
Discovering Context Effects from Raw Choice Data

A. Proofs of Identifiability
There are three main theorems proven in this section of the appendix. The first two are given in the main text.

Theorem 1. A CDM is identifiable from a dataset D if CD contains comparisons over all choice sets of two sizes k, k′,
where at least one of k, k′ is not 2 or n.

Theorem 2. No rank r CDM, 1 ≤ r ≤ n, is identifiable from a dataset D if CD contains only choices from sets of a single
size.

Theorem 4. A full rank CDM is identifiable from a dataset D if and only if the rank of an integer design matrix G(D),
properly constructed, is n(n− 1)− 1.

We begin with a few definitions and simple facts, providing proofs for clarity. Given these facts, main workhorse for proving
our identifiability theorems is Lemma 2.

Since the CDM parameters are invariant to constant offsets, we choose (for the full rank case) an offset such that∑
x∈X

exp
( ∑
z∈X\x

uxz

)
= 1. (4)

Note that this implies Px,X = exp(
∑
z∈X\x uxz).

Because the CDM is a logit-based model, it will be much easier to work with log probability ratios. To that end, we define,
for a choice set C 3 x,

βx,C = log(Px,C/P̄C), (5)

where P̄C = (
∏
y∈C Py,C)

1
|C| , the geometric average of the probabilities.

Fact 1. Given a choice set C of size s, there is a 1-to-1 mapping between the set of log probability ratios {βx,C : x ∈ C}
and the set of probabilities {Px,C : x ∈ C}.

Proof. Uniquely find βx,C ∀x ∈ C using the mapping in equation (5). Now, for the other direction, observe that
exp βx,C∑

y∈C exp βy,C
=

Px,C/P̄C∑
y∈C Py,C/P̄C

= Px,C ∀x ∈ C.

Hence, statements regarding identifiability between CDM parameters and the β’s can be mapped to statements about
identifiability between CDM parameters and probabilities. It will also be much easier to relate differences in CDM
parameters of the following pattern, uxy − uyx and uxz − uyz ∀x 6= y 6= z, to the β’s. Because CDM is shift invariant,
these differences between parameters uniquely identify the parameters when the offset constraint (4) is applied.

Fact 2. Under the offset constraint (4), CDM parameter differences uxy − uyx and uxz − uyz , ∀x 6= y 6= z, have a 1-to-1
mapping with CDM parameters uxy ∀x 6= y.

Proof. It is immediately obvious that given the parameters, we can uniquely construct the differences. For the other direction,
consider that

uxy = uxy +
1

n− 1
log
( ∑
w∈X

exp
( ∑
z∈X\z

uwz

))
=

1

n− 1
log
( ∑
w∈X

exp
( ∑
z∈X\w

uwz − uxy
))

=
1

n− 1
log
( ∑
w∈X

exp
(

[uwy − uxy]1(w 6= y) +
∑

z∈X\w,y

uwz − uxy
))

=
1

n− 1
log
( ∑
w∈X

exp
(

[uwy − uxy]1(w 6= y) +
∑

z∈X\w,y

[uzy − uxy] + [uyz − uzy] + [uwz − uyz]
))
.
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Here the first equality follows because the second term on the right hand size is 0, by the offset constraint (4). The
remaining equalities are simply algebraic manipulations. The last equality is purely a function of differences following the
aforementioned statement, therefore proving the claim.

Hence, statements regarding identifiability between CDM parameter differences of the pattern uxy − uyx and uxz − uyz
∀x 6= y 6= z and the β’s can be mapped to statements about identifiability between CDM parameters and probabilities.

We now link the above facts with the following: the β’s can be conveniently represented in terms of these CDM parameter
differences. Using u ∈ Rn(n−1) to refer to a vectorization of the parameters, with elements of the vector indexed as we have
so far (i.e., uxy finds the subset of (n − 1) entries associated with item x, and finds the contextual role of item y within
those entries), we have the following fact.

Fact 3. For any set C and any x ∈ C, βx,C = 1
|C|
∑
y∈C\x

(
[uxy − uyx] +

∑
z∈C\{x,y}[uxz − uyz]

)
.

Proof. From the definition of βx,C in equation (5) we have:

βx,C = log(
Px,C
P̄C

)

=
∑
z∈C\x

uxz −
1

|C|
∑
y∈C

∑
z∈C\y

uyz

=
1

|C|
∑
y∈C\x

(
[uxy − uyx] +

∑
z∈C\{x,y}

[uxz − uyz]
)

Here the final equality is a rearrangement of terms into the parameter differences of interest.

We introduce an indicator vector gx,C ∈ Zn(n−1) that contains non-zero values at the relevant indices of u so that the final
equality can be rewritten as

1

|C|
∑
y∈C\x

(
[uxy − uyx] +

∑
z∈C\{x,y}

[uxz − uyz]
)

=
1

|C|
gTx,Cu. (6)

Lastly, we state and prove the following lemma, which will serve as the departure point for the three proofs. Consider a
collection CD of unique subsets of the universe X of sizes 2 or greater, and let Ω =

∑
C∈CD |C| be the sum of the sizes of

all the sets. We then refer to a system design matrix G(CD) ∈ ZΩ×n(n−1) as the linear system relating the parameters u to
the scaled log probability ratios |C|βx,C . We construct such a matrix by concatenating, for each set C ∈ CD, for every item
x ∈ C, the indicator vector gTx,C , as defined in (6), as a row.

Lemma 2. The full rank CDM is identifiable up to a shift for collection CD iff rank(G(CD)) = n(n− 1)− 1.

Proof. Clearly, rank(G(CD)) ≤ n(n − 1) − 1, due to the shift invariance of u. That is, G is only specified in terms of
differences of elements in u, and hence null(G(CD)) 3 1.

Suppose first that rank(G(CD)) = n(n− 1)− 1. Then, for two vectors u1, u2 ∈ Rn(n−1), if u1 6= α1 + u2 for any α ∈ R
then β1 = C−1Gu1 6= Gu2 = C−1β2, where C−1 ∈ RΩ×Ω is the diagonal matrix with values are 1

|C| ,∀C ∈ CD (which
undoes the scaling of the scaled log probability ratios). Since Fact 1 states that β’s have a unique mapping with the choice
system probabilities over the collection CD, u vectors are identifiable up to a shift for a given set of probabilities over the
collection CD.

Suppose now that rank(G(CD)) < n(n− 1)− 1. Then, there exists some vector v ∈ null(G(CD)), v 6= α1 for any α, for
which C−1G(CD)(u1) = C−1G(CD)(u1 + v). Again since the β’s uniquely map to the probabilities, there exist two u
vectors different beyond a shift that map to the same set of choice system probabilities. Hence, u is not identifiable up to a
shift.

We add as an additional note that under the offset constraint (4), the CDM parameters are uniquely identifiable, following the
analysis of Fact 2. Now we proceed to proving the individual theorems, each of which essentially boils down to analyzing
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the rank of the system design matrix G(CD) of collections CD comprised of sets of a single size, of collections CD comprised
of sets of multiple sizes, and formalizing the calculation of G(CD) for a given dataset.

A.1. Proof of Theorem 1

Proof. It is sufficient to show that the statement holds for the full rank case, as further constraining the parameters using rank
conditions does not affect identifiability. Note that the statement of the theorem is a sufficient condition for identifiability,
and for low-rank CDMs in particular it is possibly an overly strong requirement.

Consider two different subset sizes s and t, and assume wlog that t is within [3, n−1]. For any {x, y}, considerCwz 3 {x, y},
|Cwz| = t− 1, indexed by items {w, z} ∈ X , {w, z} /∈ Cwz . Let Awz = Cwz ∪ {w} and Bwz = Cwz ∪ {z}. Using βCxy
as shorthand for βx,C − βy,C ., we have that

βAwz
xy − βBwz

xy = [uxw − uyw]− [uxz − uyz].

Now, if s < t, Take D 3 {x, y} of size s and A (of size t) such that D ⊂ A. Now,

βAxy − βDxy =
∑

q∈A\D

[uxq − uyq].

Then, we can solve for [uxw − uyw] as follows:

[uxw − uyw] =
1

t− s
(βAxy − βDxy +

∑
q∈A\D

βAwq
xy − βBwq

xy ).

With this relation we see that [uxy − uyx] = βAxy −
∑
q∈A\{x,y}[uxq − uyq].

If s > t, Take D of size s such that A ⊂ D. We then see that βDxy − βAxy =
∑
q∈D\A[uxq − uyq], and as before, we can

solve for [uxw − uyw] as:

[uxw − uyw] =
1

s− t
(βDxy − βAxy +

∑
q∈D\A

βAwq
xy − βBwq

xy ).

With this relation we see that [uxy − uyx] = βDxy −
∑
q∈D\{x,y}[uxq − uyq].

Applying Facts 1 and 2, statements regarding identifiability between CDM parameter differences of the pattern uxy − uyx
and uxz − uyz ∀x 6= y 6= z and the β’s can be mapped to statements about identifiability between CDM parameters and
probabilities. We then conclude that the CDM parameters can be uniquely recovered from probabilities over two choice sets.
Thus, comparisons over all choice sets of two sizes uniquely identify the CDM.

A.2. Proof of Theorem 2

Proof. To prove this claim, we separately consider three conditions on the set size s: s = 2, s = n, and 3 ≤ s ≤ n− 1. For
each case, we first demonstrate the result for the full rank CDM and then show that every low rank CDM suffers from the
same problem.

In terms of notation, we consider a U “matrix”, U ∈ Rn×n, organizing the parameters uxy, ∀x 6= y, with the matrix
diagonal taking on arbitrary unused values. For the low rank case, the U matrix is the dot product of the matrix of target
vectors T ∈ Rn×r and the matrix of context vector C ∈ Rn×r. Here, the diagonal formed by tx · cx can be arbitrary and is
unused. We also use βCxy as shorthand for βx,C − βy,C .

(i) s = 2

For any pair C = {x, y}, βCxy = uxy − uyx. Thus, increasing both uxy and uyx by the same value leaves the pairwise
probabilities unchanged. Thus the CDM parameter U matrix is only specified up to a symmetric matrix A, where U +A
produces the same pairwise probabilities as U .

Any rank r matrix also suffers from the same identifiability issue: consider T +B and C + F , where B = βC + γ1αβT ,
and F = αT + γ2αβC for α, β ∈ R, γ1, γ2 ∈ {0, 1}, γ1 6= γ2. These scalar parameters form a subset of perturbations that
modify the dot product U = TCT only by a symmetric matrix, thereby leaving the pairwise probabilities unchanged.
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(ii) s = n

For the full universe X , βXxy = uxy − uyx +
∑
z∈X\{x,y} uxy − uyx. Consider then any matrix A ∈ Rn×n that has

(A− diag(A))1 = g1, where g is a constant and 1 ∈ Rn×1 is the vector of all ones. This is, any matrix A where the rows
(not including the diagonal) all sum to the same constant. Then U and U +A have the same choice probabilities on the full
universe set.

For the identifiability problem to transfer to the rank r case, we find T + γ1B and C + γ2F where γ1, γ2 ∈ {0, 1}, γ1 6= γ2

such that the perturbation to a U matrix follows the same properties as the matrix A in the full rank case above. We show
how to find such a matrix for the rank 1 case, which is sufficient for all rank r. Consider U = tcT , where t, c ∈ Rn×1. We
may perturb t by a vector b ∈ Rn×1 where bx = g

(cT 1−cx)
, ∀x, for any constant g, as long as (cT 1− cx) 6= 0 ∀x. In case

(cT 1− cy) = 0 for any y, set g = 0, bx = 0 ∀x 6= y, and by to any arbitrary value. The perturbation to U is then bcT , and
we leave the reader to verify ((bcT )− diag(bcT ))1 = g1, thereby not changing the universe probabilities. Similarly, we
may perturb c by a vector f , where fx = g[ 1

n−1

∑
z(

1
tz

)− 1
tx

] if tx 6= 0, ∀x. In case ty = 0 for some y, set g = 0, fx = 0,
∀x 6= y, and fy to any arbitrary value. The perturbation to U is then tT f , and we have ((tfT )− diag(tfT ))1 = g1, thereby
not changing the universe probabilities.

(iii) 3 ≤ s ≤ n− 1

For all other set sizes, we again show the identifiability issue for the full rank case, and show that the null space in
the parameters also transfers over to the rank r case. Consider any C 3 {x, y}, {w, z} /∈ C of size s − 1 for any
{x, y, w, z}. Take Cw = C ∪ {w}, and Cz = C ∪ {z}. Note that we can always identify such sets because we are in
the size regime 3 ≤ s ≤ n − 1. Then, βCw

xy − βCz
xy = [uxw − uyw] − [uxz − uyz]. Thus, given [uxz − uyz] for a single

z, we can set [uxw − uyw] = βCw
xy − βCz

xy + [uxz − uyz], and set [uxy − uyx] = βCz
xy −

∑
q∈Cz\{x,y}[uxq − uyq] =

βCz
xy −

∑
q∈Cz\{x,y}[β

Cz
xy − β

Cq
xy ]− (s− 2)[uxz − uyz] to keep the choice probabilities unchanged. This invariance implies

that the U matrix can be perturbed by the rank-1 matrix a1T where a ∈ Rn×1 is any vector and the choice probabilities are
unchanged.

We can now show that such perturbations to U can be produced in the rank r case by modifiying C. Consider C+ 1bT where
b ∈ Rr×1. Then, U = T (C + 1bT )T = TCT + (Tb)1T , which is a perturbation to U of the proper form. Through these
three cases, we have now shown that every rank r CDM cannot be uniquely identified even when provided all comparisons
of a single choice set size.

A.3. Proof of Theorem 4

Proof. Consider a dataset of the form D = {(xj , Cj)}mj=1 of a decision maker making choices: a datapoint j represents
a decision scenario, and contains Cj , the context provided in that decision, and xj ∈ Cj , the item chosen in the context.
Recall that ΩD =

∑m
j=1 |Cj |. Construct then a matrix G(D) ∈ ZΩD×n(n−1) by concatenating, for every datapoint j, for

every item x ∈ Cj , the indicator vector gTx,Cj
as defined in equation (6) as a row. Denoting CD as the collection of unique

choice sets in dataset D, it is clear that rank(G(D)) = rank(G(CD)), where the latter matrix is defined as in Lemma 2 for
the collection CD. This equality of ranks follows from the fact that the set of unique rows of G(D) are the same as those in
G(CD), and repeated rows do not change the rank of a matrix. Thus, we can directly test whether a dataset results in an
identifiable CDM by testing the rank of G(D).
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B. Convergence proof
We restate and then prove Theorem 3.

Theorem 3. Let u? denote the true CDM model from which data is drawn. Let ûMLE denote the maximum likelihood
solution. Assume CD identifies the CDM. For any u? ∈ UB = {u ∈ Rd : ‖u‖∞ ≤ B, 1

Tu = 0}, and expectation taken over
the dataset D generated by the CDM model,

E
[
‖ûMLE(D)− u?‖22

]
≤ cB,kmax

d− 1

m
,

where kmax refers to the maximum choice set size in the dataset, and cB,kmax is a constant that depends on B, kmax and the
spectrum of the design matrix G(D).

Proof. We describe the sampling process as follows using the same notation as before. Given some true CDM u? ∈ UB , for
each datapoint j ∈ [m] we have the probability of choosing item x from set Cj as

P(yj = x|u?, Cj) =
exp(

∑
z∈Cj\x u

?
xz)∑

y∈Cj
exp(

∑
z∈Cj\y u

?
yz))

.

We now introduce notation that will let us represent the above expression in a more compact manner. Because our datasets
involve choice sets of multiple sizes, we use kj ∈ [kmin, kmax] to denote the choice set size for datapoint j. Extending a
similar concept in (Shah et al., 2016) to the multiple set sizes, and the more complex structure of the CDM, we then define
matrices Ej,kj ∈ Rd×kj , ∀j ∈ [m] as follows: Ej,kj has a column for every item y ∈ Cj (and hence kj columns), and
the column corresponding to item y ∈ Cj has a one at the position of each uyz for z ∈ Cj \ y, and zero otherwise. This
construction allows us to write the familiar expressions

∑
z∈Cj\y uyz , for each y, simply as a single vector-matrix product

uTEj,kj = [
∑
z∈Cj\y1 uy1z,

∑
z∈Cj\y2 uy2z, . . .

∑
z∈Cj\ykj

uykj
z] ∈ R1×kj .

Next, we define a collection of functions Fk : Rk 7→ [0, 1], ∀k ∈ [kmin, kmax] as

Fk([x1, x2, . . . , xk]) =
exp(x1)∑k
l=1 exp(xl)

,

where the numerator always corresponds to the first entry of the input. These functions Fk have several properties that will
become useful later in the proof. First, it is easy to verify that all Fk are shift-invariant, that is, Fk(x) = Fk(x+ c1), for
any scalar c. Next, we show that all Fk are strongly log-concave, that is,∇2(− log(Fk(x))) � Hk for some Hk ∈ Rk×k,
λ2(Hk) > 0. The proof for this property stems directly from its counterpart in (Shah et al., 2016), as multiple set sizes does
not affect the result. We compute the Hessian as:

∇2(− log(Fk(x))) =
exp(x1)

(〈exp(x), 1〉)4
(〈exp(x), 1〉diag(exp(x))− exp(x) exp(x)T ),

where exp(x) = [ex1 , . . . , exk ]. Note that

vT∇2(− log(Fk(x)))v =
exp(x1)

(〈exp(x), 1〉)4
vT (〈exp(x), 1〉diag(exp(x))− exp(x) exp(x)T )v

=
exp(x1)

(〈exp(x), 1〉)4
(〈exp(x), 1〉〈exp(x), v2〉 − 〈exp(x), v〉2)

≥ 0,

where v2 refers to the element-wise square operation on vector v. While the final inequality is an expected consequence
of the positive semidefiniteness of the Hessian, we note that it also follows from an application of Cauchy-Schwarz to the
vectors

√
exp(x) and

√
exp(x) � v, and is thus an equality if and only if v ∈ span(1). Thus, we have that the smallest

eigenvalue λ1(∇2(− log(Fk(x)))) = 0 is associated with the vector 1, a property we expect from shift invariance, and that
the second smallest eigenvalue λ2(∇2(− log(Fk(x)))) > 0. Thus, we can state that

∇2(− log(Fk(x))) � Hk = βk(I − 1

k
11T ), (7)
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where

βk := min
x∈[−(k−1)B,(k−1)B]k

λ2(∇2(− log(Fk(x)))), (8)

and it’s clear that βk > 0. The minimization is taken over x ∈ [−(k − 1)B, (k − 1)B]k since each xi is a sum of k − 1
values of the u vector, each entry of which is in [−B,B]. We conclude that all Fk are strongly log-concave.

As a final notational addition, in the same manner as (Shah et al., 2016) but accounting for multiple set sizes, we define
k permutation matrices R1,k, . . . , Rk,k ∈ Rk,k,∀k ∈ [kmin, kmax], representing k cyclic shifts in a fixed direction. That is,
these matrices allow for the cycling of the entries of row vector v ∈ R1×k so that any entry can become the first entry of the
vector, for any of the relevant k. This construction allows us to represent any choice made from the choice set Cj as the first
element of the vector x that is input to F , thereby placing it in the numerator.

Given the notation introduced above, we can now state the probability of choosing the item x from set Cj compactly as:

P(yj = x|u?, Cj) = P(yj = x|u?, kj , Ej,kj ) = Fkj (u?TEj,kjRx,kj ).

We can then rewrite the full-rank CDM likelihood as

sup
u∈UB

∏
(xj ,kj ,Ej,kj

)∈D

Fkj (uTEj,kjRxj ,kj ),

and the scaled negative log-likelihood as

`(u) = − 1

m

∑
(xj ,kj ,Ej,kj

)∈D

log(Fkj (uTEj,kjRxj ,kj )) = − 1

m

m∑
j=1

kj∑
i=1

1[yj = i] log(Fkj (uTEj,kjRi,kj )).

Thus,

ûMLE = arg max
u∈UB

`(u).

The compact notation makes the remainder of the proof a straightforward application of results from convex analysis: we
first demonstrate that the scaled negative log-likelihood is strongly convex with respect to a semi-norm2, and we use this
property to show the proximity of the MLE to the optimal point as desired. The remainder of the proof exactly mirrors that
in (Shah et al., 2016) with a few extra steps of accounting created by the multiple set sizes. The notable exception is in the
definition of L, and conditions about its eigenvalues that tie back to the previous results about identifiability. While in (Shah
et al., 2016) there is a clear connection of L to the graph Laplacian matrix of the item comparison graph, it is unclear here
how to interpret L as a graph Laplacian.

First, we have the gradient of the negative log-likelihood as

∇`(u) = − 1

m

m∑
j=1

kj∑
i=1

1[yj = i]Ej,kjRi,kj∇ log(Fkj (uTEj,kjRi,kj )),

and the Hessian as

∇2`(u) = − 1

m

m∑
j=1

kj∑
i=1

1[yj = i]Ej,kjRi,kj∇2 log(Fkj (uTEj,kjRi,kj ))RTi,kjE
T
j,kj .

2A semi-norm is a norm that allows non-zero vectors to have zero norm.
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We then have, for any vector z ∈ Rd,

zT∇2`(u)z = − 1

m

m∑
j=1

kj∑
i=1

1[yj = i]zTEj,kjRi,kj∇2 log(Fkj (uTEj,kjRi,kj ))RTi,kjE
T
j,kjz

=
1

m

m∑
j=1

kj∑
i=1

1[yj = i]zTEj,kjRi,kj∇2(− log(Fkj (uTEj,kjRi,kj )))RTi,kjE
T
j,kjz

≥ 1

m

m∑
j=1

kj∑
i=1

1[yj = i]zTEj,kjRi,kjHkR
T
i,kjE

T
j,kjz

=
1

m

m∑
j=1

kj∑
i=1

1[yj = i]zTEj,kjRi,kjβkj (I − 1

kj
11T )RTi,kjE

T
j,kjz

≥ βkmax

1

m

m∑
j=1

kj∑
i=1

1[yj = i]zTEj,kj (I − 1

kj
11T )ETj,kjz

= βkmax

1

m

m∑
j=1

zTEj,kj (I − 1

kj
11T )ETj,kjz.

The first line follows from applying the definition of the Hessian. The second line follows from pulling the negative sign
into the∇2 term. The third and fourth line follow from (7), strong log-concavity of all Fk. The fifth line follows from the
pulling out βkj and lower bounding it with βkmax and recognizing that Hk is invariant to permutation matrices. The sixth line
follows from removing the inner sum since the terms are independent of i. Now, defining the matrix L as

L =
1

m

m∑
j=1

Ej,kj (I − 1

kj
11T )ETj,kj ,

we first note a few properties of L. First, it is easy to verify that L1 = 0, and hence span(1) ⊆ null(L). Moreover,
we now show that λ2(L) > 0, that is, null(L) ⊆ span(1). Consider the matrix G(D) in Theorem 4. Define a matrix
X(D) = C−1

D G(D), where C−1
D ∈ RΩD×ΩD is the diagonal matrix with values are 1

kj
, for every datapoint j, for every item

x ∈ Cj . Simple calculations show that,

L =
1

m
X(D)TX(D) � 0.

As a consequence of the properties of matrix rank, we then have that rank(L) = rank(X(D)) = rank(G(D)). Thus, from
Theorem 4, we have that if the dataset D identifies the CDM, rank(L) = d− 1, and hence λ2(L) > 0. With this matrix, we
can write,

zT∇2`(u)z ≥ βkmaxz
TLz = βkmax ||z||2L,

which is equivalent to stating that `(u) is βkmax -strongly convex with respect to the L semi-norm at all u ∈ UB . Since
u?, ûMLE ∈ UB , strong convexity implies that

βkmax ||ûMLE − u?||2L ≤ `(ûMLE)− `(u?)− 〈∇`(u?), ûMLE − u?〉.
Further, we have

`(ûMLE)− `(u?)− 〈∇`(u?), ûMLE − u?〉 ≤ −〈∇`(u?), ûMLE − u?〉
≤ |(ûMLE − u?)T∇`(u?)|

= |(ûMLE − u?)TL
1
2L

1
2
†
∇`(u?)|

≤ ||L 1
2 (ûMLE − u?)||2||L

1
2
†
∇`(u?)||2

= ||ûMLE − u?||L||∇`(u?)||L† .

Here the third line follows from the fact that 1T (ûMLE − u?) = 0, and so (ûMLE − u?) ⊥ null(L), which also implies that

(ûMLE−u?) ⊥ null(L
1
2 ), and so (ûMLE−u?)L

1
2L

1
2
†

= (ûMLE−u?). The fourth line follows from Cauchy-Schwarz. Thus,
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we can conclude that

||ûMLE − u?||2L ≤
1

β2
kmax

||∇`(u?)||2L† =
1

β2
kmax

∇`(u?)TL†∇`(u?).

Now, all that remains is bounding the term on the right hand side. Recall the expression for the gradient

∇`(u?) = − 1

m

m∑
j=1

kj∑
i=1

1[yj = i]Ej,kjRi,kj∇ log(Fkj (u?TEj,kjRi,kj )) = − 1

m

m∑
j=1

Ej,kjVj,kj ,

where in the equality we have defined Vj,kj ∈ Rkj as

Vj,kj :=

kj∑
i=1

1[yj = i]Ri,kj∇ log(Fkj (u?TEj,kjRi,kj )).

Useful in our analysis will be an alternate expression for the gradient,

∇`(u?) = − 1

m

m∑
j=1

Ej,kjVj,kj = − 1

m
X(D)TV,

where we have defined V ∈ RΩD as the concatenation of all Vj,kj .

Now, we have

(∇ log(Fk(x)))l = 1[l = 1]− exp(xl)∑k
p=1 exp(xp)

, (9)

and so 〈∇ log(Fk(x)),1〉 = 1
Fk(x) 〈∇Fk(x),1〉 =

∑k
l=1(1[l = 1]− exp(xl)∑k

p=1 exp(xp)
) = 0, and hence, V Tj,kj 1 = 0.

We now consider the matrix Mk = (I − 1
k11

T ). We note that Mk has rank k − 1, with its nullspace corresponding to the
span of the ones vector. We state the following identities:

Mk = M†k = M
1
2

k = M†k

1
2 .

Thus we haveMkjVj,kj = Mkj

1
2M

1
2

kj
Vj,kj = MkM

†
kVj,kj = Vj,kj , where the last equality follows since Vj,kj is orthogonal

to the nullspace of Mkj . Now, taking expectations over the dataset, we have,

E[Vj,kj ] = E
[ kj∑
i=1

1[yj = i]Ri,kj∇ log(Fkj (u?TEj,kjRi,kj ))
]

=

kj∑
i=1

E
[
1[yj = i]

]
Ri,kj∇ log(Fkj (u?TEj,kjRi,kj ))

=

kj∑
i=1

Fkj (u?TEj,kjRi,kj )Ri,kj∇ log(Fkj (u?TEj,kjRi,kj ))

=

kj∑
i=1

Ri,kj∇Fkj (u?TEj,kjRi,kj )

= ∇z
( kj∑
i=1

Fkj (zTRi,kj )
)

= ∇z(1) = 0.

Here, the third equality follows from applying the expectation to the indicator and retrieving the true probability. The
fourth line follows from applying the definition of gradient of log, and the final line from performing a change of variables
z = u?TEj,kj , pulling out the gradient and undoing the chain rule, and finally, recognizing that the expression sums to 1 for
any z, thus resulting in a 0 gradient. We note that an immediate consequence of the above result is that E[V ] = 0, since V is
simply a concatenation of the individual Vj,kj .
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Next, we have

E[∇`(u?)TL†∇`(u?)] =
1

m2
E
[ m∑
j=1

m∑
l=1

V Tj,kjE
T
j,kjL

†El,klVl,kl

]
=

1

m2
E
[ m∑
j=1

m∑
l=1

V Tj,kjMkj

1
2ETj,kjL

†El,klMkl

1
2Vl,kl

]
=

1

m2
E
[ m∑
j=1

V Tj,kjMkj

1
2ETj,kjL

†Ej,kjMkj

1
2Vj,kj

]
≤ 1

m
E
[

sup
l∈[m]

||Vl,kl ||22
] 1

m

m∑
j=1

tr
(
Mkj

1
2ETj,kjL

†Ej,kjMkj

1
2

)
=

1

m
E
[

sup
l∈[m]

||Vl,kl ||22
] 1

m

m∑
j=1

tr
(
L†Ej,kjMkj

1
2Mkj

1
2ETj,kj

)
=

1

m
E
[

sup
l∈[m]

||Vl,kl ||22
]
tr
(
L†L

)
=

1

m
E
[

sup
l∈[m]

||Vl,kl ||22
]
(d− 1),

where the second line follows from identities of the M matrix, the third from the independence of the Vj,kj , the fourth from
an upper bound of the quadratic form, the fifth from the properties of trace, the sixth from the definition of the matrix L, and
the last from the value of the trace, which is simply the identity matrix with one zero entry in the diagonal. We then have
that,

sup
j∈[m]

||Vj,kj ||22 = sup
j∈[m]

kj∑
i=1

1[yj = i]∇ log(Fkj (uTEj,kjRi,kj ))TRTi,kjRi,kj∇ log(Fkj (uTEj,kjRi,kj ))

= sup
j∈[m]

kj∑
i=1

1[yj = i]∇ log(Fkj (uTEj,kjRi,kj ))T∇ log(Fkj (uTEj,kjRi,kj ))

= sup
j∈[m]

kj∑
i=1

1[yj = i]||∇ log(Fkj (uTEj,kjRi,kj ))||22

≤ sup
v∈[−(kmax−1)B,(kmax−1)B]kmax

||∇ log(Fkmax(v))||22 ≤ 2,

where RTi,kjRi,kj in the first line is simply the identity matrix. For the final line, recalling the expression for the log gradient
of Fk in equation (9), it is straightforward to show that supv∈[−(kmax−1)B,(kmax−1)B]kmax ||∇ log(Fkmax(v))||22 is always upper
bounded by 2. We again note that an immediate consequence of this is that the absolute value of every element of V is also
upper bounded by 2.

Bringing this back to E[∇`(u?)TL†∇`(u?)], we have that

E[∇`(u?)TL†∇`(u?)] ≤ 2(d− 1)

m
.

This immediately yields a bound on the expected risk in the L semi-norm, which is,

E[||ûMLE − u?||2L] ≤ 2(d− 1)

mβ2
kmax

.

By noting that ||ûMLE − u?||2L = (ûMLE − u?)L(ûMLE − u?) ≥ λ2(L)||ûMLE − u?||2L, since ûMLE − u? ⊥ null(L), we can
translate this into the `2 norm:

E[||ûMLE − u?||22] ≤ 2(d− 1)

mλ2(L)β2
kmax

.
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Now, setting

cB,kmax :=
2

λ2(L)β2
kmax

,

we retrieve the theorem statement,

E
[
‖ûMLE(D)− u?‖22

]
≤ cB,kmax

d− 1

m
.

We close with some remarks about cB,kmax . The quantity βkmax , defined in equation (8), serves as the important term
that approaches 0 as a function of B and kmax, requiring that the former be bounded. Finally, λ2(L) is a parallel to the
requirements on the algebraic connectivity of the comparison graph in (Shah et al., 2016) for the multinomial setting.
Though the object L here appears similar to the graph Laplacian L in that work, there are major differences that are most
worthy of further study.

C. Auxiliary Material
C.1. Removing Constraints fromM2

We restateM2 for convenience.

P (x | C) =
exp(v(x) +

∑
z∈C\x v(x | {z}))∑

y∈C exp(v(y) +
∑
z∈C\y v(y | {z}))

,

s.t.
∑
x∈X

v(x) = 0,
∑

x∈X\y

v(x | {y}) = 0, ∀y ∈ X .

Here, a counting exercise reveals that there are n2 variables (n from the v(x) and n(n− 1) from the v(x | {u}) and there are
n+1 linear equality constraints (1 from the constraint on v(x), and n from the constraints on v(x | {u})). Our goal in this step
is to find a parameterization such that there remains only one equality constraint and n(n−1) variables. To do this, we define
the variable uxz∀x 6= z ∈ X , and subject it to the constraint that

∑
x∈X

∑
y∈X\x uxy = 0. Set v(z) = − 1

n−1

∑
x∈X\z uxz ,

∀z and set v(x | {z}) = uxz − 1
n−1

∑
y∈X\z uyz . We may then verify that

∑
z∈X v(z) = 1

n−1

∑
z∈X

∑
x∈X\z uxz = 0

because of the constraint on u. We can also verify that∑
x∈X\z

v(x | {z}) =
∑
x∈X\z

[uxz −
1

n− 1

∑
y∈X\z

uyz] = 0.

Thus, the assignment is feasible for any u satisfying its sum constraint. Substituting the assignments into the expression for
the probability, we have,

P (x | C) =
exp(− 1

n−1

∑
w∈X\x uwx +

∑
z∈C\x[uxz − 1

n−1

∑
w∈X\z uwz])∑

y∈C exp(− 1
n−1

∑
w∈X\y uwy +

∑
z∈C\y[uyz − 1

n−1

∑
w∈X\z uwz])

=
exp(−

∑
z∈C

1
n−1

∑
w∈X\z uwz +

∑
z∈C\x uxz)∑

y∈C exp(−
∑
z∈C

1
n−1

∑
w∈X\z uwz +

∑
z∈C\y uyz)

=
exp(

∑
z∈C\x uxz)∑

y∈C exp(
∑
z∈C\y uyz)

where the third step follows from
∑
z∈C v(z) terms cancelling out across the numerator and denominator. Thus, every u

that satisfies the constraint
∑
x∈X

∑
y∈X\x uxy = 0 always satisfies the constraints on v(x) and v(x | {z}), and hence the

new P (x | C) is a valid reparameterization.

C.2. Examples of IIA Violations Handled by CDM

Copying over the example from the main text, consider a choice system on X = {a, b, c} where

P (a | X ) = 0.8, P (b | X ) = 0.1, P (c | X ) = 0.1.

Assuming IIA implies that we can immediately infer the parameters. Using the notation from modelM1, we have that
v(a) = 1.386, v(b) = v(c) = −.693. These three values sum to zero, as per the constraint. We may then state the three
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relevant pairwise probabilities using these parameters:

P (a | {a, b}) = 0.89, P (b | {b, c}) = 0.50, P (c | {a, c}) = 0.11

Thus, IIA is full specified and constrained this way. This is in contrast to the CDM, which can specify any arbitrary pairwise
probability. As an example, we can model an extreme preference reversal as follows:

P (a | {a, b}) = 0.11, P (b | {b, c}) = 0.50, P (c | {a, c}) = 0.89

Although b is disproportionately preferred over a in the pair setting, the story almost reverses in the triplet setting. The CDM
parameters corresponding to this example are: [uab, uac, uba, ubc, uca, ucb] = [.693, .693, 2.784,−3.477, 2.784,−3.477],
where the sum to 0 constraint is being enforced. This notion of preference reversal, and CDM’s ability to accommodate
it, is actually fairly versatile. Indeed, many of the storied effects in discrete choice, such as those of Similarity Aversion,
Asymmetric Dominance, and the Compromise Effect are simply instances of preference reversal. We illustrate this using the
following table, adapted from (Srivastava and Schrater, 2012). Px,A is used to denote the probability of choosing an item x
from a set A.

Table 1. An Overview of the Various Effects

Name Effect Constraints

Preference Reversal Px,{x,y} > Py,{x,y}, but Px,{x,y,z} < Py,{x,y,z} None
Similarity Aversion Px,{x,y} > Py,{x,y}, but Px,{x,y,z} < Py,{x,y,z} z ≈ x, splits share
Compromise Effect Px,{x,y} > Py,{x,y}, but Px,{x,y,z} < Py,{x,y,z} x > y, x > z, y > z

Asymmetric Dominance Px,{x,y} > Py,{x,y}, but Px,{x,y,z} < Py,{x,y,z} x ≈ y, y ≥ z

Table 1 provides an overview of the idea that the famous observations of IIA violations in discrete choices are simply
instances of preference reversals. Since the CDM can help model such reversals, it can consequently model these effects.

C.3. Identifiability and Regularization

In this section, we further explore the concepts developed in the main text about identifiability and regularization. Intricate
conditions of identifiability are not unique to the CDM, but are rather widespread in the embeddings literature. These
conditions, however, are not very well described or stated anywhere, and especially matter in the embedding setting because
regularization is often omitted. Here, we explore a few different models, starting first with the Blade Chest model.

C.3.1. BLADE CHEST

As stated before, we may treat the Blade Chest model as the CDM applied only to the pairwise comparisons. But Theorem 2
demonstrates that the CDM is not identified in this setting, hence, neither is the Blade Chest Model. We make this clear as
follows. Consider first the full rank case, d = n. If Û is a solution to the problem, then Ũ = Û +A for any symmetric matrix
A. Using this, we can consider d < n. A subset of solutions when d < n is T̂ +X , Ĉ + Y , where X = βĈ + γ1αβT̂ , and
Y = αT̂ + γ2αβĈ where α, β ∈ R, γ1, γ2 ∈ {0, 1}, γ1 6= γ2.

We note that this, however, is only an illustrative small subset to a more general set of solutions that could be better explored
through heuristic approaches to the computationally hard affine rank minimization problem.

C.3.2. SHOPPER

Yet another model that suffers from identifiability issues is the Shopper model (Ruiz et al., 2017). We refer the reader to the
orignal work for a review on the model in order to keep the dicussion here terse. Consider first the full rank case, d = n.
If Û is a solution to the problem, then Ũ = Û + 1zT + diag(a) for any vectors z, a ∈ Rn. A subset of solutions when
d < n is T̂ + x1T , or the origin of the target vector. Though mere shifts of the origin might seem trivial in visualizing the
underlying embeddings, these shifts become significant under a measure like cosine distance, or the embeddings use in any
absolute, as opposed to relative setting.
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C.3.3. CONTINUOUS BAG OF WORDS (CBOW)

Here, we describe the original CBOW, not the version with negative sampling that is an entirely different objective (Rudolph
et al., 2016). Consider first the full rank case, d = n. If Û is a solution to the problem, then Ũ = Û + 1zT for any vector
z ∈ Rn. A subset of solutions when d < n is T̂ + x1T , or the origin of the target vector. Yet again, when the underlying
measure of comparing word similarity is cosine distance—which it frequently is in natural language processing—an origin
discrepancy make a difference in underlying task performance.

C.3.4. REGULARIZATION

A clean solution to issues of uniqueness is to add regularization. Specifically, any amount of `2 regularization immediately
guarantees identifiability, whereas the same cannot be said of `1 regularization. We consider the impact of regularization on
the CDM in two specific instances.

`1 regularization on exponentiated variables. Because the CDM is shift invariant, we may set the shift such that the sum
of the exponentiated sum of all the rows may be set to 1. That is,

∑
y∈X exp(

∑
x∈X\y uxy) = 1. With such a shift, applying

`1 regularization to the exponentiated entries may be reformulated as adding a uniform prior of choices from the Universe.
Such an idea is described in (Ragain et al., 2018) for the MNL model. This regularization is a valuable addition when the set
of observations is small or the comparison graph is irregular. In these settings, the regularization plays a balancing role that
is also interpretable for any dataset: additional choices from the universe. However, we know that such an addition alone
will not uniquely identify the CDM - especially if the dataset only contains pairwise comparisons, where the CDM will not
be identified even with an arbitrarily large sample size. Even with datasets of a choice set size greater than 2, the dataset still
requires samples from a diverse range of choice sets within that size before it is identifiable with the regularization. This is
consistent with the view that `1 does not always identify the CDM.

`2 regularization on the U matrix. As stated earlier, any small amount of `2 regularization immediately identifies the CDM.
Since the “pairwise comparisons only” setting suffers in a rather extreme way from identifiability issues, understanding the
role `2 regularization plays there is important. We recall from earlier than in the setting of pairwise comparisons, the CDM
matrix U is only specified up to a symmetric matrix A when inferred from pairwise comparisons. Since `2 regularization
will minimize the entrywise norm of the U matrix, A will be chosen to be zero. That is, the U matrix will be antisymmetric.
We may then use this property to solve for parameter uxy as a function of the pairwise probabilities:

uxy =
1

2
log
(Px,{x,y}
Py,{x,y}

)
It is most interesting to look at

uxz − uyz =
1

2
log
(Pz,{y,z}Px,{x,z}
Py,{y,z}Pz,{x,z}

)
.

Since uxz − uyz corresponds to the influence a third item z’s presence has on the choice between x and y, it is interesting
that the relative intransitivities of the three items in their respective pairwise settings are leveraged to describe this influence
in the triplet case. This is quite possibly the best outcome one could hope for having just pairwise comparisons, and
demonstrates the value of regularization.

C.4. Auxiliary Lemmas

Lemma 3. For ΣD := 1
m2X(D)L†X(D)T , where the remaining quantities are defined in the proof of Theorem 3, we have,

tr(ΣD) =
d− 1

m
tr(Σ2

D) =
(d− 1)2

m2
||ΣD||op =

1

m
.

Proof. Consider first that L = 1
mX(D)TX(D). Since L is symmetric and positive semidefinite, it has an eigenvalue

decomposition of UΛUT . By definition, the Moore-Penrose inverse is L† = UΛ†UT . We must have that X(D) =√
mV Λ

1
2UT for some orthogonal matrix V in order for L to equal 1

mX(D)TX(D). With these facts, we have

1

m2
X(D)L†X(D)T =

1

m2

√
mV Λ

1
2UTUΛ†UTUΛ

1
2V T
√
m

=
1

m
V ΛΛ†V T .
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That is, ΣD is a positive semi-definite matrix with spectra corresponding to d− 1 values equaling 1
m , and the last equaling 0.

The three results about the traces and the operator norm immediately follow.


