
Contrastive Unsupervised Representation Learning

A. Deferred Proofs
A.1. Class Collision Lemma

We prove a general Lemma, from which Lemma 4.4 can be derived directly.

Lemma A.1. Let c 2 C and ` : Rt ! R be either the t-way hinge loss or t-way logistic loss, as defined in Section 2. Let

x, x
+
, x

�
1 , ..., x

�
t be iid draws from Dc. For all f 2 F , let

L
=
un,c(f) = E

x,x+,x�
i

h
`

⇣�
f(x)T

�
f(x+)� f(x�

i)
� t

i=1

⌘i

Then

L
=
un,c(f)� `(~0) c

0
t

p
k⌃(f, c)k2 E

x⇠Dc

[kf(x)k] (13)

where c
0

is a positive constant.

Lemma 4.4 is a direct consequence of the above Lemma, by setting t = 1 (which makes `(0) = 1), taking an expectation
over c ⇠ ⌫ in Equation (13) and noting that Ec⇠⌫ [L=

un,c(f)] = L
=
un(f).

Proof of Lemma A.1. Fix an f 2 F and let zi = f(x)T
�
f(x�

i)� f(x+)
�

and z = maxi2[t] zi. First, we show that
L
=
un,c(f)� `(~0) c

0E[|z|], for some constant c0. Note that E[|z|] = P[z � 0]E[z|z � 0] + P[z 0]E[�z|z 0] � P[z �
0]E[z|z � 0].

t-way hinge loss: By definition `(v) = max{0, 1+maxi2[t]{�vi}}. Here, L=
un,c(f) = E[(1+z)+] E[max{1+z, 1}] =

1 + P[z � 0]E[z|z � 0] 1 + E[|z|].

t-way logistic loss: By definition `(v) = log2(1 +
Pt

i=1 e
�vi), we have L

=
un,c(f) = E[log2(1 +

P
i e

zi)] E[log2(1 +
te

z)] max{ z
log 2 + log2(1 + t), log2(1 + t)} = P[z�0]E[z|z�0]

log 2 + log2(1 + t) E[|z|]
log 2 + log2(1 + t).

Finally, E[|z|] E[maxi2[t] |zi|] tE[|z1|]. But,

E[|z1|] = Ex,x+,x�
1

⇥ ��f(x)T
�
f(x�

1)� f(x+)
��� ⇤

 Ex

2

4kf(x)k

vuutEx+,x�
1

" ✓
f(x)T

kf(x)k
�
f(x�

1)� f(x+)
�◆2

#3

5
p
2
p
k⌃(f, c)k2 E

x⇠Dc

[kf(x)k]

A.2. Proof of Lemma 5.1

Fix an f 2 F and suppose that within each class c, f is �2-subgaussian in every direction. 7 Let µc = E
x⇠Dc

[f(x)]. This

means that for all c 2 C and unit vectors v, for x ⇠ Dc, we have that vT (f(x) � µc) is �2-subgaussian. Let ✏ > 0 and
� = 1 + 2R�

p
2 logR+ log 3/✏. 8 Consider fixed c

+
, c

�
, x and let f(x)T (f(x�)� f(x+)) = µ+ z, where

µ = f(x)T (µc� � µc+) and z = f(x)T
�
f(x�)� µc�

�
� f(x)T

�
f(x+)� µc+

�

For x+ ⇠ D+
c , x� ⇠ D�

c independently, z is the sum of two independent R2
�
2-subgaussians (x is fixed), so z is 2R2

�
2-

subgaussian and thus p = Pr[z � � � 1] e
� 4R2�2(2 log R+log 3/✏)

4R2�2 = ✏
3R2 . So, Ez[(1 + µ + z)+] (1 � p)(� + µ)+ +

p(2R2 + 1) �(1 + µ
�)+ + ✏ (where we used that µ+ z 2R2). By taking expectation over c+, c� ⇠ ⇢

2, x ⇠ Dc+ we

7A random variable X is called �
2-subgaussian if E[e�(X�E[X])] e

�2�2/2, 8� 2 R. A random vector V 2 Rd is �2-subgaussian in
every direction, if 8u 2 Rd

, ||u|| = 1, the random variable hu, V i is �2-subgaussian.
8We implicitly assume here that R � 1, but for R < 1, we just set � = 1 + 2R�

p
log 3/✏ and the same argument holds.

Contrastive Unsupervised Representation Learning

have

L
6=
un(f) E

c+,c�⇠⇢2

x⇠Dc+

"
�

✓
1 +

f(x)T (µc� � µc+)

�

◆

+

����c
+ 6= c

�

#
+ ✏

= � E
c+,c�⇠⇢2

"
1

2
E

x⇠Dc+

"✓
1 +

f(x)T (µc� � µc+)

�

◆

+

#
+

1

2
E

x⇠Dc�

"✓
1 +

f(x)T (µc+ � µc�)

�

◆

+

����c
+ 6= c

�

#
+ ✏

= � E
c+,c�⇠⇢2

⇥
L
µ
�,sup({c+, c�}, f)

��c+ 6= c
�⇤+ ✏

(14)

where L
µ
�,sup({c+, c�}, f) is Lµ

sup({c+, c�}, f) when `�(x) = (1 � x/�)+ is the loss function. Observe that in 14 we
used that DT are uniform for binary T , which is an assumption we work with in section 4, but we remove it in section 5.
The proof finishes by observing that the last line in 14 is equal to �L

µ
�,sup(f) + ✏.

A.3. Generalization Bound

We first state the following general Lemma in order to bound the generalization error of the function class F on the
unsupervised loss function Lun(·). Lemma 4.2 can be directly derived from it.
Lemma A.2. Let ` : Rk ! R be ⌘-Lipschitz and bounded by B. Then with probability at least 1� � over the training set

S = {(xj , x
+
j , x

�
j1, . . . , x

�
jk)}Mj=1, for all f 2 F

Lun(f̂) Lun(f) +O

0

@⌘R
p
kRS(F)

M
+B

s
log 1

�

M

1

A (15)

where

RS(F) = E
�⇠{±1}(k+2)dM

"
sup
f2F

h�, f|Si
#

(16)

and f|S =
⇣
ft(xj), ft(x

+
j), ft(x

�
j1), . . . , , ft(x

�
jk)
⌘
j2[M]
t2[d]

Note that for k + 1-way classification, for hinge loss we have ⌘ = 1 and B = O(R2), while for logistic loss ⌘ = 1 and
B = O(R2 + log k). Setting k = 1, we get Lemma 4.2. We now prove Lemma A.2.

Proof of Lemma A.2. First, we use the classical bound for the generalization error in terms of the Rademacher complexity
of the function class (see (Mohri et al., 2018) Theorem 3.1). For a real function class G whose functions map from a set Z
to [0, 1] and for any � > 0, if S is a training set composed by M iid samples {zj}Mj=1, then with probability at least 1� �

2 ,
for all g 2 G

E[g(z)]
1

M

MX

j=1

g(zi) +
2RS(G)

M
+ 3

s
log 4

�

2M
(17)

where RS(G) is the usual Rademacher complexity. We apply this bound to our case by setting Z = X k+2, S is our training
set and the function class is

G =

⇢
gf (x, x

+
, x

�
1 , ..., x

�
k) =

1

B
`
�
{f(x)T

�
f(x+)� f(x�

i)
�
}ki=1

� ���f 2 F
�

(18)

We will show that for some universal constant c, RS(G) c
⌘R

p
k

B RS(F) or equivalently

E
�⇠{±1}M

"
sup
f2F

⌦
�, (gf)|S

↵
#
 c

⌘R
p
k

B
E

�⇠{±1}d(k+2)M

"
sup
f2F

⌦
�, f|S

↵
#

(19)

Contrastive Unsupervised Representation Learning

where (gf)|S = {gf (xj , x
+
j , x

�
j1, ..., x

�
jk)}Mj=1. To do that we will use the following vector-contraction inequality.

Theorem A.3. [Corollary 4 in (Maurer, 2016)] Let Z be any set, and S = {zj}Mj=1 2 Z
M

. Let eF be a class of functions

f̃ : Z ! Rn
and h : Rn ! R be L-Lipschitz. For all f̃ 2 eF , let gf̃ = h � f̃ . Then

E
�⇠{±1}M

"
sup
f̃2 eF

D
�, (gf̃)|S

E#

p
2L E

�⇠{±1}nM

"
sup
f̃2 eF

D
�, f̃|S

E#

where f̃|S =
⇣
f̃t(zj)

⌘

t2[n],j2[M]
.

We apply Theorem A.3 to our case by setting Z = X k+2, n = d(k + 2) and

eF =
n
f̃(x, x+

, x
�
j1, ..., x

�
jk) = (f(x), f(x+), f(x�

j1), ..., f(x
�
jk))|f 2 F

o

We also use gf̃ = gf where f̃ is derived from f as in the definition of eF . Observe that now A.3 is exactly in the form of 19 and

we need to show that L cp
2
⌘R

p
k

B for some constant c. But, for z = (x, x+
, x

�
1 , ..., x

�
k), we have gf̃ (z) =

1
B `(�(f̃(z)))

where � : R(k+2)d ! Rk and �
�
(vt, v

+
t , v

�
t1, ..., v

�
tk)t2[d]

�
=
�P

t vt(v
+
t � v

�
ti)
�
i2[k]

. Thus, we may use h = 1
B ` � � to

apply Theorem A.3.

Now, we see that � is
p
6kR-Lipschitz when

P
t v

2
t ,
P

t(v
+
t)

2
,
P

t(v
�
tj)

2 R
2 by computing its Jacobian. Indeed, for all

i, j 2 [k] and t 2 [d], we have @�i

@vt
= v

+
t � v

�
ti , @�i

@v+
t

= vt and @�i

@v�
tj

= �vt1{i = j}. From triangle inequaltiy, the Frobenius

norm of the Jacobian J of � is

||J ||F =

sX

i,t

(v+t � v
�
ti)

2 + 2k
X

t

v2t
p
4kR2 + 2kR2 =

p
6kR

Now, taking into account that ||J ||2 ||J ||F , we have that � is
p
6kR-Lipschitz on its domain and since ` is ⌘-Lipschitz,

we have L
p
6⌘R

p
k

B .

Now, we have that with probability at least 1� �
2

Lun(f̂) bLun(f̂) +O

0

@⌘R
p
kRS(F)

M
+B

s
log 1

�

M

1

A (20)

Let f⇤ 2 argminf2F Lun(f). With probability at least 1� �
2 , we have that bLun(f⇤) Lun(f⇤)+3B

q
log 2

�
2M (Hoeffding’s

inequality). Combining this with Equation (20), the fact that bLun(f̂) bLun(f⇤) and applying a union bound, finishes the
proof.

A.4. Proof of Proposition 6.2

By convexity of `,

`

✓
f(x)T

✓P
i f(x

+
i)

b
�
P

i f(x
�
i)

b

◆◆
= `

1

b

X

i

f(x)T
�
f(x+

i)� f(x�
i)
�
!

 1

b

X

i

`
�
f(x)T

�
f(x+

i)� f(x�
i)
��

Thus,

L
block
un (f) = E

x,x+
i

x�
i

`

✓
f(x)T

✓P
i f(x

+
i)

b
�
P

i f(x
�
i)

b

◆◆�
 E

x,x+
i

x�
i

"
1

b

X

i

`
�
f(x)T

�
f(x+

i)� f(x�
i)
��
#
= Lun(f)

Contrastive Unsupervised Representation Learning

The proof of the lower bound is analogous to that of Lemma 4.3.

B. Results for k Negative Samples
B.1. Formal theorem statement and proof

We now present Theorem B.1 as the formal statement of Theorem 6.1 and prove it. First we define some necessary quantities.

Let (c+, c�1 , . . . , c
�
k) be k + 1 not necessarily distinct classes. We define Q(c+, c�1 , . . . , c

�
k) to be the set of distinct classes

in this tuple. We also define I
+(c�1 , ..., c

�
k) = {i 2 [k] | c�i = c

+} to be the set of indices where c
+ reappears in the

negative samples. We will abuse notation and just write Q, I+ when the tuple is clear from the context.

To define L
6=
un(f) consider the following tweak in the way the latent classes are sampled: sample c

+
, c

�
1 , . . . , c

�
k ⇠ ⇢

k+1

conditioning on |I+| < k and then remove all c�i , i 2 I
+. The datapoints are then sampled as usual: x, x+ ⇠ D2

c+ and
x
�
i ⇠ Dc�i

, i 2 [k], independently.

L
6=
un(f) := E

c+,c�i
x,x+,x�

i

h
`

⇣�
f(x)T

�
f(x+)� f(x�

i)
�

i/2I+

⌘ ���|I+| < k

i

which always contrasts points from different classes, since it only considers the negative samples that are not from c
+.

The generalization error is 9

GenM = O

0

@R

p
k
RS(F)

M
+ (R2 + log k)

s
log 1

�

M

1

A

were RS(F) is the extension of the definition in Section 4: RS(F) = E
�⇠{±1}(k+2)dM

⇥
supf2F h�, f|Si

⇤
, where f|S =

⇣
ft(xj), ft(x

+
j), ft(x

�
j1), . . . , , ft(x

�
jk)
⌘

j2[M],t2[d]
.

For c+, c�1 , ..., c
�
k ⇠ ⇢

k+1, let ⌧k = P[I+ 6= ;] and ⌧
0 = P[c+ = c

�
i , 8i]. Observe that ⌧1, as defined in Section 4, is

P[c+ = c
�
1]. Let pmax(T) = maxc DT (c) and

⇢
+
min(T) = min

c2T
Pc+,c�i ⇠⇢k+1

�
c
+ = c|Q = T , I

+ = ;
�

In Theorem B.1 we will upper bound the following quantity: E
T ⇠D

⇢+
min(T)

pmax(T) L
µ
sup(T , f̂)

�
(D was defined in Section 6.1).

Theorem B.1. Let f̂ 2 argminf2F
bLun(f). With probability at least 1� �, for all f 2 F

E
T ⇠D

⇢
+
min(T)

pmax(T)
L
µ
sup(T , f̂)

�
 1� ⌧

0

1� ⌧k
L
6=
un(f) + c

0
k

⌧1

1� ⌧k
s(f) +

1

1� ⌧k
GenM

where c
0

is a constant.

Note that the definition of s(f) used here is defined in Section 4

Proof. First, we note that both hinge and logistic loss satisfy the following property: 8I1, I2 such that I1 [I2 = [t] we have
that

`({vi}i2I1) `({vi}i2[t]) `({vi}i2I1) + `({vi}i2I2) (21)

We now prove the Theorem in 3 steps. First, we leverage the convexity of ` to upper bound a supervised-type loss with the
unsupervised loss Lun(f) of any f 2 F . We call it supervised-type loss because it also includes degenerate tasks: |T | = 1.

9The log k term can be made O(1) for the hinge loss.

Contrastive Unsupervised Representation Learning

Then, we decompose the supervised-type loss into an average loss over a distribution of supervised tasks, as defined in the
Theorem, plus a degenerate/constant term. Finally, we upper bound the unsupervised loss Lun(f) with two terms: L 6=

un(f)
that measures how well f contrasts points from different classes and an intraclass deviation penalty, corresponding to s(f).

Step 1 (convexity): When the class c is clear from context, we write µ̂c = E
x⇠c

[f̂(x)]. Recall that the sampling procedure for

unsupervised data is as follows: sample c
+
, c

�
1 , ..., c

�
k ⇠ ⇢

k+1 and then x, x
+ ⇠ D2

c+ and x
�
i ⇠ Dc�i

, i 2 [k]. So, we have

Lun(f̂) = E
c+,c�i ⇠⇢k+1

x,x+⇠D2
c+

x�
i ⇠D

c�i

`

✓n
f̂(x)T

⇣
f̂(x+)� f̂(x�

i)
⌘ok

i=1

◆�

= E
c+,c�i ⇠⇢k+1

x⇠Dc+

E
x+⇠Cc+

x�
i ⇠D

c�i

`

✓n
f̂(x)T

⇣
f̂(x+)� f̂(x�

i)
⌘ok

i=1

◆�
� E

c+,c�i ⇠⇢k+1

x⇠Dc+

`

✓n
f̂(x)T

⇣
µ̂c+ � µ̂c�i

⌘ok

i=1

◆�

(22)

where the last inequality follows by applying the usual Jensen’s inequality and the convexity of `. Note that in the upper
bounded quantity, the c

+
, c

�
1 , ..., c

�
k don’t have to be distinct and so the tuple does not necessarily form a task.

Step 2 (decomposing into supervised tasks) We now decompose the above quantity to handle repeated classes.

E
c+,c�i ⇠⇢k+1

x⇠Dc+

`

✓n
f̂(x)T

⇣
µ̂c+ � µ̂c�i

⌘ok

i=1

◆�

� (1� ⌧k) E
c+,c�i ⇠⇢k+1

x⇠Dc+

"
`

✓n
f̂(x)T

⇣
µ̂c+ � µ̂c�i

⌘ok

i=1

◆ �����I
+ = ;

#
+ ⌧k E

c+,c�i ⇠⇢k+1

[`(0, ..., 0| {z }
|I+| times

)|I+ 6= ;]

� (1� ⌧k) E
c+,c�i ⇠⇢k+1

x⇠Dc+

"
`

 n
f̂(x)T (µ̂c+ � µ̂c)

o
c2Q
c 6=c+

!�����I
+ = ;

#
+ ⌧k E

c+,c�i ⇠⇢k+1

h
`|I+|(~0)

��� I+ 6= ;
i

(23)

where `t(~0) = `(0, . . . , 0) (t times). Both inequalities follow from the LHS of Equation (21). Now we are closer to our
goal of lower bounding an average supervised loss, since the first expectation in the RHS has a loss which is over a set of
distinct classes. However, notice that this loss is for separating c

+ from Q(c+, c�1 , ..., c
�
k) \ {c+}. We now proceed to a

symmetrization of this term to alleviate this issue.

Recall that in the main paper, sampling T from D is defined as sampling the (k+1)-tuple from ⇢
k+1 conditioned on I

+ = ;
and setting T = Q. Based on this definition, by the tower property of expectation, we have

E
c+,c�i ⇠⇢k+1

x⇠Dc+

"
`

 n
f̂(x)T (µ̂c+ � µ̂c)

o
c2Q
c 6=c+

!�����I
+ = ;

#

= E
T ⇠D

E
c+,c�i ⇠⇢k+1

x⇠Dc+

h
`

⇣n
f̂(x)T

�
µ̂c+ � µ̂c

�o
c2Q
c 6=c+

⌘���Q = T , I
+ = ;

i

= E
T ⇠D

E
c+⇠⇢+(T)
x⇠Dc+

h
`

⇣n
f̂(x)T

�
µ̂c+ � µ̂c

�o
c2T
c 6=c+

⌘i

(24)

where ⇢
+(T) is the distribution of c+ when (c+, c�1 , ..., c

�
k) are sampled from ⇢

k+1 conditioned on Q = T and I
+ = ;.

Recall that ⇢+min(T) from the theorem’s statement is exactly the minimum out of these |T | probabilities. Now, to lower
bound the last quantity with the LHS in the theorem statement, we just need to observe that for all tasks T

Contrastive Unsupervised Representation Learning

E
c+⇠⇢+(T)
x⇠Dc+

h
`

⇣n
f̂(x)T

�
µ̂c+ � µ̂c

�o
c2T
c 6=c+

⌘i

� ⇢
+
min(T)

pmax(T)
E

c+⇠DT
x⇠Dc+

h
`

⇣n
f̂(x)T

�
µ̂c+ � µ̂c

�o
c2T
c 6=c+

⌘i

=
⇢
+
min(T)

pmax(T)
Lsup(T , f̂)

(25)

By combining this with Equations (22), (23), (25) we get

(1� ⌧k) E
T ⇠D

"
⇢
+
min(T)

pmax(T)
Lsup(T , f̂)

#
 Lun(f̂)� ⌧k E

c+,c�i ⇠⇢k+1

h
`|I+|(~0)

��� I+ 6= ;
i

(26)

Now, by applying Lemma A.2, we bound the generalization error: with probability at least 1� �, 8f 2 F

Lun(f̂) Lun(f) +GenM (27)

However, Lun(f) cannot be made arbitrarily small. One can see that for all f 2 F , Lun(f) is lower bounded by the second
term in Equation (22), which cannot be made arbitrarily small as ⌧k > 0.

Lun(f) � E
c+,c�i ⇠⇢k+1

x,x+⇠Dc+

x�
i ⇠D

c�i

h
`

⇣�
f(x)T

�
f(x+)� f(x�

i)
�

i2I+

⌘i
� ⌧ E

c+,c�i ⇠⇢k+1

h
`|I+|(~0)

��� I+ 6= ;
i

(28)

where we applied Jensen’s inequality. Since ⌧k is not 0, the above quantity can never be arbitrarily close to 0 (no matter how
rich F is).

Step 3 (Lun decomposition) Now, we decompose Lun(f) by applying the RHS of Equation (21)

Lun(f) E
c+,c�i ⇠⇢k+1

x,x+⇠D2
c+

x�
i ⇠D

c�i

h
`

⇣n
f(x)T

�
f(x+)� f(x�

i)
�o

i/2I+

⌘
+ `

⇣n
f(x)T

�
f(x+)� f(x�

i)
�o

i2I+

⌘i
(29)

= E
c+,c�i ⇠⇢k+1

x,x+⇠D2
c+

x�
i ⇠D

c�i
, i/2I+

h
`

⇣n
f(x)T

�
f(x+)� f(x�

i)
�o

i/2I+

⌘i
+ E

c+,c�i ⇠⇢k+1

x,x+⇠D2
c+

x�
i ⇠D

c�i
, i2I+

h
`

⇣�
f(x)T

�
f(x+)� f(x�

i)
�

i2I+

⌘i
(30)

= (1� ⌧
0) E

c+,c�i ⇠⇢k+1

x,x+⇠D2
c+

x�
i ⇠D

c�i
,i /2I+

h
`

⇣n
f(x)T

�
f(x+)� f(x�

i)
�o

i/2I+

⌘���|I+| < k

i

+⌧k E
c+,c�i ⇠⇢k+1

x,x+⇠D2
c+

x�
i ⇠D

c�i
, i2I+

"
`

⇣�
f(x)T

�
f(x+)� f(x�

i)
�

i2I+

⌘ �����I
+ 6= ;

(31)

Observe that the first term is exactly (1� ⌧
0)L 6=

un(f). Thus, combining (26), (27) and (31) we get

Contrastive Unsupervised Representation Learning

(1� ⌧k) E
T ⇠D

"
⇢
+
min(T)

pmax(T)
Lsup(T , f̂)

#
 (1� ⌧

0)L 6=
un(f) +GenM

+ ⌧k E
c+,c�i ⇠⇢k+1

"

E
x,x+⇠D2

c+

x�
i ⇠D

c�i
, i2I+

h
`

⇣n
f(x)T

�
f(x+)� f(x�

i)
�o

i2I+

⌘i
� `|I+|(~0)

�����I
+ 6= ;

#

| {z }
�(f)

(32)

From the definition of I+, c�i = c
+, 8i 2 I

+. Thus, from Lemma A.1, we get that

�(f) c
0 E
c+,c�i ⇠⇢k+1

|I+|

p
k⌃(f, c)k2 E

x⇠Dc

[kf(x)k]
��� I+ 6= ;

�
(33)

for some constant c0.

Let u be a distribution over classes with u(c) = Pc+,c�i ⇠⇢k+1 [c+ = c|I+ 6= ;] and it is easy to see that u(c) / ⇢(c)
�
1�

(1� ⇢(c))k
�

By applying the tower property to Equation (33) we have

�(f) c
0 E
c⇠u

"

E
c+,c�i ⇠⇢k+1

⇥
|I+|

��c+ = c, I
+ 6= ;

⇤ p
k⌃(f, c)k2 E

x⇠Dc

[kf(x)k]
#

(34)

But,

E
c+,c�i ⇠⇢k+1

⇥
|I+|

��c+ = c, I
+ 6= ;

⇤
=

kX

i=1

Pc+,c�i ⇠⇢k+1

�
c
�
i = c

+
��c+ = c, I

+ 6= ;
�

= kPc+,c�i ⇠⇢k+1

�
c
�
1 = c

+
��c+ = c, I

+ 6= ;
�

= k

Pc+,c�i ⇠⇢k+1

�
c
�
1 = c

+ = c
�

Pc+,c�i ⇠⇢k+1

�
c+ = c, I+ 6= ;

�

= k
⇢
2(c)

⇢(c)
�
1� (1� ⇢(c))k

� = k
⇢(c)

1� (1� ⇢(c))k

(35)

Now, using the fact that ⌧k = 1�
P

c0 ⇢(c
0)(1� ⇢(c0))k =

P
c0 ⇢(c

0)
�
1� (1� ⇢(c0))k

�
and ⌧1 =

P
c ⇢

2(c),

⌧k

1� ⌧k
�(f) ⌧k

1� ⌧k
c
0 E
c⇠u

k

⇢(c)

1� (1� ⇢(c))k
p

k⌃(f, c)k2 E
x⇠Dc

[kf(x)k]
�

= c
0
k

⌧k

1� ⌧k

X

c

⇢
2(c)P

c0 ⇢(c
0) (1� (1� ⇢(c0))k)

p
k⌃(f, c)k2 E

x⇠Dc

[kf(x)k]

= c
0
k

⌧1

1� ⌧k
E

c⇠⌫

p
k⌃(f, c)k2 E

x⇠Dc

[kf(x)k]
�
= c

0
k

⌧1

1� ⌧k
s(f)

(36)

and we are done.

B.2. Competitive Bound

As in Section 5.2, we prove a competitive type of bound, under similar assumptions. Let `�(v) = max{0, 1 +
maxi{�vi}/�}, v 2 Rk, be the multiclass hinge loss with margin � and for any T let Lµ

�,sup(T , f) be L
µ
sup(T , f)

when `� is used as loss function. For all tasks T , let ⇢0+(T) is the distribution of c+ when (c+, c�1 , ..., c
�
k) are sampled

from ⇢
k+1 conditioned on Q = T and |I+| < k. Also, let ⇢0+max(T) be the maximum of these |T | probabilities and

pmin(T) = minc2T DT (c).

Contrastive Unsupervised Representation Learning

We will show a competitive bound against the following quantity, for all f 2 F : E
T ⇠D0

h
⇢0+

max(T)
pmin(T) L

µ
�,sup(T , f)

i
, where

D0 is defined as follows: sample c
+
, c

�
1 , ..., c

�
k ⇠ ⇢

k+1, conditioned on |I+| < k. Then, set T = Q. Observe that when
I
+ = ; with high probability, we have D0 ⇡ D.

Lemma B.2. For all f 2 F suppose the random variable f(X), where X ⇠ Dc, is �
2(f)-subgaussian in every direction

for every class c and has maximum norm R(f) = maxx2X kf(x)k. Let bf 2 argminf2F
bLun(f). Then for all ✏ > 0, with

probability at least 1� �, for all f 2 F

E
T ⇠D

⇢
+
min(T)

pmax(T)
L
µ
sup(T , f̂)

�
 ↵�(f) E

T ⇠D0

"
⇢
0+
max(T)

pmin(T)
Lµ
�,sup(T , f)

#
+ �s(f) + ⌘GenM + ✏

where �(f) = 1 + c
0
R(f)�(f)(

p
log k +

q
log R(f)

✏), c0 is some constant, ↵ = 1�⌧ 0

1�⌧k
, � = k

⌧1
1�⌧k

and ⌘ = 1
1�⌧k

.

Proof. We will show that 8f 2 F

L
6=
un(f) �(f) E

T ⇠D0

"
⇢
0+
max(T)

pmin(T)
Lµ
�,sup(T , f)

#
(37)

and the Lemma follows from Theorem 6.1. Now, we fix an ✏ > 0, an f 2 F and we drop most of the arguments f in the rest
of the proof. Also, fix c

+
, c

�
1 . . . c

�
k , x and let t = k � |I+|. We assume without loss of generality, that c+ 6= c

�
i , 8i 2 [t].

Now,
max
i2[t]

f(x)T (f(x�
i)� f(x+)) µ+max

i
z
�
i � z

+ (38)

where µ = maxi2[t] f(x)
T (µc�i

� µc+), z�i = f(x)T (f(x�
i) � µc�i

) and z
+ = f(x)T (f(x+) � µc+). zi are cen-

tered �
2
R

2-subgaussian, so from standard properties of subgaussian random variables P[maxi z
�
i �

p
2�R

p
log t +p

2c1�R
p
logR/✏] (✏/R)c1 (again we consider here the case where R � 1 and for R < 1, the same arguments hold

but with removing R from the log). z+ is also centered �
2
R

2-subgaussian, so P[z+ �
p
2c1�R

p
logR/✏] (✏/R)c1 .

Let � = 1 + c
0
�R(

p
log t +

p
logR/✏) for appropriate constant c0. By union bound, we have p = P[maxi z

�
i � z

+ �
� � 1] 2(✏/R)c1 . Thus, Ez+,z�

i
[(1 + µ+maxi z

�
i � z

+)+] (1� p)(µ+ �)+ + p(2R2 + 1) �(1 + µ/�)+ + ✏ (for
appropriate constant c1). By taking expectation over c+, c�i ⇠ ⇢

k+1, conditioned on |I+| < k , and over x ⇠ Dc+ we get

L
6=
un(f) � E

c+,c�i ⇠⇢k+1

x⇠Dc+

"✓
1 +

maxc2Q,c 6=c+ f(x)T (µc � µc+)

�

◆

+

����|I
+| < k

#

= � E
T ⇠D0

E
c+,c�i ⇠⇢k+1

x⇠Dc+

"✓
1 +

maxc2Q,c 6=c+ f(x)T (µc � µc+)

�

◆

+

����Q = T , |I+| < k

#

= � E
T ⇠D0

E
c+⇠⇢0+(T)

x⇠Dc+

"✓
1 +

maxc2T,c 6=c+ f(x)T (µc � µc+)

�

◆

+

#
 � E

T ⇠D0

"
⇢
0+
max(T)

pmin(T)
Lµ
�,sup(T , f)

#

(39)

C. Examples for Section 6.2

Here, we illustrate via examples two ways in which the increase of k can lead to suboptimal f̂ . We will consider the hinge
loss as the loss function, while the examples carry over trivially for logistic loss.

1. The first example is the case where even though there exist representations in F that can separate every class, the
suboptimal representation is picked by the algorithm when k = ⌦(|C|). Let C = {ci}i2[n] where for each class, Dci is

Contrastive Unsupervised Representation Learning

uniform over two points {x1
i , x

2
i }. Let ei be the indicator vectors in Rn and let the class F consists of {f0, f1} with

f0, f1 : X 7! Rn where f1(x1
i) = 3/2rei and f1(x2

i) = 1/2rei for all i, for some r > 0, and f0 = ~0. Finally, ⇢ is
uniform over C. Now, when the number of negative samples is ⌦(n), the probability that 9j 2 [k] such that c+ = c

�
j is

constant, and therefore Lun(f) = ⌦(r2) > 1 = Lun(f0) when r is large. This means that despite Lsup(C, f1) = 0,
the algorithm will pick f0 which is a suboptimal representation.

2. We can extend the first example to the case where, even when k = o(|C|), the algorithm picks suboptimal representations.
To do so, we simply ‘replicate’ the first example to create clusters of classes. Formally, let C = {cij}i,j2[n] where for
each class, Dcij is uniform over two points {x1

ij , x
2
ij}. Finally, same as above, let F consist of two functions {f0, f1}.

The function f1 maps f1(x1
ij) = 3/2rei and f1(x2

ij) = 1/2rei for all i, j and f0 = ~0. ⇢ is uniform over C. Now, note
that f1 ‘clutsters’ the n2 classes and their points into n clusters, each along an ei. Thus, it is only useful for contrasting
classes from different clusters. However, note that the probability of intra-cluster collision with k negative samples
is 1 � (1 � 1/n)k. When k = o(n), we have that Lun(f1) = o(1) < 1 = Lun(f0) so the algorithm will pick f1.
However, when k = ⌦(n), Lun(f) = ⌦(r2) > 1 = Lun(f0) and the algorithm will pick the suboptimal representation
f0. Thus, despite |C| = n

2, having more than n negative samples can hurt performance, since even tough f1 cannot
solve all the tasks, the average supervised loss over t-way tasks, t = o(n), is Lsup(f) O(1� (1� 1/n)t�1) = o(1).

D. Controlled Experiments

(a) CIFAR-100 (b) Wiki-3029 (c) Wiki-3029

Figure D.1. Effect of amount of unlabeled data and # of negative samples on unsupervised representations, measured on binary classifica-
tion for CIFAR100 in (a) and on top-1 performance on Wiki-3029 in Fig (b) (top-1 performance is used because avg binary was same for
all k). Fig. (c) shows the dynamics of train/test loss; supervised loss roughly tracks unsupervised test loss, as suggested by Theorem 4.1

To simulate the data generation process described in Section 2, we generate similar pairs (blocks) of data points by sampling
from the same class. Dissimilar pairs (negative samples) are selected randomly. Contrastive learning was done using our
objectives (5), and compared to performance of standard supervised training, with both using the same architecture for
representation f . For the Wiki-3029 experiment, we use a Gated Recurrent Network (GRU) (Chung et al., 2015) with output
dimension 300 trained using dropout 0.3 and fix the word embedding layer with pre-trained GloVe embeddings (Pennington
et al., 2014). For CIFAR-100 we use VGG-16 (Simonyan & Zisserman, 2014) with an additional 512x100 linear layer added
at the end to make the final representations 100 dimensional, The unsupervised model for CIFAR-100 is trained with 500
blocks of size 2 per class with 4 negative samples, and for Wiki-3029 we use 20 blocks of size 10 per class with 8 negative
samples. We test (1) learned representations on average tasks by using the mean classifier and compare to representations
trained using labeled data; (2) the effect of various parameters like amount of unlabeled data (N)10, number of negative
samples (k) and block size (b) on representation quality; (3) whether the supervised loss tracks the unsupervised loss as
suggested by Theorem 4.1; (4) performance of the mean classifier of the supervised model.

Results: These appear in Table D.1. For Wiki-3029 the unsupervised performance is very close to the supervised perfor-
mance in all respects, while for CIFAR-100 the avg-k performance is respectable, rising to good for binary classification.
One surprise is that the mean classifier, central to our analysis of unsupervised learning, performs well also with represen-
tations learned by supervised training on CIFAR-100. Even the mean computed by just 5 labeled samples performs well,
getting within 2% accuracy of the 500 sample mean classifier on CIFAR-100. This suggests that representations learnt by

10If we used M similar blocks of size b and k negative blocks for each similar block, N = Mb(k + 1). In practice, however, we reuse
the blocks for negative sampling and lose the factor of k + 1.

Contrastive Unsupervised Representation Learning

Table D.1. Performance of supervised and unsupervised representations on average k-wise classification tasks (AVG-k) and for comparison,
on full multiclass (TOP-R) which is not covered by our theory. Classifier can have a trained output layer (TR), or the mean classifier (µ) of
Definition 2.1, with µ-5 indicating the mean was computed using only 5 labeled examples.

SUPERVISED UNSUPERVISED
TR µ µ-5 TR µ µ-5

WIKI-3029

AVG-2 97.8 97.7 97.0 97.3 97.7 96.9
AVG-10 89.1 87.2 83.1 88.4 87.4 83.5

TOP-10 67.4 59.0 48.2 64.7 59.0 45.8
TOP-1 43.2 33.2 21.7 38.7 30.4 17.0

CIFAR-100

AVG-2 97.2 95.9 95.8 93.2 92.0 90.6
AVG-5 92.7 89.8 89.4 80.9 79.4 75.7

TOP-5 88.9 83.5 82.5 70.4 65.6 59.0
TOP-1 72.1 69.9 67.3 36.9 31.8 25.0

standard supervised deep learning are actually quite concentrated. We also notice that the supervised representations have
fairly low unsupervised training loss (as low as 0.4), even though the optimization is minimizing a different objective.

To measure the sample complexity benefit provided by contrastive learning, we train the supervised model on just 10%
fraction of the dataset and compare it with an unsupervised model trained on unlabeled data whose mean classifiers are
computed using the same amount of labeled data. We find that the unsupervised model beats the supervised model by almost
4% on the 100-way task and by 5% on the average binary task when only 50 labeled samples are used.

Figure D.1 highlights the positive effect of increasing number of negative samples as well as amount of data used by
unsupervised algorithm. In both cases, using a lot of negative examples stops helping after a point, confirming our suspicions
in Section 6.2. We also demonstrate how the supervised loss tracks unsupervised test loss in Figure D.1c.

