜Xt + ⌘̃t+1

.

Here {⌘̃t}Tt=1

are still independent. Correspondingly we
also have a partition for ˜Xt, ⌘̃t

˜Xt =

2

4

Xe
t

Xms
t

Xs
t

3

5, ⌘̃t =

2

4

⌘et
⌘ms
t

⌘st

3

5 (21)

Then we have

T
X

t=1

˜Xt
˜X 0
t =

T
X

t=1

2

4

Xe
t (Xe

t )

0 Xe
t (Xms

t )

0 Xe
t (Xs

t )

0

Xms
t (Xe

t )

0 Xms
t (Xms

t )

0 Xms
t (Xs

t )

0

Xe
t (Xs

t )

0 Xs
t (Xms

t )

0 Xs
t (Xs

t )

0

3

5

(22)

The next step is to show the invertibility of
PT

t=1

˜Xt
˜X 0
t.

Although reminiscent of our previous set up, there are some
critical differences. First, unlike before, coordinates of ⌘̃t,
i.e., {⌘et , ⌘ms

t , ⌘st } are not independent. A major implication
is that it is no longer obvious that the cross terms between
different submatrices, such as

PT
t=1

Xe
t (Xms

t )

0, go to zero.
Our proof will have three major steps:

• First we will show that the diagonal submatrices are in-
vertible. This follows from Theorem 1 by arguing that
the result can be extended to a noise process {P⌘t}Tt=1

where {⌘t}Tt=1

are independent subgaussian and ele-
ments of ⌘t are also independent for all t. The only
change will be the appearance of additional �2

1

(P ) sub-
gaussian parameter (See Corollary 9.1). We will then
show that

Xmss =

T
X

t=1



Xms
t (Xms

t )

0 Xms
t (Xs

t )

0

Xs
t (Xms

t )

0 Xs
t (Xs

t )

0

�

is invertible. This will follow from Theorem 1 (its
dependent extension). Specifically, since Xmss con-
tains only stable and marginally stable components, it
falls under A 2 S

0

[ S
1

. It should be noted that since
Xms

t , Xs
t are not independent in general, the invertibil-

ity of Xmss can be shown only through Theorem 1. In
a similar fashion,

PT
t=1

Xe
t (Xe

t )

0 is also invertible as
it corresponds to A 2 S

2

.
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Figure 1. CDF and PDF of �̂
o

• Since invertibility of block diagonal submatrices in
PT

t=1

˜Xt
˜X 0
t does not imply the invertibility of the en-

tire matrix we also need to show that the cross terms
||Xe

t (Xms
t )

0||
2

, ||Xe
t (Xs

t )

0||
2

are sufficiently small rel-
ative to the appropriate diagonal blocks.

• Along the way we also obtain deterministic lower and
upper bounds for the sample covariance matrix follow-
ing which the steps for bounding the error are similar
to Theorem 1.

The details are in appendix as Section 14.

5 Inconsistency of OLS
We will now show that when a matrix is irregular, then
it cannot be learned despite a high signal-to-noise ratio.
Consider the two cases

Ar =



1.1 1

0 1.1

�

, Ao =



1.1 0

0 1.1

�

Here Ar is a regular matrix and Ao is not. Now we run
Eq. (1) for A = Ar, Ao for T = 10

3. Let the OLS estimate
of Ar, Ao be ˆAr, ˆAo respectively. Define

�r = [Ar]1,2,�o = [Ao]1,2

ˆ�r = [

ˆAr]1,2, ˆ�o = [

ˆAo]1,2

Although �r ⇡ ˆ�r, ˆ�o does not equal zero. Instead Fig. 1
shows that ˆ�o has a non–trivial distribution which is bimodal
at {�0.55, 0.55} and as a result OLS is inconsistent for Ao.
This happens because the sample covariance matrix for Ao is
singular despite the fact that �T (Ao) = (1.1)

T I , i.e., a high
signal to noise ratio. In general, the relation between OLS
identification of A and its controllability Gramian, �T (A),
is tenuous for unstable systems unlike what is suggested
in (Simchowitz et al., 2018). To see this singularity observe
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that

Xt+1

= Ao

"

X
(1)

t

X
(2)

t

#

+

"

⌘
(1)

t+1

⌘
(2)

t+1

#

YT =

"

PT
t=1

(X
(1)

t )

2

PT
t=1

(X
(1)

t )(X
(2)

t )

PT
t=1

(X
(1)

t )(X
(2)

t )

PT
t=1

(X
(2)

t )

2

#

where X
(1)

t , X
(2)

t are independent of each other. Define
a = 1.1.
Proposition 5.1. Let {⌘t}Tt=1

be i.i.d standard Gaussian
then whenever T 2  aT , we have that

|| ˆAo � Ao||= �T

where �T is a random variable that admits a continuous pdf
and does not decay to zero as T ! 1. Further, the sample
covariance matrix has the following singular values

�
1

(

T
X

t=1

XtX
>
t ) = ⇥(a2T

),�
2

(

T
X

t=1

XtX
>
t ) = O(

p
TaT

)

The proof is given in Section 20 and Proposition 20.1. Propo-
sition 5.1 suggests that the consistency of OLS estimate
depends directly on the condition number of the sample
covariance matrix. In fact, OLS is inconsistent when con-
dition number grows exponentially fast in T (as in the case
of Ao). The proof requires a careful expansion of the (ap-
propriately scaled) sample covariance matrix inverse using
Woodbury’s identity. Since the sample covariance matrix
is highly ill–conditioned, it magnifies the noise-covariate
cross terms so that the identification error no longer decays
as time increases. Although for stable and marginally stable
A this invertibility can be characterized �

min

(�T (A)) such
an intuition does not extend to explosive systems. This is
because the behavior of YT is dominated by “past” ⌘ts such
as ⌘

1

, ⌘
2

much more than the ⌘T�1

, ⌘T etc. When A is
explosive, all singular values of ||AT || grow exponentially
fast. Since XT = AT�1⌘

1

+ AT�2⌘
2

+ . . . + A⌘T�1

+ ⌘T
the behavior of XT is dominated by AT�1⌘

1

. This causes a
very strong dependence between XT and XT+1

and some
structural constraints (such as regularity) are necessary for
OLS identification.

6 Discussion
In this work we provided finite time guarantees for OLS
identification for LTI systems. We show that whenever A is
regular, with an otherwise arbitrary distribution of eigenval-
ues, OLS can be used for identification. More specifically
we give sharpest possible rates when A belongs to one of
{S

0

, S
1

, S
2

}. When the assumption of regularity is violated,
we show that OLS is statistically inconsistent. This sug-
gests that statistical consistency relies on the conditioning
of the sample covariance matrix and not so much on the

signal-to-noise ratio for explosive matrices. Despite sub-
stantial differences between the distributional properties of
the covariates we find that time taken to reach a given error
threshold scales the same (up to some constant that depends
only on A) across all regimes in terms of the probability
of error. To see this, observe that Theorem 1 gives us with
probability at least 1 � �

A 2 S
0

=) ||A � ˆA||

s

C
0

(d) log

1

�

T

A 2 S
1

=) ||A � ˆA|| C
1

(d)

T
log

⇣T

�

⌘

A 2 S
2

=) ||A � ˆA|| C
2

(d)�
max

(A�T
)

�
(23)

The lower bounds for A 2 S
0

and A 2 S
1

are given in (Sim-
chowitz et al., 2018) Appendix B, F.1 which are

A 2 S
0

=) ||A � ˆA||�

s

B
0

(d) log

1

�

T

A 2 S
1

=) ||A � ˆA||� B
1

(d)

T
log

⇣

1

�

⌘

(24)

with probability at least �. For A 2 S
2

we provide a tighter
lower bound in Proposition 4.1, i.e., with probability at least
�

A 2 S
2

=) ||A � ˆA||� B
2

(d)�
max

(A�T
)

�� log �
(25)

Now fix an error threshold ✏, from Eq. (23) we get with
probability � 1 � �

A 2 S
0

=) ||A � ˆA|| ✏ if T �
log

1

�

✏2C
0

(d)

A 2 S
1

=) ||A � ˆA|| ✏ if T �
log

T
�

✏C
1

(d)

A 2 S
2

=) ||A � ˆA|| ✏ if T �
log

1

�✏ + log C
2

(d)

log ⇢
min

From Eq. (24),(25) we also know this is tight. In summary
to reach a certain error threshold, T must be at least as large
as log

1

� for every regime.

Another key contribution of this work is providing finite
time guarantees for a general distribution of eigenvalues. A
major hurdle towards applying Theorem 1 to the general
case is the mixing between separate components (corre-
sponding to stable, marginally stable or explosive). Despite
these difficulties we provide error bounds where each com-
ponent, stable, marginally stable or explosive, has (almost)
the same behavior as Theorem 1. The techniques introduced
here can be used to analyze extensions such as identifica-
tion in the presence of a control input Ut or heavy tailed
distribution of noise (See Sections 15 and 16).
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