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1. Supplementary results
1.1. Community detection C ∈ {5, 10, 20} results
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Figure 1. Each subplot compares our method to the two reference methods for increasing levels of privacy. The top subplots depict
reconstruction error (lower values are better); the bottom subplots depict held-out reconstruction error (lower values are better).

2. Proof of geometric mechanism as LPLP mechanism
Theorem 1. Let randomized response methodR(·) be the geometric mechanism with parameter α. Then for any positive
integer N , and any pair of observations y, y′ ∈ Y such that ‖y − y′‖1 ≤ N ,R(·) satisfies

P (R(y) ∈ S) ≤ eεP (R(y′) ∈ S) (1)

for all subsets S in the range ofR(·), where

ε = N ln
( 1
α

)
. (2)

Therefore, for any positive integer N , the geometric mechanism with parameter α is an (N, ε)-private randomized response
method with ε = N ln ( 1

α ). If ε′

N ′ =
ε
N , then the geometric mechanism with parameter α is also (N ′, ε′)-private.

Proof. It suffices to show that for any integer-valued vector o ∈ Zd, the following inequality holds for any pair of
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observations y, y′ ∈ Y ⊆ Zd such that ‖y − y′‖1 ≤ N :

exp(−ε) ≤ P (R(y) = o)

P (R(y′) = o)
≤ exp(ε), (3)

where ε = N ln
(
1
α

)
.

Let ν denote a d-dimensional noise vector with elements drawn independently from 2Geo(α). Then,

P (R(y) = o)

P (R(y′) = o)
=

P (ν = o− y)
P (ν = o− y′) (4)

=

∏d
i=1

1−α
1+α α

|oi−yi|∏d
i=1

1−α
1+α α

|oi−y′i|
(5)

= α(
∑d

i=1 |oi−yi|−|oi−y
′
i|). (6)

By the triangle inequality, we also know that for each i,

− |yi − y′i| ≤ |oi − yi| − |oi − y′i| ≤ |yi − y′i|. (7)

Therefore,

− ‖y − y′‖1 ≤
d∑
i=1

(|oi − yi| − |oi − y′i|) ≤ ‖y − y′‖1. (8)

It follows that

α−N ≤ P (R(y) = o)

P (R(y′) = o)
≤ αN . (9)

If ε = N ln
(
1
α

)
, then we recover the bound in equation 3.

3. Proof of two-sided geometric noise as exponentially-randomized Skellam noise
Theorem 2. A two-sided geometric random variable τ ∼ 2Geo(α) can be generated as follows:

τ ∼ Skel(λ(+), λ(−)), λ(∗) ∼ Exp( α
1−α ), (10)

where Exp(·) and Skel(·) are the exponential and Skellam distributions. The latter is the marginal distribution of the
difference τ := g(+)−g(−) of two independent Poisson random variables g(∗) ∼ Pois(λ(∗)), where ∗ ∈ {+,−}.

Proof. A two-sided geometric random variable τ ∼ 2Geo(α) can be generated by taking the difference of two independent
and identically distributed geometric random variables:1

g(+) ∼ Geo(α), g(−) ∼ Geo(α), τ := g(+) − g(−). (11)

The geometric distribution is a special case of the negative binomial distribution, with shape parameter equal to one (Johnson
et al., 2005). Furthermore, the negative binomial distribution can be represented as a mixture of Poisson distributions with a
gamma mixing distribution. We can therefore re-express equation 11 as follows:

λ(+) ∼ Gam(1, α
1−α ), λ

(−) ∼ Gam(1, α
1−α ), g

(+) ∼ Pois(λ(+)), g(−) ∼ Pois(λ(−)), τ := g(+) − g(−). (12)

Finally, a gamma distribution with shape parameter equal to one is an exponential distribution, while the signed difference of
two independent Poisson random variables is marginally a Skellam random variable (Skellam, 1946). We therefore recover
the generative process in equation 10. We visualize the Skellam and two-sided geometric distributions in figure 2.

1A video of Unnikrishna Pillai deriving this is available at https://www.youtube.com/watch?v=V1EyqL1cqTE.

https://www.youtube.com/watch?v=V1EyqL1cqTE
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Figure 2. The two-sided geometric distribution (right) can be obtained by randomizing the parameters of the Skellam distribution (left).
With fixed parameters, the Skellam distribution can be asymmetric and centered at a value other than zero; however, the two-sided
geometric distribution is symmetric and centered at zero. It is also heavy tailed and the discrete analog of the Laplace distribution.

4. Proof of relationship between the Bessel and Skellam distributions
Theorem 3. Consider two Poisson random variables y1 ∼ Pois(λ(+)) and y2 ∼ Pois(λ(−)). Their minimum
m := min{y1, y2} and their difference τ := y1 − y2 are deterministic functions of y1 and y2. However, if not conditioned
on y1 and y2, the random variables m and τ can be marginally generated as follows:

τ ∼ Skel(λ(+), λ(−)), m ∼ Bes
(
|τ |, 2

√
λ(+)λ(−)

)
. (13)

Proof. We begin by writing out the raw joint probability of y1 and y2:

P (y1, y2) = Pois(y1;λ(+))Pois(y2;λ(−)) (14)

=
(λ(+))y1

y1!
e−λ

(+) (λ(−))y2

y2!
e−λ

(−)

(15)

=
(
√
λ(+)λ(−))y1+y2

y1! y2!
e−(λ

(+)+λ(−))

(
λ(+)

λ(−)

)(y1−y2) / 2

. (16)

If y1 ≥ y2, then

P (y1, y2) =
(
√
λ(+)λ(−))y1+y2

Iy1−y2(2
√
λ(+)λ(−)) y1! y2!

e−(λ
(+)+λ(−))

(
λ(+)

λ(−)

)(y1−y2) / 2

Iy1−y2(2
√
λ(+)λ(−)) (17)

= Bes
(
y2; y1 − y2, 2

√
λ(+)λ(−)

)
Skel(y1 − y2;λ(+), λ(−)); (18)

otherwise

P (y1, y2) =
(
√
λ(+)λ(−))y1+y2

Iy2−y1(2
√
λ(+)λ(−)) y1! y2!

e−(λ
(+)+λ(−))

(
λ(−)

λ(+)

)(y2−y1) / 2

Iy2−y1(2
√
λ(+)λ(−)) (19)

= Bes
(
y1; y2 − y1, 2

√
λ(+)λ(−)

)
Skel(y2 − y1;λ(−), λ(+))

= Bes
(
y1;−(y1 − y2), 2

√
λ(+)λ(−)

)
Skel(y1 − y2;λ(+), λ(−)). (20)

If
m := min{y1, y2}, τ := y1 − y2, (21)

then we can change variables using the deterministic relationships

y2 = m, y1 = m+ τ if τ ≥ 0 (22)
y1 = m, y2 = m− τ otherwise. (23)
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The Jacobean can be computed as ∣∣∣∣ ∂y1
∂m

∂y1
∂τ

∂y2
∂m

∂y2
∂τ

∣∣∣∣ = ∣∣∣∣ 1 1
1 0

∣∣∣∣τ≥0 ∣∣∣∣ 1 0
1 −1

∣∣∣∣τ<0

= 1, (24)

so

P (m, τ) = P (y1, y2)

∣∣∣∣ ∂y1
∂m

∂y1
∂τ

∂y2
∂m

∂y2
∂τ

∣∣∣∣
= Bes

(
m; |τ |, 2

√
λ(+)λ(−)

)
Skel(τ ;λ(+), λ(−)). (25)
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