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Abstract

The Exploration-Exploitation tradeoff arises in
Reinforcement Learning when one cannot tell if a
policy is optimal. Then, there is a constant need to
explore new actions instead of exploiting past ex-
perience. In practice, it is common to resolve the
tradeoff by using a fixed exploration mechanism,
such as ε-greedy exploration or by adding Gaus-
sian noise, while still trying to learn an optimal
policy. In this work, we take a different approach
and study exploration-conscious criteria, that re-
sult in optimal policies with respect to the explo-
ration mechanism. Solving these criteria, as we
establish, amounts to solving a surrogate Markov
Decision Process. We continue and analyze prop-
erties of exploration-conscious optimal policies
and characterize two general approaches to solve
such criteria. Building on the approaches, we ap-
ply simple changes in existing tabular and deep
Reinforcement Learning algorithms and empiri-
cally demonstrate superior performance relatively
to their non-exploration-conscious counterparts,
both for discrete and continuous action spaces.

1. Introduction
The main goal of Reinforcement Learning (RL) (Sutton
et al., 1998) is to find an optimal policy for a given decision
problem. A major difficulty arises due to the Exploration-
Exploitation tradeoff, which characterizes the omnipresent
tension between exploring new actions and exploiting the
so-far acquired knowledge. Considerable line of work has
been devoted for dealing with this tradeoff. Algorithms
that explicitly balance between exploration and exploitation
were developed for tabular RL (Kearns & Singh, 2002; Braf-
man & Tennenholtz, 2002; Jaksch et al., 2010; Osband et al.,
2013). However, generalizing these results to approximate

*Equal contribution 1Department of Electrical Engi-
neering, Technion, Haifa, Israel. Correspondence to:
Lior Shani <shanlior@gmail.com>, Yonathan Efroni
<jonathan.efroni@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

RL, i.e, when using function approximation, remains an
open problem. On the practical side, recent works com-
bined more advanced exploration schemes in approximate
RL (e.g, Bellemare et al. (2016); Fortunato et al. (2017)),
inspired by the theory of tabular RL. Nonetheless, even in
the presence of more advanced mechanisms, ε-greedy explo-
ration is still applied (Bellemare et al., 2017; Dabney et al.,
2018; Osband et al., 2016). More generally, the traditional
and simpler ε-greedy scheme (Sutton et al., 1998; Asadi &
Littman, 2016) in discrete RL, and Gaussian action noise in
continuous RL, are still very useful and popular in practice
(Mnih et al., 2015; 2016; Silver et al., 2014; Schulman et al.,
2017; Horgan et al., 2018), especially due to their simplicity.

These types of exploration schemes share common proper-
ties. First, they all fix some exploration parameter before-
hand, e.g, ε, the ‘inverse temperature’ β, or the action vari-
ance σ for the ε-greedy, soft-max and Gaussian exploration
schemes, respectively. By doing so, the balance between
exploration and exploitation is set. Second, they all explore
using a random policy, and exploit using current estimate
of the optimal policy. In this work, we follow a different
approach, when using these fixed exploration schemes: ex-
ploiting by using an estimate of the optimal policy w.r.t. the
exploration mechanism.

Exploration-Consciousness is the main reason for the im-
proved performance of on-policy methods like Sarsa and
Expected-Sarsa (Van Seijen et al., 2009) over Q-learning
during training (Sutton et al., 1998)[Example 6.6: Cliff
Walking]. Imagine a simple Cliff-Walking problem: The
goal of the agent is to reach the end without falling of the
cliff, where the optimal policy is to go alongside the cliff.
While using a fixed-exploration scheme, playing a near op-
timal policy which goes alongside the cliff will lead to a
significant sub-optimal performance. This, in turn, will hurt
the acquisition of new experience needed to learn the op-
timal policy. However, learning to act optimally w.r.t. the
exploration scheme can mitigate this difficultly; the agent
learns to reach the goal while keeping a safe enough distance
from the cliff.

In the past, tabular q-learning-like exploration-conscious
algorithms were suggested (John, 1994; Littman et al., 1997;
Van Seijen et al., 2009). Here we take a different approach,
and focus on exploration conscious policies. The main
contributions of this work are as follows:
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• We define exploration-consciousness optimization cri-
teria, for discrete and continuous actions spaces. The
criteria are interpreted as finding an optimal policy
within a restricted set of policies. Both, we show, can
be reduced to solving a surrogate MDP. The surrogate
MDP approach, to the best of our knowledge, is a new
one, and serves us repeatedly in this work.

• We formalize a bias-error sensitivity tradeoff. The
solutions are biased w.r.t. the optimal policy, yet, are
less sensitive to approximation errors.

• We establish two fundamental approaches to practically
solve Exploration-Conscious optimization problems.
Based on these, we formulate algorithms in discrete
and continuous action spaces, and empirically test the
algorithms on the Atari and MuJoCo domains.

2. Preliminaries
Our framework is the infinite-horizon discounted Markov
Decision Process (MDP). An MDP is defined as the 5-tuple
(S,A, P,R, γ) (Puterman, 1994), where S is a finite state
space, A is a compact space, P ≡ P (s′|s, a) is a transition
kernel, R ≡ r(s, a) ∈ [0, Rmax] is a bounded reward func-
tion, and γ ∈ [0, 1). Let π : S → P(A) be a stationary pol-
icy, where P(A) is a probability distribution on A, and de-
note Π as the set of deterministic policies, π ∈ Π : S → A.
Let vπ ∈ R|S| be the value of a policy π, defined in state s
as vπ(s) ≡ Eπ|s[

∑∞
t=0 γ

tr(st, at)], where at ∼ π(st), and
Eπ|s denotes expectation w.r.t. the distribution induced by
π and conditioned on the event {s0 = s}. It is known
that vπ =

∑∞
t=0 γ

t(Pπ)trπ = (I − γPπ)−1rπ, with the
component-wise values [Pπ]s,s′ , Ea∼π[P (s′ | s, a)] and
[rπ]s , Ea∼π[r(s, a)]. Furthermore, the q-function of π
is given by qπ(s, a) = r(s, a) + γ

∑
s′ P (s′ | s, a)vπ(s′),

and represents the value of taking an action a from state s
and then using the policy π.

Usually, the goal is to find π∗ yielding the optimal value,
π∗ ∈ arg maxπ∈Π Eπ[

∑∞
t=0 γ

tr(st, at)], and the optimal
value is v∗ = vπ

∗
. It is known that optimal deterministic

policy always exists (Puterman, 1994). To achieve this goal
the following classical operators are defined (with equalities
holding component-wise). ∀v, π :

Tπv =rπ + γPπv, Tv = max
π

Tπv, (1)

G(v) = {π : Tπv = Tv}, (2)

where Tπ is a linear operator, T is the optimal Bellman op-
erator and both Tπ and T are γ-contraction mappings w.r.t.
the max norm. It is known that the unique fixed points of
Tπ and T are vπ and v∗, respectively. G(v) is the standard
set of 1-step greedy policies w.r.t. v. Furthermore, given
v∗, the set G(v∗) coincides with that of stationary optimal

policies. It is also useful to define the q-optimal Bellman
operator, which is a γ-contraction, with fixed point q∗.

T qq(s, a)=r(s, a)+γ
∑
s′

P (s′ | s, a) max
a′

q(s′, a′), (3)

In this work, the use of mixture policies is abundant. We
denote the α ∈ [0, 1]-convex mixture of policies π1, π2 by
πα(π1, π2) , (1 − α)π1 + απ2. Importantly, πα(π1, π2)
can be interpreted as a stochastic policy s.t with w.p (1− α)
the agent acts with π1 and w.p α acts with π2.

3. The α-optimal criterion
In this section, we define the notion of α-optimal policy w.r.t.
a policy, π0. We then claim that finding an α-optimal policy
can be done by solving a surrogate MDP. We continue
by defining the surrogate MDP, and analyze some basic
properties of the α-optimal policy.

Let α ∈ [0, 1]. We define π∗α,π0
to be the α-optimal policy

w.r.t. π0, and is contained in the following set,

π∗α,π0
∈ arg max

π′∈Π
Eπ

α(π′,π0)

[∑
t=0

γtr(st, at))

]
, (4)

or, π∗α,π0
∈ arg maxπ′ v

πα(π′,π0), where at ∼ πα(π′, π0)
and πα(π′, π0) is the α-convex mixture of π′ and π0, and
thus a probability distribution. For brevity, we omit the sub-
script π0, and denote the α-optimal policy by π∗α throughout
the rest of the paper. The α-optimal value (w.r.t. π0) is
vπ

α(π∗α,π0), the value of the policy πα(π∗α, π0). In the fol-
lowing, we will see the problem is equivalent to solving a
surrogate MDP, for which an optimal deterministic policy is
known to exist. Thus, there is no loss optimizing over the
set of deterministic policies Π.

Optimization problem (4) can be viewed as optimizing over
a restricted set of policies: all policies that are a convex
combination of π0 with a fixed α. Naturally, we can consider
in (4) a state-dependent α(s) as well, and some of the results
in this work will consider this scenario. In other words, π∗α
is the best policy an agent can act with, if it plays w.p (1−α)
according to π∗α, and w.p α according to π0, where π0 can
be any policy. The relation to the ε-greedy exploration setup
becomes clear when π0 is a uniform distribution on the
actions, and set α = ε instead of α. Then, π∗α is optimal
w.r.t. the ε-greedy exploration scheme; the policy would
have the largest accumulated reward, relatively to all other
policies, when acting in an ε-greedy fashion w.r.t. it.

We choose to name the policy as the α- and not ε-optimal
to prevent confusion with other frameworks. The ε-optimal
policy is a notation used in the context of PAC-MDP type
of analysis (Strehl et al., 2009), and has a different meaning
than the objective in this work (4).
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3.1. The α-optimal Bellman operator, α-optimal policy
and policy improvement

In the previous section, we defined the α-optimal policy
and the α-optimal value, π∗α and vπ

α(π∗α,π0), respectively.
We start this section by observing that problem (4) can be
viewed as solving a surrogate MDP, denoted byMα. We
define the Bellman operators of the surrogate MDP, and use
them to prove an important improvement property.

Define the surrogate MDP asMα=(S,A, Pα, Rα, γ).

∀a ∈ A, rα(s, a)=(1− α)r(s, a) + αrπ0(s),

Pπα (s′ | s, a)=(1− α)P (s′ | s, a) + αPπ0(s′ | s), (5)

are its reward and dynamics, and rest of its ingredients are
similar toM. We denote the value of a policy π onMα

by vπα, and the optimal value onMα by v∗α. The following
simple lemma relates the value of a policy π, measured on
M andMα (see proof in Appendix D).

Lemma 1. For any policy π, vπα = vπ
α(π,π0). Thus, an

optimal policy onMα is the α-optimal policy π∗α (4).

The fixed-policy and optimal Bellman operators ofMα are
denoted by Tπα and Tα, respectively. Again, for brevity we
omit π0 from the definitions. Notice that Tπα and Tα are γ-
contractions as being Bellman operators of a γ-discounted
MDP. The following Lemma relates Tπα and Tα to the Bell-
man operators of the original MDP, M. Furthermore, it
stresses a non-trivial relation between the α-optimal policy
π∗α and the α-optimal value, vπ

α(π∗α,π0).

Proposition 2. The following claims hold for any policy π:

1. Tπα=(1−α)Tπ+αTπ0 , with fixed point vπα=vπ
α(π,π0).

2. Tα=(1−α)T+αTπ0 , with fixed point v∗α=vπ
α(π∗α,π0).

3. An α-optimal policy is an optimal policy ofMα and is
greedy w.r.t. v∗α, π∗α ∈ G(v∗α) = {π′ : Tπ

′
v∗α = Tv∗α}.

In previous works, e.g. (Asadi & Littman, 2016), the opera-
tor (1− ε)T + εTπ0 was referred to as the ε-greedy operator.
Lemma 2 shows this operator is Tα (with α = ε), the opti-
mal Bellman operator of the defined surrogate MDPMα.
This lemma leads to the following important property.

Proposition 3. Let α ∈ [0, 1), β ∈ [0, α], π0 be a
policy, and π∗α be the α-optimal policy w.r.t π0. Then,
vπ0 ≤ vπα(π∗α,π0) ≤ vπβ(π∗α,π0), with equality iff vπ0 = v∗.

The first relation vπ0 ≤ vπ
α(π∗α,π0), πα(π∗α, π0) is better

than π0, is trivial and holds by definition (4). The non-
trivial statement is the second one. It asserts that given
π∗α, it is worthwhile to use the mixture policy πβ(π∗α, π0)
with β < α; use π0 with smaller probability. Specifically,
better performance, compared to πα(π∗α, π0), is assured
when using the deterministic policy π∗α, by setting β = 0.

In section 6, we demonstrate the empirical consequences
of the improvement lemma, which, to our knowledge, has
not yet been stated. Furthermore, the improvement lemma
is unique to the defined optimization criterion (4). We will
show that alternative definitions of exploration conscious
criteria does not necessarily have this property. Moreover,
one can use Proposition 3 to generalize the notion of the
1-step greedy policy (2), as was done in Efroni et al. (2018)
with multiple-step greedy improvement. We leave studying
this generalization and its Policy Iteration scheme for future
work, and focus on solving (4) a single time.

3.2. Performance bounds in the presence of
approximations

We now consider an approximate setting and quantify a bias
- error sensitivity tradeoff in πα(π̂∗α, π0), where π̂∗α is an
approximated α-optimal policy. We formalize an intuitive
argument; as α increases the bias relatively to the optimal
policy increases. Yet, the sensitivity to errors decreases,
since the agent uses π0 w.p. α regardless of errors.
Definition 1. Let v∗ be the optimal value of an MDP,M.
We define L(s) , v∗(s)−Tπ0v∗(s) ≥ 0, to be the Lipschitz
constant w.r.t. π0 of the MDP at state s. We further define
the upper bound on the Lipschitz constant L , maxs L(s).

Definition 1 defines the ‘Lipschitz’ property of the optimal
value, v∗. Intuitively, L(s) quantifies a degree of ‘smooth-
ness’ of the optimal value. A small value of L(s) indicates
that if one acts according to π0 once and then continue play-
ing the optimal policy from state s, a great loss will not
occur. Large values of L(s) indicate that using π0 from
state s leads to an irreparable outcome (e.g, falling off a
cliff). The following theorem formalizes a bias-error sensi-
tivity tradeoff. As α increases, the bias increases, while the
sensitivity to errors decreases (see proof in Appendix H).
Theorem 4. Let α ∈ [0, 1]. Assume v̂∗α is an approximate
α-optimal value s.t ‖v∗α − v̂∗α‖ = δ for some δ ≥ 0. Let
π̂∗α be the greedy policy w.r.t. v̂∗α, π̂∗α ∈ G(v̂∗α). Then, the
performance relatively to the optimal policy is bounded by,∥∥∥v∗ − vπα(π̂∗α,π0)

∥∥∥ ≤ αL

1− γ︸ ︷︷ ︸
Bias

+
2(1− α)γδ

1− γ︸ ︷︷ ︸
Sensitivity

.

When the bias of the α-optimal value relatively to the opti-
mal one is small, solving (4) does not lead to a great loss
relatively to the optimal performance. The bias can be
bounded by the ‘Lipschitz’ property L of the MDP. For a
state dependent α(s), the bias bound changes to be depen-
dent on maxs α(s)L(s). This highlights the importance of
prior knowledge when using (4). Choosing π0 (possibly
state-wise) s.t. maxs α(s)L(s) is small, allows to use a
bigger α, while the bias is small. The sensitivity term up-
per bounds the performance of πα(π̂∗α, π0) relatively to the
α-optimal value, and is less sensitive to errors as α increase.
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The bias term is derived by using the structure of Mα,
and is not a direct application of the Simulation Lemma
(Kearns & Singh, 2002; Strehl et al., 2009); applying it
would lead to a bias of αRmax

(1−γ)2 . For the sensitivity term, we
generalize (Bertsekas & Tsitsiklis, 1995)[Proposition 6.1]
(see Appendix G). There, a (1− α) factor does not exists.

4. Exploration-Conscious Continuous Control
The α-greedy approach from Section 3 relies on an explo-
ration mechanism which is fixed beforehand: π0 and α
are fixed, and an optimal policy w.r.t. them is being calcu-
lated (4). However, in continuous control RL algorithms,
such as DDPG and PPO (Lillicrap et al., 2015; Schulman
et al., 2017), different approach is used. Usually, a policy
is being learned, and the exploration noise is injected by
perturbing the policy, e.g., by adding to it a Gaussian noise.

We start this section by defining an exploration-conscious
optimality criterion that captures such perturbation for the
simple case of Gaussian noise. Then, results from Section 3
are adapted to the newly defined criterion, while highlight-
ing commonalities and differences relatively to (4). As in
Section 3, we define an appropriate surrogate MDP and we
show it can be solved by the usual machinery of Bellman
operators. Unlike Section 3, we show that improvement
when decreasing the stochasticity does not generally hold.
Finally, we prove a similar bias-error sensitivity result: As σ
grows, the bias increases, but the sensitivity term decreases.

Instead of restricting the set of policies to the one defined
in (4), we restrict our set of policies to be the set of Gaussian
policies with a fixed σ2 variance. Formally, we wish to find
the optimal deterministic policy µ∗σ : S → A in this set,

µ∗σ ∈ arg max
µ∈Π

Eπµ,σ
[ ∞∑
t=0

γtr(st, at)

]
, (6)

where πµ,σ(· | s) = N (µ(s), σ2), is a Gaussian policy with
mean µ(s) and a fixed variance σ2. We name µ∗σ and π∗σ
as the mean and σ-optimal policy, respectively. As in (4),
we show in the following that solving (6) is equivalent for
solving a surrogate MDP. Thus, optimal policy can always
be found in the deterministic class of policies Π; mixture of
Gaussians would not lead to a better performance in (6).

Similarly to (5), we define a surrogate MDPMσ w.r.t. to
the Gaussian noise and relate it to values of Gaussian poli-
cies on the original MDP M. Then, we characterize its
Bellman operators and thus establish it can be solved us-
ing Dynamic Programming. Define the surrogate MDP as
Mσ=(S,A, Pσ, Rσ, γ). For every a ∈ A,

rσ(s, a)=

∫
A
N (a′; a, σ)r(s, a′)da′,

Pσ(s′ | s, a)=

∫
A
N (a′; a, σ)P (s′ | s, a′)da′, (7)

are its reward and dynamics, and denote a value of a policy
onMσ by vµσ . The following results correspond to Lemma
1 and Proposition 2 for the class of Gaussian policies.

Lemma 5. For any policy π, vπµ,σ = vµσ . Thus, an optimal
policy onMσ is the mean optimal policy µ∗σ (6).

Proposition 6. Let π be a mixture of Gaussian policies.
Then, the following holds:

1. Tµσ = Eπ∼πµ,σ Tπ , with fixed point vµσ =vπµ,σ .

2. Tσ=max
µ∈Ã

Eπ∼πµ,σ Tπ , with fixed point v∗σ=vπµ∗σ,σ .

3. The mean σ-optimal policy µ∗σ is an optimal policy of
Mσ and, µ∗σ ∈ {µ : Tπµ,σv∗σ = maxµ T

πµ,σv∗σ}.

Surprisingly, given a σ-optimal policy mean µ∗σ, an im-
provement is not assured when lowering the stochasticity by
decreasing σ in πµ∗σ,σ . This comes in contrast to Proposition
3 and highlights its uniqueness (proof in Appendix J).

Proposition 7. Let 0 ≤ σ′ < σ and let µ∗σ be the mean σ-
optimal policy. There exists an MDP s.t vπµ∗,σ � vπµ∗,σ′ .

Definition 2. Let M be a continuous action space
MDP. Assume that exists Lr, Lp ≥ 0, s.t. ∀s ∈
S, ∀a1, a2 ∈ A, |r(s, a1)− r(s, a2)| ≤ Lr ‖a1 − a2‖1
and ‖p(·|s, a1)− p(·|s, a2)‖TV ≤ Lp ‖a1 − a2‖1. The
Lipschitz constant ofM is L , (1− γ)Lr + γLpRmax.

The following theorem quantifies a bias-error sensitivity
tradeoff in σ, similarly to Theorem 4 (see Appendix K).

Theorem 8. LetM be an MDP with Lipschitz constant L
and let σ ∈ R|A|+ . Let v∗σ be the σ-optimal value ofMσ . Let
v̂∗σ be an approximation of v∗σ s.t. ‖v∗σ − v̂∗σ‖ = δ for δ ≥ 0.
Let µ∗σ, µ̂

∗
σ ∈ R

A be the greedy mean policy w.r.t. v∗σ and
v̂∗σ respectively. Let ‖·‖σ−2 is the σ−2-weighted euclidean
norm. Then,∥∥∥v∗ − vπ̂∗σ∥∥∥≤ L‖σ‖1

2 (1− γ)
2︸ ︷︷ ︸

Bias

+
γδmin{ 1

2 ‖µ
∗
σ − µ̂∗σ‖σ−2 , 2}

1− γ︸ ︷︷ ︸
Sensitivity

.

5. Algorithms
In this section, we offer two fundamental approaches to
solve exploration conscious criteria using sample-based al-
gorithms: the Expected and Surrogate approaches. For both,
we formulate converging, q-learning-like, algorithms. Next,
by adapting DDPG, we show the two approaches can be
used in exploration-conscious continuous control as well.

Consider any fixed exploration scheme. Generally, these
schemes operate in two stages: (i) Choose a greedy action,
achosen. (ii) Based on achosen and some randomness genera-
tor, choose an action to be applied on the environment, aenv.
E.g., for ε-greedy exploration, w.p. 1−α the agent acts with
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achosen, otherwise, with a random uniform policy. While in
RL the common update rules use aenv, the saved experience
is (s, aenv, r, s

′), in the following we motivate the use of
achosen, and view the data as (s, achosen, aenv, r, s

′).

The two approaches characterized in the following are based
on two, inequivalent, ways to define the q-function. For
the Expected approach the q-function is defined as usual:
qπ(s, a) represents the value obtained when taking an ac-
tion a = aenv and then acting with π, meaning a is the
action chosen in step (ii). Alternatively, for the Surrogate
approach, the q-function is defined on the ‘Surrogate’ MDP,
i.e., the exploration is viewed as stochasticity of the envi-
ronment. Then, qπα(s, a) is the value obtained when a is the
action of step (i), i.e., choosing action a = achosen.

5.1. Exploration Conscious Q-Learning

We focus on solving the α-optimal policy (4), and formulate
q-learning-like algorithms using the two aforementioned
approaches. The Expected α-optimal q-function is,

qπ
α(π∗α,π0)(s, a),r(s, a)+γ

∑
s′

P (s′ | s, a)v∗α(s′) (8)

Indeed, qπ
α(π∗α,π0) is the usually defined q-function of the

policy πα(π∗α, π0) on an MDP M. Here, the action a
represents the actual performed action, aenv. By relating
qπ

α(π∗α,π0) to v∗α it can be easily verified that qπ
α(π∗α,π0)

satisfies the fixed point equation (see Appendix L),

qπ
α(π∗α,π0)(s, a) =

r(s, a)+γ(1−α)
∑
s′

P (s′ |s, a) max
a′

qπ
α(π∗α,π0)(s′, a′)

+γα
∑
s′,a′

P (s′ |s, a)π0(a′ |s′)qπ
α(π∗α,π0)(s′, a′). (9)

Alternatively, consider the optimal q-function of the surro-
gate MDPMα (5). It satisfies the fixed-point equation

q∗α(s, a),rα(s, a)+γ
∑
s′

Pα(s′ | s, a) max
a′

q∗α(s′, a′).

The following lemma formalizes the relation between the
two q-functions, and shows they are related by a function of
the state, and not of the action.

Lemma 9. q∗α(s, a) = (1− α)qπ
α(π∗α,π0)(s, a) + f(s).

The α-optimal policy π∗α is also an optimal policy ofMα

(Lemma 1). Thus, it is greedy w.r.t. q∗α, the optimal q ofMα.
By Proposition 2.3 it is also greedy w.r.t. qπ

α(π∗α,π0), i.e.,

π∗α(s) ∈ arg max
a′

q∗α(s, a′) = arg max
a′

qπ
α(π∗α,π0)(s, a′).

Lemma 9 describes this fact by different means; the two q-
functions are related by a function of the state and, thus, the

greedy action w.r.t. each is equal. Furthermore, it stresses
the fact that the two q-function are not equal.

Before describing the algorithms, we define the following
notation for any q(s, a),

v(s) = max
a′

q(s, a′), vπ(s) =
∑
a′

π(a′ | s)q(s, a′).

We now describe the Expected α-Q-learning algorithm (see
Algorithm 1), also given in (John, 1994; Littman et al.,
1997), and re-interpret it in light of the previous discussion.

The fixed point equation (9), leads us to define the operator
TEqα for which qπ

α(π∗α,π0) = TEqα qπ
α(π∗α,π0). Expected α-

Q-learning (Alg. 1) is a Stochastic Approximation (SA) alg.
based on the operator TEqα . Given a sample of the form
(s, achosen, aenv, r, s

′), it updates q(s, aenv) by

(1−η)q(s, aenv)+η (rt+γ((1−α)v(st+1)+αvπ0(st+1)))
(10)

Algorithm 1 Expected α-Q-Learning

Initialize: α ∈ [0, 1], π0, q, learning rate ηt.
for t = 0, 1, ... do
achosen ← arg maxa qt(st, a)
Xt ∼ Bernoulli(1− α)

aenv =

{
achosen, if Xt = 1

a ∼ π0(· | s), if Xt = 0

rt, st+1 ← ACT (aenv)
yt ← rt + γ(1− α)vt(st+1) + γαvπ0

t (st+1)
q(st, aenv)← (1− ηt) q(st, aenv) + ηtyt

end for
return: π ∈ arg maxa q(·, a)

Its convergence proof is standard and follows by showing
TEqα is a γ-contraction and using (Bertsekas & Tsitsiklis,
1995)[Proposition 4.4] (see proof in Appendix L.1).

We now turn to describe an alternative algorithm, which
operates on the surrogate MDP,Mα, and converges to q∗α.
Naively, given a sample (s, achosen, r, s

′), regular q-learning
onMα can be used by updating q(s, achosen) as,

(1−ηt)q(s, achosen)+ηt(rt+γv(st+1)), (11)

Yet, this approach does not utilize a meaningful knowledge;
when the exploration policy π0 is played, i.e., when Xt = 0,
the sample (rt, st+1) can be used to update all the action
entries from the current state. These entries are also affected
by the policy π0. In fact, we cannot prove the convergence of
the naive update based on current techniques; if the greedy
action is repeatedly chosen, ‘infinitely often’ visit in all
(s, a) pairs cannot be guaranteed.

This reasoning leads us to formulate Surrogate α-Q-learning
(see Algorithm 2). The Surrogate α-Q-learning updates two
q-functions, q and qα. The first, q, has the same update
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Algorithm 2 Surrogate α-Q-Learning

Initialize: α ∈ [0, 1], π0, qα, q, learning rate ηt.
for t = 0, 1, ... do
achosen ← arg maxa q(st, a)
Xt ∼ Bernoulli(1− α)

aenv =

{
achosen, if Xt = 1

a ∼ π0(· | s), if Xt = 0

rt, st+1 ← ACT (aenv)
for ā ∈ A do

yāt=

{
rt + γvα(st+1), ā = achosen

Xtq(st, ā)+(1−Xt) (rt+γvα(st+1)), o.w

qα(st, ā)← (1− η) qα(st, ā) + ηyāt
end for
yt ← rt + γ(1− α)v(st+1) + γαvπ0(st+1)
q(st, aenv)← (1− ηt)q(st, aenv) + ηtyt

end for
return π ∈ arg maxa qα(·, a)

as in Expected α-Q-learning, and thus converges (w.p 1)
to qπ

α(π∗α,π0). The second, qα, updates the chosen greedy
action using equation (11), when the exploration policy is
not played (Xt = 1). By bootstrapping on q, the algorithm
updates all other actions when the exploration policy π0 is
played (Xt = 0). Using (Singh et al., 2000)[Lemma 1], the
convergence of Surrogate α-Q-learning to (qπ

α(π∗α,π0), q∗α)
is established (see proof in Appendix L.2). Interestingly,
and unlike other q-learning algorithms (e.g, Expected α-Q-
learning, Q-learning, etc.), Surrogate α-Q-learning updates
the entire action set given a single sample. For completness,
we state the convergence result for both algorithms.
Theorem 10. Consider the processes described in Alg. 1, 2.
Assume {ηt}∞t=0 satisfies ∀s ∈ S, ∀a ∈ A,

∑∞
t=0 ηt =∞,

and
∑∞
t=0 η

2
t <∞, where ηt ≡ ηt(st = s, aenv,t = a).

Then, for both 1, 2 the sequence {qn}∞n=0 converges w.p. 1
to qπ

α(π∗α,π0), and for 2, {qα,n}∞n=0 converges w.p. 1 to q∗α.

5.2. Continuous Control

Building on the two approaches for solving Exploration
Conscious criteria, we suggest two techniques to find an
optimal Gaussian policy (6) using gradient based Deep RL
(DRL) algorithms, and specifically, DDPG (Lillicrap et al.,
2015). Nonetheless, the techniques are generalizable to
other actor-critic, DRL algorithms (Schulman et al., 2017).

Assume we wish to find an optimal Gaussian policy by
parameterizing its mean µ(φ). Nachum et al. (2018)[Eq.
13] showed the gradient of the value w.r.t. φ is similar to
Silver et al. (2014),

∇φvπµ,σ =

∫
S
∂aq

ππµ,σ
σ (s, a)∇φµθ(s)dρπµ,σ (s), (12)

where qµσ(s, a) = rσ(s, a)+γ
∫
S pσ(s′ | s, a)vπµ,σ (s′)ds′,

is the q-function of the surrogate MDP. In light of previ-

ous section, we interpret qµσ as the q-function of the surro-
gate MDP’sMσ (7). Furthermore, we have the following
relation between the surrogate and expected q-functions,
qµσ(s, a) =

∫
a′∈AN (a′ | a, σ)qπµ,σ (s, a′)da′, from which

it is easy to verify that (see Appendix L.3),

∇uqπµ,σσ (s, b)=

∫
A
N (b | a, σ)∇bqπµ,σ (s, b)db. (13)

Thus, we can update the actor in two inequivalent ways, by
using gradients on the surrogate MDP’s q-function (12), or
by using gradients of the expected q-function (13).

The updates of the critic, qµσ or qπµ,σ , can be done using the
same notion that led to the two forms of updates in (11)-(10).
When using Gaussian noise, one performs the two stages
defined in Section 5, where achosen is the output of the
actor µ(s), and aenv ∼ N (achosen, σ). Then, the sample
(s, achosen, aenv, r, s

′) is obtained by interacting with the
environment. Based on the the fixed policy TD-error defined
in (11), we define the following loss function, for learning
qµσ , q-function of the fixed policy µ overMσ ,(

qθσ(s, achosen)− r − γqθ−σ (s′, µφ−(s′))
)2
.

On the other hand, we can define a loss function derived
from the fixed-policy TD-error defined in (10), for learning
qπµ,σ , the q-function of the Gaussian policy with mean and
variance µ, σ2 overM,(
qθ(s, aenv)−r − γ

∫
A
N (b | µφ−(s′), s′)qθ−(s′, b)db

)2
.

6. Experiments
In this section, we test the theory and algorithms 1 suggested
in this work. In all experiments we used γ = 0.99. The
tested DRL algorithms in this section (See Appendix B)
are simple variations of DDQN (Van Hasselt et al., 2016)
and DDPG (Lillicrap et al., 2015), without any parame-
ter tuning, and based on Section 5. For example, for the
surrogate approach in both DDQN and DDPG we merely
save (s, achosen, r, s

′) instead of (s, aenv, r, s
′) in the replay

buffer (see Section 5 for definitions of aenv, achosen).

We observe a significant improved empirical performance,
both in training and evaluation for both the surrogate
and expected approaches relatively to the baseline perfor-
mance. The improved training performance is predictable;
the learned policy is optimal w.r.t. the noise which is be-
ing played. In large portion of the results, the exploration-
conscious criteria leads to better performance in evaluation.

6.1. Exploration Consciousness with Prior Knowledge

We use an adaptation of the Cliff-Walking maze (Sutton
et al., 1998) we term T-Cliff-Walking (see Appendix C).

1Implementation of the proposed algorithms can be found in
https://github.com/shanlior/ExplorationConsciousRL.
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Figure 1. T-Cliff-Walking for the expected (E) and surrogate (S)
approaches. (Left) α=0.3. (Right) α(s) from prior knowledge.

The agent starts at the bottom-left side of a maze, and needs
to get to the bottom-right side goal state with value +1.
If the agent falls off the cliff, the episode terminates with
reward −1. When the agent visits any of the first three steps
on top of the cliff, it gets a reward of 0.01 · (1− γ).

We tested Expected α-Q-learning, Surrogate α-Q-learning,
and compared their performance to Q-learning in the pres-
ence of ε-greedy exploration. Figure 1 stresses the typical
behaviour of the α-optimality criterion. It is easier to approx-
imate πα(π∗α, π0) than the optimal policy. Further, by being
exploration-consciousness, the value of the approximated
policy improves faster using the α-optimal algorithms; it
learns faster which regions to avoid. As Proposition 4 sug-
gests, the value of the learned policy is biased w.r.t v∗. Next,
as suggested by Proposition 3, acting greedily w.r.t. the
approximated value attains better performance. Such im-
provement is not guaranteed while the value had not yet
converged to v∗α. However, the empirical results suggest
that if the agent performs well over the mixture policy, it is
worth using the greedy policy.

We show that it is possible to incorporate prior knowledge
to decrease the bias caused by being Exploration-Conscious.
The T-Cliff-Walking example demands high exploration,
α = ε = 0.3, because of the bottleneck state between the
two sides of the maze. The α-optimal policy in such case
is to stay at the left part of the maze. We used the prior
knowledge that L(s) close to the barrier is high. The knowl-
edge was injected through the choice of α, i.e., we chose a
state-wise exploration scheme with α(s) = ε(s) = 0.1 in
the passage and the two states around it, and α(s) = 0.3
elsewhere, for all three algorithms. The results in Figure 1
suggests that using prior knowledge to set α(s), can increase
the performance by reducing the bias. In contrast, such prior
knowledge does not help the baseline q-learning.

6.2. Exploration Consciousness in Atari

We tested the α-optimal criterion in the more complex func-
tion approximation setting (see Appendix Alg. 3, 4). We
used five Atari 2600 games (5) from the ALE (Bellemare

Table 1. Train and Test rewards for the Atari 2600 environment,
with 90% confidence interval

Game DDQN Expected
α-DDQN

Surrogate
α-DDQN

Train

Breakout 350±4 356±6 357±4

FishingDer -45±9 -35±27 -8±8

Frostbite 1191±171 794±158 1908±162

Qbert 13221±565 13431±178 14240±225

Riverraid 8602±205 8811±645 11476±79

Test

Breakout 402±14 390±5 392±5

FishingDer -37±15 -19±34 -3±19

Frostbite 1720±191 1638±292 2686±278

Qbert 15627±497 15780±206 16082±338

Riverraid 9049±443 9491±802 12846±241

et al., 2013). We chose games that resemble the Cliff Walk-
ing scenario, where the wrong choice of action can lead to a
sudden termination of the episode. Thus, being unaware of
the exploration strategy can lead to poor training results. We
used the same deep neural network as in DQN (Mnih et al.,
2015), using the openAI Baselines implementation (Dhari-
wal et al., 2017), without any parameter tuning, except for
the update equations. We chose to use the Double-DQN
variant of DQN (Van Hasselt et al., 2016) for simplicity and
generality. Nonetheless, changing the optimality criterion is
orthogonal to any of the suggested add-ons to DQN (Hessel
et al., 2017). We used α = ε = 0.01 in the train phase, and
ε = 0.001 in the evaluation phase. For the surrogate version,
we used a naive implementation based on equation (11).

Table 1 shows that our method improves upon using the op-
timal criterion. That is, while bias exists, the algorithm still
converges to a better policy. This result holds both on the ex-
ploratory training regime and the evaluation regime. Again,
acting greedy w.r.t. the approximation of the α-optimal
policy proved beneficial: The evaluation phase results sur-
passes the train phase results as shown in the table, and the
training figures in Appendix (2). The evaluation is usually
done with an ε = 0.001 > 0. Proposition 3 put formal
grounds for using smaller ε in the evaluation phase than in
the training phase; improvement is assured. Being accurate
is extremely important in most Atari games, so Exploration-
Consciousness can also hurt the performance. Still, one can
use prior knowledge to overcome this obstacle.

6.3. Exploration Consciousness in MuJoCo

We tested the Expected σ-DDPG (5) and Surrogate σ-
DDPG (6) on continuous control tasks from the MuJoCo
environment (Todorov et al., 2012). We used the OpenAI
implementation of DDPG as the baseline, where we only
changed the update equations to match our proposed algo-
rithms. We used the default hyper-parameters, and inde-
pendent Gaussian noise with σ = 0.2, for all tasks and
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Table 2. Train and Test rewards for the MuJoCo environment.

Game DDPG Expected
σ-DDPG

Surrogate
σ-DDPG

Train

Ant 809±47 1013±49 993±110

HalfCheetah 2255±804 2634±828 3848±248

Hopper 1864±139 1866±132 2566±155

Humanoid 1281±142 1416±155 1703±272

InPendulum 694±109 882±33 998±3

Walker 1722±170 2144±145 2587±214

Test

Ant 1611±120 1924±126 1754±184

HalfCheetah 2729±936 3147±986 4579±298

Hopper 3099±113 3071±50 3037±78

Humanoid 1688±223 1994±389 2154±408

InPendulum 999±2 1000±0 1000±0

Walker 3031±298 3315±147 3501±240

algorithms. The results in Table 2 were averaged over 10
different seeds. The performance of the σ-optimal variants
superseded the baseline DDPG, for most of the training and
test results. Interestingly, although improvement is not guar-
anteed (Proposition 7), the σ-optimal policy improved when
using µφ deterministically, i.e., in the test phase. This sug-
gests that improvement can be expected on certain scenarios,
although that generally it is not guaranteed. We also found
that the training process was faster using the σ-optimal algo-
rithms, as can be seen in the learning curves in Appendix 3.
Interestingly, again, the surrogate approach proved superior.

7. Relation to existing work
Lately, several works have tackled the exploration problem
for deep RL. In some, like Bootstrapped-DQN (see appendix
[D.1] in (Osband et al., 2016)), the authors still employ an
ε-greedy mechanism on top of their methods. Moreover,
methods like Distributional-DQN (Bellemare et al., 2017;
Dabney et al., 2018) and the state-of-the-art Ape-X DQN
(Horgan et al., 2018), still uses ε-greedy and Gaussian noise,
for discrete and continuous actions, respectively. Hence, all
the above works are applicable for the α-optimal criterion
by using the simple techniques described in Section 5.

Existing on-policy methods produce variants of Exploration-
Consciousness. In TRPO and A3C (Schulman et al., 2015;
Mnih et al., 2016), the exploration is implicitly injected
into the agent policy through entropy regularization, and
the agent improves upon the value of the explorative policy.
Simple derivation shows the α-greedy and the Gaussian
approaches are both equivalent to regularizing the entropy to
be higher than a certain value by setting α or σ appropriately.

Expected α-Q-learning highlights a relation to algorithms
analysed in (John, 1994; Littman et al., 1997) and to
Expected-Sarsa (ES) (Van Seijen et al., 2009). The focus of
(John, 1994; Littman et al., 1997) is exploration-conscious

q-based methods. In ES, when setting the ‘estimation policy’
(Van Seijen et al., 2009) to be π = (1− αt)πG + αtπ0, we
get similar updating equations as in lines 1-1, and similarly
to (John, 1994; Littman et al., 1997). However, in ES αt
decays to zero, and the optimal policy is obtained in the infi-
nite time limit. In (Nachum et al., 2018), the authors offer a
gradient based mechanism for updating the mean and vari-
ance of the actor. Here, we offer and analyze the approach
of setting αt and σt to a constant value. This would be of
interest especially when a ‘good’ mechanism for decaying
αt and σt lacks; the decay mechanism is usually chosen by
trial-and-error, and is not clear how it should be set.

Lastly, (4) and (6) can be understood as defining a ‘surro-
gate problem’, rather than finding an optimal policy. In this
sense, it offers an alternative approach to biasing the prob-
lem by lowering the discount-factor, i.e., solve a surrogate
MDP with γ̄ < γ (Petrik & Scherrer, 2009; Jiang et al.,
2015). Interestingly, the introduced bias when solving (4) is
proportional to a local property of v∗, L(s), that can be esti-
mated using prior-knowledge on the MDP, where solving an
MDP with γ̄ introduces a bias proportional to a non-local
term, which is harder to estimate. More importantly, the per-
formance of an α-optimal policy π∗α is assured to improve
when tested on the original MDPM (Proposition 3), while
the performance of an optimal policy in an MDP with γ̄
might decline when tested onM with γ-discounting.

8. Summary
In this paper, we revisited the notion of an agent being
conscious to an exploration process. To our view, this notion
did not receive the proper attention, though it is implicitly
and repeatedly used.

We started by formally defining optimal policy w.r.t. an
exploration mechanism (4), (6). This expanded the view
on exploration-conscious q-learning (John, 1994; Littman
et al., 1997) to a more general one, and lead us to derive new
algorithms, as well as re-interpreting existing ones (Van Sei-
jen et al., 2009). We formulated the surrogate MDP notion,
which helped us to establish that exploration-conscious cri-
teria can be solved by Dynamic Programming, or, more
generally, by an MDP solver. From the practical side, based
on the theory, we tested DRL algorithms – by simply modi-
fying existing ones, with no further hyper-parameter tuning
– and empirically showed their superiority.

Although a bias - error sensitivity tradeoff was formulated,
we did not prove (4), (6) are easier to solve than an MDP.
We believe proving whether the claim is true is of interest.
Furthermore, analyzing more exploration-conscious criteria,
e.g., exploration-conscious w.r.t. Ornstein-Uhlenbeck noise,
is of interest, as well as defining a unified framework for
exploration-conscious criteria.
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A. Training graphs for the Atari and MuJoCo experiments
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Figure 2. Simulation results for the Atari 2600 environment: From up to bottom: Breakout, Fishing Derby, Frostbite, Qbert and Riverraid.
(Left) Training. (Right) Test.
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Figure 3. Simulation results for the MuJoCo environment: From up to bottom: Ant, HalfCheetah, Hopper, Humanoid, InvertedPendulum
and Walker2d. (Left) Training. (Right) Test.
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B. Deep RL Exploration Conscious algorithms
The algorithms in this section are the adjusted DDQN (Van Hasselt et al., 2016) and DDPG (Lillicrap et al., 2015) to solve
the α-optimal and σ-optimal policies, respectively. For the surrogate approach the change is merely the gathered data;
the action achosen is saved and not aenv. For the expected approach, the expectation is calculated by an explicit averaging
Algorithm 3 or by simple sampling technique Algorithm 5.

Algorithm 3 Expected α-DDQN

Initialize: Network parameters θ, θ− ← θ
Replay buffer R, Target network update time N−

for episode= 1,M do
for t = 1, T do do
achosen ← arg maxa q(st, a|θ)
Xt ∼ Bernoulli(1− α)

aenv =

{
achosen, if Xt = 1

a ∼ π0(· | s), if Xt = 0

rt, st+1 ← ACT (aenv)
Store (st, aenv, rt, st+1) in R
Sample N tuples (si, a

i
env, ri, s

′
i) from R

ai ← arg maxa q(s
′
i, a|θ)

vi ← (1− α)q(s′i, ai|θ−) + αvπ0(s′i|θ−)
yi ← ri + γvi
Minimize L = 1

N

∑
i

(
yi − q(si, aienv|θ

)2
Update θ− ← θ every N− steps

end for
end for

return π ∈ arg maxa q(·, a)

Algorithm 4 Surrogate α-DDQN

Initialize: Network parameters θ, θ− ← θ
Replay buffer R, Target network update time N−

for episode= 1,M do
for t = 1, T do do
achosen ← arg maxa qα(st, a|θ)
Xt ∼ Bernoulli(1− α)

aenv =

{
achosen, if Xt = 1

a ∼ π0(· | s), if Xt = 0

rt, st+1 ← ACT (aenv)
Store (st, achosen, rt, st+1) in R
Sample N tuples (si, a

i
chosen, ri, s

′
i) from R

ai ← arg maxa qα(s′i, a|θ)
yi ← ri + γqα(s′i, ai|θ−)

Minimize L = 1
N

∑
i

(
yi − qα(si, a

i
chosen|θ

)2
Update θ− ← θ every N− steps

end for
end for

return π ∈ arg maxa qα(·, a)

Algorithm 5 Expected σ-DDPG

Initialize: Critic and Actor networks q(s, a|θ), µ(s|φ)
Target networks weights: θ− ← θ and φ− ← φ
Replay buffer R, Target network update time N−

for episode= 1,M do
Initialize random markovian exploration process N
Receive initial observation state s1

for t = 1, T do do
aenv ← µ(st|φ) +Nt
rt, st+1 ← ACT (at)
Store (st, aenv, rt, st+1,Nt) in R
Sample N transitions (si, ai, ri, s

′
i,Ni) from R

Sample D1 noise terms nj given Ni
yi ← ri + γ 1

D1

∑
j q(s

′
i, µ(s′i) + nj |φ−)|θ−)

Critic Loss: L = 1
N

∑
i (yi − q(si, ai|θ)2

Sample D2 noise terms nj given Ni
Approximate gradient policy gradient:
∇πqπ(si) ≈ 1

D2

∑
j ∇aq(si, a|θ)

∣∣
a=µ(si)+nj

Update actor using policy gradient:
∇φV ≈ 1

N

∑
i∇πqπ(si)∇φµ(si|φ)

Update target networks every N− steps
end for

end for
return µ(·|φ)

Algorithm 6 Surrogate σ-DDPG

Initialize: Critic and Actor networks qσ(s, a|θ), µ(s|φ)
Target networks weights: θ− ← θ and φ− ← φ
Replay buffer R, Target network update time N−

for episode= 1,M do
Initialize random markovian exploration process N
Receive initial observation state s1

for t = 1, T do do
achosen ← µ(st|φ)
aenv ← achosen +Nt
rt, st+1 ← ACT (aenv)
Store (st, achosen, rt, st+1) in R
Sample N transitions (si, ai, ri, s

′
i) from R

yi ← ri + γqσ(s′i, µ(s′i|φ−))|θ−)

Critic Loss: L = 1
N

∑
i (yi − qσ(si, ai|θ)2

Update actor using policy gradient:
∇φV = 1

N

∑
i∇aqσ(si, a|θ)

∣∣
a=µ(si)

∇φµ(si|φ)

Update target networks every N− steps
end for

end for
return µ(·|φ)
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Figure 4. T-Cliff-Walking: The bright gray area is an impenetrable barrier. The cliff is colored in dark gray. The green states are with a
small reward of 0.01 · (1− γ).

Figure 5. Atari games. From left to right: Breakout, Fishing Derby, Frostbite, Qbert, Riverraid.

C. Experimental details
In this section we will discuss some technicalities that are related to the experiments done in this paper.

C.1. Cliff Walking

We used the T-Cliff-Walking scenario in Figure 4: The size of the cliff is (h,w) = (4, 12). We added small reward of
0.01rmax (green states) in order to create some small bias between the optimal and the α-optimal policy. The maximal
reward in this example is rmax = 1− γ. We first checked to see that that alpha = ε = 0.1 performed bad. Then, we raised
the ε value. The bottleneck passage between to sides of the maze, creates a scenario where high exploration is needed. We
performed 2,000 runs for each of the algorithms. Finally, the test error was evaluated with high precision using the fixed
value iteration procedure.

D. Proof of Lemma 1
For any policy π the following equalities hold.

vπα = (I − γPπα )−1rπα

= (I − γ((1− α)Pπ + αPπ0))−1((1− α)rπ + αrπ0)

= (I − γPπ
α(π,π0))−1rπ

α(π,π0) = vπ
α(π,π0).

E. Proof of Proposition 2
Proof. Let v ∈ R|S| and consider the surrogate MDP,Mα. Its fixed policy Bellman operator (see (1)) is given by:

Tπα v = rπα + γPπα v

= (1− α)(rπ + γPπv) + α(rπ0 + γPπ0v)

= (1− α)Tπv + αTπ0v. (14)

The second relation is by plugging Pπα , r
π
α from (5), and rearranging. The fixed point of Tπα is vπα, the value of π measured

inMα. Due to Lemma 1, vπα = vπ
α(π,π0).
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The optimal Bellman operator ofMα is (see (1)):

Tαv = max
π

Tπα v

= max
π

(1− α)Tπv + αTπ0v

= (1− α) max
π

Tπv + αTπ0v = (1− α)T + αTπ0 , (15)

where the second relation holds by (14). The fixed point of Tα is, by construction, v∗α, the optimal value onMα. Moreover,
v∗α is the optimal value of a policy onMα. By Lemma 1, the policy that achieves the optimal value onMα achieves the
α-optimal value, maxπ′ v

πα(π′,π0) = vπ
α(π∗α,π0). Thus, this policy is the α-optimal policy, π∗α, and v∗α = vπ

∗
α = vπ

α(π∗α,π0).

SinceMα is an MDP, its optimal policy is in the greedy set w.r.t. v∗α (see (2)). Thus,

π∗α ∈ {π : Tπα v
∗
α = Tαv

∗
α}

= {π : (1− α)Tπv∗α + αTπ0v∗α = (1− α)Tv∗α + αTπ0v∗α}
= {π : Tπv∗α = Tv∗α} = G(v∗α).

F. Proof of Theorem 3
For completness we give two useful lemmas that are in use. The first one has several instances in the literature.

Lemma 11. Let vπ and vπ
′

be the correspondsing values of the policies π and π′. Then,

vπ
′
− vπ = (I − γPπ

′
)−1(Tπ

′
vπ − vπ) (16)

Proof.

vπ
′
− vπ = (I − γPπ

′
)−1rπ

′
− vπ

= (I − γPπ
′
)−1(rπ

′
+ γPπ

′
vπ − vπ)

= (I − γPπ
′
)−1(Tπ

′
vπ − vπ).

The following Lemma has several instrances in previous literature:

Lemma 12. Let π be any policy and π1−step ∈ G(vπ). Then,

vπ ≤ vπ
α(π1−step,π),

where the inequality is strict at least in one-component if π 6= π∗, if π is not the optimal policy.

Proof.

vπ
α(π1−step,π) − vπ = (I − γPπ

α(π1−step,π))−1(Tπ
α(π1−step,π)vπ − vπ),

where the first relation holds due to Lemma 11. See that,

Tπ
α(π1−step,π)vπ − vπ = (1− α)Tπ1−stepvπ + αTπvπ − vπ

= (1− α)Tπ1−stepvπ + αvπ − vπ

= (1− α) (Tπ1−stepvπ − vπ) = (1− α) (Tvπ − vπ)

Plugging it into (F) yields,

vπ
α(π1−step,π) − vπ = (1− α)(I − γPπ

α(π1−step,π))−1(Tvπ − vπ).

We have that Pπ
α(π1−step,π))−1 ≥ 0 since it is a γ-discounted weighted sum of stochastic matrices. Furthermore,

vπ = Tπvπ ≤ Tvπ,

where the last inequality is strict at least in one component if vπ 6= v∗, i.e, if π 6= π∗.
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s0

s1s2

a1, 0a2, 0

a1, 0.8a2, 0 a1, 1

Figure 6. Counter exmple for an MDP with no monotonous improvement for the α-optimal criterion 3.

We now prove the result. The first relation holds almost by construction. We have that,

vπ
α(π∗α,π0) = max

π′
vπ

α(π′,π0) ≥ vπ
α(π0,π0) = vπ0 (17)

where the first relation is due to the definition of the α-optimal value (4), the second relation holds by definition and the
third relation holds since

πα(π0, π0) = (1− ε)π0 + επ0 = π0.

As long as π0 6= π∗, the policy π1−step ∈ G(vπ0) acheives strict improvement in (17). Meaning,

vπ
α(π1−step,π0) ≥ vπ0 .

This means that the improvement in (17) is strict as long as π0 6= π∗.If π0 is not optimal we have that

vπ0 ≤ vπ
α(π1−step,π0) ≤ vπ

α(π∗α,π0).

The first relation is strict due to Lemma 12, and the second relation holds by the definition of the α-optimal policy.

We now prove the second relation of the lemma. Let β ∈ [0, α]. Then,

vπ
β(π∗α,π0) − v∗α = (I − γPπ

β(π∗α,π0))−1(Tπ
β(π∗α,π0)v∗α − v∗α).

We have that,

Tπ
β(π∗α,π0)v∗α − v∗α = Tπ

β(π∗α,π0)v∗α − Tαv∗α
= (1− β)Tπ

∗
αv∗α + βTπ0v∗α − (1− α)Tv∗α − αTπ0v∗α

= (α− β) (Tv∗α − Tπ0v∗α) ,

where in the last relation we used Tπ
∗
αv∗α = Tv∗α (see Proposition 2). Plugging into (F) yields,

vπ
β(π∗α,π0) − v∗α = (α− β)(I − γPπ

β(π∗α,π0))−1 (Tv∗α − Tπ0v∗α) .

We have that (I − γPπβ(π∗α,π0))−1 ≥ 0 since it is a γ-discounted sum of stochastic matrices, and Tv∗α ≥ Tπ0v∗α with
equality if and only if π0 is optimal; if and only if π0 is optimal v∗α = v∗ due to the first part of this proof.

F.1. Counter example for monotonous improvement for the α-optimal criterion

In this section, we give a counter example that proves that the improvement in Proposition 3 is not monotonous w.r.t
β. Let the MDP given in Figure 6 be a γ-discounted MDP for some γ ∈ (0, 1). Let π0 be a deterministic policy which
always chooses action a2. For α = 0.25, It is easy to verify that v∗α(s1) = 0.8 and v∗α(s2) = (1 − α) = 0.75. Now,
q∗α(s0, a1) = γ(1 − α)v∗α(s1) + αv∗α(s2) = 0.7875γ, and q∗α(s0, a2) = 0.75γ. Thus, the α-optimal policy on s0 is to
choose a1, and v∗α(s0) = 0.7875γ.

Now, we consider acting according to the mixture policy πβ(π∗α, π0) for some β < α. For the greedy policy, i.e. β = 0,
we get that vπ

0(π∗α,π0) = vπ
∗
α = 0.8γ. For β = 0.1, we get that vπ

0.1(π∗α,π0) = γ(0.9 · 0.8 + 0.1 · (0.9 · 1)) = 0.81γ.
To conclude, as the lemma 3 suggests, we get improvement for both inspected β, i.e. v∗α < vπ

∗
α and v∗α < vπ

0.1(π∗α,π0).
However, the improvement does not increase monotonically as we decrease β, as vπ

∗
α = 0.8γ < 0.81γ = vπ

0.1(π∗α,π0).
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G. Generalization of (Bertsekas & Tsitsiklis, 1995)[Proposition 6.1] for any policy class
In this section, we prove a generalization of (Bertsekas & Tsitsiklis, 1995)[Proposition 6.1] for any class of policies.
Proposition 13. Let σ a set of fixed parameters of some distribution class. Assume v̂∗σ is an approximate σ-optimal value
s.t. ‖v∗σ − v̂∗σ‖ = δ for some δ > 0. Then, ∥∥∥v∗σ − vπ̂∗σ∥∥∥ ≤ γδ‖π∗σ − π̂∗σ‖TV

1− γ
.

Proof.

v∗σ − v
π̂∗σ
σ = Tσv

∗
σ − T π̂

∗
σvπ̂

∗
σ = Tσv

∗
σ − Tσ v̂∗σ + Tσ v̂

∗
σ − T π̂

∗
σvπ̂

∗
σ

= Tσv
∗
σ − Tσ v̂∗σ + T π̂

∗
σv∗σ − T π̂

∗
σv∗σ + T π̂

∗
σ v̂∗σ − T π̂

∗
σ v̂∗σ + Tσ v̂

∗
σ − T π̂

∗
σvπ̂

∗
σ

= (Tσv
∗
σ − Tσ v̂∗σ) +

(
T π̂
∗
σ v̂∗σ − T π̂

∗
σv∗σ

)
+
(
T π̂
∗
σv∗σ − T π̂

∗
σ v̂∗σ + Tσ v̂

∗
σ − T π̂

∗
σvπ̂

∗
σ

)
(a)

≤
(
Tπ
∗
σv∗σ − Tπ

∗
σ v̂∗σ

)
+
(
T π̂
∗
σ v̂∗σ − T π̂

∗
σv∗σ

)
+
(
T π̂
∗
σv∗σ − T π̂

∗
σ v̂∗σ + Tσ v̂

∗
σ − T π̂

∗
σvπ̂

∗
σ

)
(b)
= γPπ

∗
σ (v∗σ − v̂∗σ)− γP π̂

∗
σ (v∗σ − v̂∗σ) +

(
T π̂
∗
σv∗σ − Tσ v̂∗σ + Tσ v̂

∗
σ − T π̂

∗
σvπ̂

∗
σ

)
= γ

(
Pπ
∗
σ − P π̂

∗
σ

)
(v∗σ − v̂∗σ) +

(
T π̂
∗
σv∗σ − T π̂

∗
σvπ̂

∗
σ

)
Where (a) is due to the fact that for any v and π, Tπσ ≤ Tσv, and (b) is due to the definition of the σ-greedy operator.

Taking the max-norm,∣∣∣v∗σ (s)− vπ̂
∗
σ (s)

∣∣∣ ≤ γ ∣∣∣((Pπ∗σ − P π̂∗σ) (v∗σ − v̂∗σ)
)

(s)
∣∣∣+
∣∣∣(T π̂∗σv∗σ − T π̂∗σvπ̂∗σ) (s)

∣∣∣
≤ γ

∣∣∣∣∣∣
∑
s′,a

p (s|s′, a) (π∗σ (a|s′)− π̂∗σ (a|s′)) (v∗σ (s′)− v̂∗σ (s′))

∣∣∣∣∣∣+ γ
∥∥∥v∗σ − vπ̂∗σ∥∥∥ =

≤ γmaxs′

∣∣∣∣∣∑
a

(π∗σ (a|s′)− π̂∗σ (a|s′)) (v∗σ (s′)− v̂∗σ (s′))

∣∣∣∣∣+ γ
∥∥∥v∗σ − vπ̂∗σ∥∥∥

≤ γ ‖v∗σ − v̂∗σ‖ ‖π∗σ − π̂∗σ‖TV + γ
∥∥∥v∗σ − vπ̂∗σ∥∥∥

Where the ‖·‖TV accounts for the maximal total-variation distance over all states. Finally,∥∥∥v∗σ − vπ̂∗σ∥∥∥ ≤ γδ‖π∗σ − π̂∗σ‖TV
1− γ

.

Finally, this bound is a generalization of (Bertsekas & Tsitsiklis, 1995)[Proposition 6.1], for any class of distributions.
Notice that the total variation distance is not bigger than 2, which is the case of two different deterministic policies. This
leads back to the familiar bound.

H. Proof of Theorem 4: Bias-Error Sensitivity in the α-greedy case
In order to prove the theorem, we first prove the following two propositions 14,15. Then, we plug the results in the following
triangle inequality: ∥∥∥v∗ − vπα(π̂∗α,π0)

∥∥∥ ≤ ‖v∗ − v∗α‖+
∥∥∥v∗α − vπα(π̂∗α,π0)

∥∥∥
Proposition 14. Let ∀s ∈ S, α(s) ∈ [0, 1], be a state-dependent function. Let π∗α be the α-optimal policy, and L(s) the
MDP Lipschitz constant, both relatively to π0. Define B(α) , maxs α(s)L(s). The following bounds hold,∥∥∥v∗ − vπ∗α∥∥∥ ≤ ∥∥∥v∗ − vπα(πg,π0)

∥∥∥ ≤ B(α)

1− γ
,

If ∀s ∈ S, α(s) = α ∈ [0, 1] then B(α) = αL (see Definition 1). Furthermore, this bound is tight.
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Proof. We have that for any s ∈ S,

v∗ − v∗α(s) = (Tv∗ − Tαv∗)(s) + (Tαv
∗ − Tαv∗α)(s)

≤ ‖Tv∗ − Tαv∗‖+ ‖Tαv∗ − Tαv∗α‖
≤ ‖Tv∗ − Tαv∗‖+ γ ‖v∗ − v∗α‖ ,

in the last relation we used the fact that Tα is a γ contraction in the max-norm. Moreover, we have that for any s ∈ S,

Tv∗(s)− Tαv∗(s) = Tv∗ − (1− α(s))Tv∗(s)− α(s)Tπ0v∗(s)

= α(s) (Tv∗(s)− Tπ0v∗(s)) (18)
= α(s) (v∗(s)− Tπ0v∗(s)) = α(s)L(s).

In the third relation we used the fact that Tv∗ = v∗ component-wise, since v∗ is the fixed-point of T . Thus, we see that,

‖Tv∗ − Tαv∗‖ = max
s
α(s)L(s) = B(α),

and that L(s) ≥ 0 since v∗(s)− Tπ0v∗(s) ≥ 0. By taking the max-norm on (14), which is possible since it is positive, and
simple algebraic manipulation we conclude the result.

We can continue and bound the above to get the bound in (14), which is less tight. We have that,

|Tv∗ − Tπ0v∗|(s) = |Tπ
∗
v∗ − Tαv∗|(s) (19)

≤
∑
a

|π∗(a | s)− π0(a | s)| ×

∣∣∣∣∣r(s, a) + γ
∑
s′

P (s′ | s, a)v∗(s′)

∣∣∣∣∣ ,
where the first relation is by using the triangle inequality, and then use |a · b| ≤ |a| · |b|. We further have that,∣∣∣∣∣r(s, a) + γ

∑
s′

P (s′ | s, a)v∗(s′)

∣∣∣∣∣ ≤ Rmax

1− γ
.

Thus, continuing from (14), we can further bound (19),

|Tv∗ − Tπ0v∗|(s) ≤ Rmax

1− γ
∑
a

|π∗(a | s)− π0(a | s)|.

Thus,

α(s)(Tv∗ − Tπ0v∗)(s) ≤ max
α(s) ‖π∗ − π0‖TV (s)Rmax

1− γ
where ‖π∗ − π0‖TV (s) =

∑
a |π∗(a | s)− π0(a | s)|, is the total variation of π∗ and π0 in state s.

Finally, the bound is proved tight by an example which attains it as described below:

For the MDP described in figure 7, it is easy to see that for the uniform π0:

v∗ − vπ
∗
α =

1

1− γ
− 1− α/2

1− γ
=

α/2

1− γ
Next:

α

1− γ

∥∥∥∥∥v∗(s)−∑
a

π0(a|s)q∗(s, a)

∥∥∥∥∥ =
α

1− γ

∥∥∥∥ 1

1− γ
− 1/2

1− γ
− γ/2

1− γ

∥∥∥∥ =
α/2

1− γ

Proposition 15. Let α ∈ [0, 1]. Assume v̂∗α is an approximate α-optimal value s.t ‖v∗α − v̂∗α‖ = δ for some δ ≥ 0. Let πg
be the greedy policy w.r.t. v, π̂∗α ∈ G(v̂∗α). Then∥∥∥v∗α − vπα(π̂∗α,π0)

∥∥∥ ≤ 2(1− α)γδ

1− γ
Furthermore, there exists some δ0 > 0 such that if δ < δ0, then π̂∗α = π∗α, and this bound is tight.
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s0

a0

0
a1

1

Figure 7. One State MDP that attains the bound in Proposition 14

s0 s1

a0

−γδ
a1
γδ

a1

γδ

a0−γδ
Figure 8. Two State MDP that attains the bound in Proposition 15 over a uniform π0.

Proof. First, notice that for any two α-greedy policies, πα(π1, π0), πα(π2, π0),

‖πα(π1, π0)− πα(π2, π0)‖TV = ‖(1− α)π1 + απ0 − (1− α)π2 − απ0‖TV
= (1− α) ‖π1 − π2‖TV
≤ 2(1− α)

Where the last transition is due to the fact that for the total- variation between distributions is always smaller than 2, which
is the case of two different deterministic policies. Plugging in the result in Proposition 13, we get the required bound.

Finally, we prove that this bound is tight (see that different MDP then in (Bertsekas & Tsitsiklis, 1995) is used). Observe at
the MDP described in Figure 8. The policy π∗α is to always choose action a1. Hence,

v∗α =

∞∑
n=0

γn
[
γδ(1− α

2
)− γδα

2

]
=
γδ(1− α)

1− γ

Now, given value estimation v̂∗α, such that v̂∗α(s0) = δ, v̂∗α(s1) = −δ, taking always a1 is an α-greedy policy with respect to
v̂∗α:

(1− α

2
)(γδ + γv̂∗α(s1)) +

α

2
(−γδ + γv̂∗α(s0)) = 0 = (1− α

2
)(−γδ + γv̂∗α(s0)) +

α

2
(γδ + γv̂∗α(s1))

Hence,

vπ
α(π̂∗α,π0) =

∞∑
n=0

γn
[
−γδ(1− α

2
) + γδ

α

2

]
=
γδ(α− 1)

1− γ

Simple arithmetic show that this MDP attains the upper bound.

I. Proof of Proposition 6
In this section, we will prove Proposition 6. First, we define the sufficient conditions for an MDP on which Proposition 6 is
true:

Definition 3. An MDPM = (S,A, P,R, γ) is a bounded continuous MDP if the following holds:

1. A is a metric space, s.t. A = R|A|

2. ∀s ∈ S and a ∈ A, the state-wise reward function is positive, continuous, and bounded r(s, a)

3. ∀s ∈ S, the state-wise reward function r(s, a) is continuous in a ∈ A
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4. ∀s, s′ ∈ S, the transition probability density function p(s′|s, a) is continuous in a ∈ A.

Furthermore, we assume S is finite. Yet, we believe it is possible to extend our result to continuous space as well. This we
leave for future work.

Next, we state again the definition the optimal policy with respect to the Gaussian noise:

µ∗σ ∈ arg max
µ∈Ã

Eπµ,σ
[ ∞∑
t=0

γtr(st, at)

]
, (20)

Where the optimization is restricted to Ã, a compact subset of A.

We are now state again our main theorem regarding the σ-optimal optimization criterion:

Lemma 16. LetM = (S,A, P,R, γ) be a bounded continuous MDP (see (3)). LetN (µ, σ) be the Gaussian measure with
mean µ ∈ Rn and σ ≥ 0 and let Ã ⊂ A be a compact metric space. Then, the following claims hold:

1. Tµσ = Eπ∼πµ,σ Tπ , with fixed point vµσ=vπµ,σ .

2. Tσ=maxµ∈ÃE
π∼πµ,σ Tπ , with fixed point v∗σ=vπµ∗σ,σ .

3. A σ-optimal policy is an optimal policy of Mσ and is Gaussian w.r.t. v∗α, µ∗σ ∈ Nσ(v∗σ) = {µ : Tπµ,σv∗σ =
maxµ T

πµ,σv∗σ}.

Proof. We define the surrogate MDPMσ to have the following reward and dynamics,

rσ(s, a) =

∫
N (a′ | a, σ)r(s, a′)da′,

pσ(s′ | s, a) =

∫
N (a′ | a, σ)p(s′ | s, a′)da′.

Notice that ∑
s′

pσ(s′ | s, a) =

∫
N (a′ | a, σ)

∑
s′

p(s′ | s, a′)da′

=

∫
N (a′ | a, σ)da′ = 1.

First, we show that the surrogate MDPMσ is equivalent to a Gaussian policy onM. More specifically, we show that the
fixed policy bellman operator for a deterministic policy onMσ is equivalent to the bellman operator of a Gaussian policy on
M. Then, we show similar relation for the bellman optimality operator.

Lemma 17. The following claims hold:

1. The fixed-policy bellman operator onMσ , Tµσ and Tπµ,σ are equivalent.

2. The bellman operator onMσ , Tσ and maxµ T
πµ,σ are equivalent.

Proof.

Tµσ v = rµσ + γpµσv

= Eπ∼πµ,σrπ + Eπ∼πµ,σpπv
= Eπ∼πµ,σrπ + γpπv

= Eπ∼πµ,σTπ

The second relation holds directly from taking the maximum over both sides.
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By Lemma 17, the connection between operators is stated for both (1) and (2). By the definition ofMσ , for any Gaussian
policy with mean µ, πµ,σ , it holds that vµσ = vµ,σ .

Next, we prove the second relation. Again, we start by proving the following Lemma:

Lemma 18. There exists a σ-optimal Gaussian policy

Proof. The functions rσ(s, a) and pσ(s′|s, a) are defined as the expectation of r(s, ·) and p(s′|s, ·) on the Gaussian
measure with mean a respectively. For every s, s′ ∈ S, define the integrand g(a, µ) = φ(a|µ, σ)f(s′, s, a), where
f(s′, s, a) represents r(s, a) or p(s′|s, a). The derivative of φµ(a|µ, σ) exists ∀µ ∈ R|A|. Thus, (a) gµ(a, µ) exists
∀µ ∈ R|A|. Next, For all s, s′ ∈ S, r(s, a) and p(s′|s, a) are continuous and bounded in a. ∀µ, the Gaussian function
is lebesgue-integrable function of a. Thus, (b) ∀µ, g(a, µ) is a Lebesgue-integrable function of a. Now, there exist
c > 0, such that, |φµ| ≤ c|a − µ|φ(a|µ, σ). Furthermore, f(s′, s, a) is bounded. Hence, there exists C > 0, such
that, |gµ(a, µ)| ≤ C|a − µ|φ(a|µ, σ) , h(a, µ). Then, ∀µ, we can take an open ball of radius r, Br(µ). Define,
t(a) = maxx∈Br(µ) h(a, x). t is integrable for every a ∈ A by construction. In other words, (c) there is an integrable
function t : A→ R such that |gµ(a, µ)| ≤ t(a) for all µ ∈ Br(µ).

Finally, From (a),(b) and (c), by the Dominated convergence theorem, Leibniz integral rule applies, which means that
rσ(s, a) and pσ(s′|s, a) are differentiable in a ∈ A, and thus continuous in a ∈ A, for every s, s′ ∈ S.

Now, (1) letMσ be the surrogate MDP, and assume the state space is discrete. (2) For all s, s′ ∈ S , rσ(s, a) and pσ(s′|s, a)
are continuous in a. (3) By the definition of the optimality criterion, we consider only actions a ∈ A. Hence, the action
space ofMσ is compact.

Then, by theorem [6.2.10] in (Puterman, 1994), there exist an optimal deterministic policy for the surrogate MDP,Mσ .

By the definition of theMσ and Lemma 17, a deterministic policy µ inMσ is equivalent to a Gaussian policy πµ,σ on
M. Denote the optimal deterministic policy on the surrogate MDP as µ∗σ . Thus, the policy πµ∗σ,σ is an σ-optimal Gaussian
policy onM.

Finally, we show that solving the surrogate MDP is equivalent to solving (20) Tσ is the greedy bellman operator on the
surrogate MDP. Therefore, it is a γ-contraction. Thus, (a) by the Banach fixed point theorem and Theorem [6.2.2] in
(Puterman, 1994), v∗σ is the unique solution to the optimality equation, Tσv∗σ = v∗σ. (b) By Lemma 18, there exists a
deterministic optimal policy. Combining (a) and (b), we get that the greedy policy w.r.t. v∗σ , µ∗σ , is an optimal policy in the
surrogate MDP. By transforming back to the original MDP we get that π∗σ = πµ∗σ,σ:

µ∗σ ∈ {µ : Tµσ v
∗
σ = Tσv

∗
σ}

= {µ : Eπ∼πµ,σTπv∗σ = max
µ
Eπ∼πµ,σTπv∗σ}

= Nσ(v∗σ).

I.1. MDP with bounded action space

In this section we explain how to apply the σ-optimal criterion to an MDP with bounded action space. LetM be a bounded
continuous MDP with a compact action-space A. Proposition 6 demands the action space to be defined on the support of the
Gaussian measure. Thus, we need to formalize how the Gaussian noise which is defined over R|A| operates on the bounded
action set A. Intuitively, we choose to project any action chosen outside the action set a /∈ A onto the action set boundary.
Formally, the noise operates on the extended MDP,Mext, as defined here.

Definition 4. For a bounded continuous MDPM = (S,A, P,R, γ), we define the extended MDP,Mext, with action space
Aext = R|A|, such that:

1. Rext(s, a) = R(s,PA(a)), for all s ∈ S.

2. Pext(s, a) = P (s,PA(a)), for all s, s′ ∈ S
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Figure 9. Illustration of a typical case where there is no improvement: (Blue) The state-action value function as a function of the action
taken. (Orange) The σ-optimal policy is with µ∗

σ = 0 due to the smoothing effect of the Gaussian policy. (Black) A deterministic policy
around the µ∗

σ . It can be easily seen that decreasing the noise degrades the performance of the agent.

Where, PA(a) is the orthogonal projection of the action a onto the set A

The MDPMext is a bounded continuous MDP, with action space R|A|. Therefore, by 6, it is possible to find the optimal
policy w.r.t. the σ-optimal criterion, over any bounded action space. Finally, most naturally, one can apply the criterion to
the original action space A.

J. No Improvement in Continuous Control
We give here the proof, the improvement is not always guaranteed in the continuous case.

Proposition 19. Let 0 ≤ σ′ < σ and let µ∗ be the σ-optimal policy. There exists an MDP such that vπµ∗,σ > vπµ∗,σ′ .
Decreasing the stochasticity can hurt the performance of the agent, and improvement is not guaranteed.

Proof. Let M be a one-state MDP, with the following reward: r(u) = 1
2

1√
π
e−(u−1)2 + 1

2
1√
π
e−(u+1)2 . The expected

reward under a Gaussian policy with µ and σ = 1 is: rπ = 1
2

1√
3π
e−(µ−1)2/3 + 1

2
1√
3π
e−(µ+1)2/3. It is easy to calculate that

the maximum of rπ is attained when µ = 0 and its value lower bounded by 0.23. Hence, the σ-optimal policy with σ = 1 is
π(u|s) = N (0, 1). However, acting greedily w.r.t the mean of the σ-optimal, i.e., acting always with u = 0 can be upper
bounded by 0.21. Thus, rπ

∗
σ > rπ

µσ ,0

An illustration of such a case is given in figure J.

While in the general case there is no improvement, it is easy to verify that a sufficient condition for improvement is that the
state-wise variance of the qπ

∗
σ w.r.t. every smaller noise level, σ̃ < σ, is less than the noise level itself:

Ea∼πµ∗σ,σ̃(·|s)

[
(a− µ∗σ (s))

2
qπ
∗
σ (s, a)

]
Ea∼πµ∗σ,σ̃(·|s)qπ

∗
σ (s, a)

≤ σ̃2.

K. Proof of Theorem 8: Bias-Error Sensitivity in the Gaussian case
In this section we prove a bias-error sensitivity result for the Gaussian noise case, similarly to 4. Theorem 8 exhibits a
Bias-Sensitivity trade-off w.r.t. the noise parameter σ. When σ grows, the bias increases in ‖σ‖1, but the sensitivity term
decreases. In the limit where σ goes to infinity, the approximation error tend to zero. In the other limit, where the noise
reduces to zero, we return to the case of a greedy optimal policy. Indeed, as the bound shows, we get an unbiased solution,
and the sensitivity term reduces to the classical bound of Bertsekas & Tsitsiklis (1995). Unsurprisingly, we get a better
sensitivity bound only when there is a sufficient overlap between the two policies.

In order to prove the theorem, we will first prove two propositions: A bias proposition 20 and a sensitivity proposition 21.
Then, we plug the results in the following triangle inequality:∥∥v∗ − vµ̂,σ∥∥ ≤ ‖v∗ − v∗σ‖+

∥∥v∗σ − vµ̂,σ∥∥
First, we derive the bias proposition,
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Proposition 20. Let σ ≥ 0 and let π∗σ be the σ-optimal policy. Assume an MDPM is Lipschitz, i.e., there exists Lr ≥ 0 and
Lp ≥ 0, such that, ∀s, s′ ∈ S and ∀a1, a2 ∈ A, |r(s, a1)− r(s, a1)| < Lr ‖a1 − a2‖1 and |p(s′|s, a1)− p(s′|s, a1)| <
Lp ‖a1 − a2‖1. Then, the following holds,

‖v∗ − v∗σ‖ ≤
√

2

π

(1− γ)Lr + γLpRmax
(1− γ)2

σ

Proof.

‖v∗ − v∗σ‖ = ‖v∗ − Tσv∗σ‖
≤ ‖v∗ − Tσv∗‖+ ‖Tσv∗ − Tσv∗σ‖
≤ ‖v∗ − Tσv∗‖+ γ ‖v∗ − v∗σ‖

Where the inequality is due to the fact that Tσ is a γ-contraction. Simple algebra gives ‖v∗ − v∗σ‖ ≤
‖v∗−Tσv∗‖

1−γ

Next, we bound the nominator:

v∗(s)− (Tσv
∗)(s) = (T ∗v∗)(s)− (Tσv

∗)(s)

= max
a

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v∗(s′)−max
µ

∫
N (a|µ, σ)

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v∗(s′)

]
da

≤ r(s, a∗) + γ
∑
s′∈S

p(s′|s, a∗)v∗(s′)−
∫
N (a|a∗, σ)

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v∗(s′)

]
da

=

∫
N (a|a∗, σ)

[
(r(s, a∗)− r(s, a)) + γ

∑
s′∈S

(p(s′|s, a∗)− p(s′|s, a)) v∗(s′)

]
da

≤
∫
N (a|a∗, σ)

[
(r(s, a∗)− r(s, a)) + γ

∑
s′∈S
|p(s′|s, a∗)− p(s′|s, a)| v∗(s′)

]
da

≤
∫
N (a|a∗, σ)

[
(r(s, a∗)− r(s, a)) +

γRmax
1− γ

∑
s′∈S
|p(s′|s, a∗)− p(s′|s, a)|

]
da

≤
∫
N (a|a∗, σ)

[
Lr ‖a∗ − a‖1 + γ ‖p(· | s, a∗)− p(· | s, a)‖TV

Rmax
1− γ

]
da

≤
∫
N (a|a∗, σ)

[
Lr ‖a∗ − a‖1 + γLp ‖a∗ − a‖1

Rmax
1− γ

]
da

=

(
Lr + γLp

Rmax
1− γ

)∫
N (a|a∗, σ) ‖a∗ − a‖1 da

=

(
Lr + γLp

Rmax
1− γ

)√
2

π
‖σ‖1

Where the first transition is due to a∗ ∈ arg max r(s, a) + γ
∑
s′∈S p(s

′|s, a)v∗(s′), and the last is due to the absolute first
moment of the Gaussian distribution.

We get,

‖v∗ − Tσv∗‖ ≤
√

2

π

(
Lr + γLp

Rmax
1− γ

)
‖σ‖1

Finally, combining the two results gives:

‖v∗ − v∗σ‖ ≤
√

2

π

(1− γ)Lr + γLpRmax

(1− γ)
2 ‖σ‖1
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Finally, we prove the following sensitivity proposition using:

Proposition 21. Let σ ∈ R|A|+ . Assume v̂∗σ is an approximate σ-optimal value s.t. ‖v∗σ − v̂∗σ‖ = δ for some δ > 0. Let
µ∗σ, µ̂

∗
σ ∈ R

A be the greedy mean policy w.r.t. v∗σ and v̂∗σ respectively. Then,

‖v∗σ − v
πµ̂∗σ,σ‖ ≤ 1

2

γδmin{‖µ∗σ − µ̂∗σ‖σ−2 , 4}
1− γ

,

where ‖·‖σ−2 is the σ−2-weighted euclidean norm.

Proof. First, notice that the total variation distance is not bigger than 2, which is the case of two different deterministic
policies, as seen in (Bertsekas & Tsitsiklis, 1995)[Proposition 6.1]. Next, the Kullback-Leibler divergence between
two Gaussian distributions with the same variance σ is 1

2 ‖µ
∗
σ − µ̂∗σ‖

2
σ−2 , where ‖·‖σ−2 is the σ−2-weighted euclidean

norm. Finally, by using Pinsker’s inequality to bound the total variation distance, and plugging in the closed form of the
Kullback-Leibler divergence, one gets the required result.

L. Supplementary material for Section 5
In this section we give the proofs for the algorithms proposed in Section 5.1.

The proof of Lemma 9 is given as follows:

Proof. By using the definition of TEqα , and due to v∗α = maxa q
∗
α(·, a), we have that,

q∗α(s, a) = TEqα q∗α(s, a)

= rα(s, a) + γ
∑
s′

Pα(s′ | s, a) max
a′

q∗α(s′, a′)

= (1− α)

(
r(s, a) + γ

∑
s′

P (s′ | s, a)v∗α(s′)

)
+ α

∑
a

π(a′ | s)

(
r(s, a′) + γ

∑
s′

P (s′ | s, a′)v∗α(s′)

)
= (1− α)qπ

α(π∗α,π0)(s, a) + α
∑
a

π0(a′ | s)qπ
α(π∗α,π0)(s, a′),

where in the last relation we used (8).

We now prove the following lemma:

Lemma 22. The operator TEqα is a γ-contraction, and its fixed point is qπ
α(π∗α,π0)

Proof. It is easy to verify this operator is a γ-contraction using standard arguments (Bertsekas & Tsitsiklis, 1995). We prove
that the fixed point of TEqα is qπ

α(π∗α,π0). First, by using the max operator w.r.t. the action on the result in Lemma 9, we get

v∗α = (1− α) max
a

qπ
α(π∗α,π0)(·, a) + αΠ0q

πα(π∗α,π0). (21)

Consider the definition of qπ
α(π∗α,π0) (8). We have that,

qπ
α(π∗α,π0)(s, a) = r(s, a) + γ

∑
s′

P (s′ | s, a)v∗α(s′)

= r(s, a) + γ(1− α)
∑
s′

P (s′ | s, a) max
a′

qπ
α(π∗α,π0)(s′, a′)

+ γα
∑
s′,a′

P (s′ | s, a)π0(a′ | s′)qπ
α(π∗α,π0)(s′, a′)

= TEqα qπ
α(π∗α,π0)(s, a),

where the first relation holds by plugging (21) and the third relation holds by identifying the operator TEqα .
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L.1. Convergence of Expected α-Q-Learning

Now, we move on to prove the convergence of Expected α-Q-Learning:

Theorem 23. Consider the process described in Algorithm 1. Assume the sequence {ηt}∞t=0 satisfies ∀s ∈ S, ∀a ∈ A,∑∞
t=0 ηt(st = s, aenv,t = a) =∞, and

∑∞
t=0 η

2
t (st = s, aenv,t = a) <∞. Then, the sequence {qn}∞n=0 converges w.p 1

to qπ
α(π∗α,π0).

Proof. The updating equations of Algorithm 1 can be written as

qn+1(s, aenv) =(1− ηt)qn(s, aenv) + ηt(T
Eq
α qn(s, aenv)− wt),

where

wt = rt + γ(1− α)v(st+1) + γαvπ0(st+1)− TEqα qt(s, aenv),

and

v(st+1) = max
a′

q(st+1, a
′), vπ0(st+1) =

∑
a′

π0(a′ | st+1)q(st+1, a
′).

We let Ft = {Ht−1, st, aenv, Xt, achosen, rt}, where Ht−1 is the entire history until and including time t − 1. i.e, the
filtration includes both the chosen action, before deciding whether to act with it or according to π0, and the acted action.

We have that,

E
[
rt + γ(1− α) max

a
q(st+1, aenv)(st+1) | Ft

]
=

= r(st, aenv) + γ(1− α)
∑
s′

P (s′ | s, aenv) max
a′

q(s′, a′) + γα
∑
s′,a′

P (s′ | st, aenv)π0(a′ | s′)q(s′, a′),

and E [wt | Ft] = 0. It is also easy to see that E
[
w2
t | Ft

]
≤ A+B||Q||2∞.

Thus, according to (Bertsekas & Tsitsiklis, 1995)[Proposition 4.4] the process converges to the fixed point contraction
operator TEqα , qπ

α(π∗α,π0) (see Lemma 22).

L.2. Convergence of Surrogate α-Q-Learning

In this section, we prove the convergence of Surrogate α-Q-Learning:

Theorem 24. Consider the process described in Algorithm 2. Assume the sequence {ηt}∞t=0 satisfies ∀s ∈ S, ∀a ∈ A,∑∞
t=0 ηt(st = s, aenv,t = a) =∞, and

∑∞
t=0 η

2
t (st = s, aenv,t = a) <∞. Then, the sequences {qn}∞n=0 and {qα,n}∞n=0

converges w.p 1 to qπ
α(π∗α,π0) and q∗α, respectively.

We will use the following result (Singh et al., 2000)[Lemma 1].

Lemma 25. Consider a stochastic process (αt,∆t,∆t, ft), t ≥ 0, where αt, ∆t, ft : X → R satisfy the equations

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)ft(x),

x ∈ X, t = 0, 1, 2, .. (22)

Let Ft be a sequence of increasing σ-fields such that α0 and ∆0 are F0-measurable, t = 1, 2, .... Assume that the following
hold:

1. The set X is finite.

2. 0 ≤ αt(x) ≤ 1,
∑
t αt(x) =∞,

∑
t α

2
t (x) <∞ w.p 1.

3. ||E [ft(·) | Ft] || ≤ κ||∆t||+ ct, where κ ∈ [0, 1) and ct converges to zero w.p 1.

4. V ar [Ft(·) | Ft] ≤ K(1 + ||∆t||)2, where K is some constant.

Then, ∆t converges to zero with probability 1.
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Observe that qt has updating rule as in Expected α-Q-Learning (see Algorithm 1), and is independent of qα. Due to the
assumptions that ∀s ∈ S,∀a ∈ A

∞∑
t=0

ηt(st = s, aenv,t = a) =∞,

∞∑
t=0

ηt(st = s, aenv,t = a) ≤ ∞,

we get that the sequence {qt}∞t=0 converges to qπ
α(π∗α,π0) w.p 1.

We now manipulate the updating of q in Algorithm 2 to have the form of (22). Define the following difference

∆t(s, a) = qt(s, a)− q∗α(s, a),

and consider the filtration Ft = {Ht−1, st, achosen}.

By decreasing q∗α(s, a) from both sides of the updating equations of q in Algorithm 2, we obtain for any a ∈ A,

∆t+1(st, a) = (1− ηt)∆t(st, a)ft(st, a).

If ā = achosen then,

ft(st, ā) = rt + γvα,t(st+1)− q∗α(s, a),

whereas for ā 6= achosen,

ft(st, ā) =Xtq
πα(π∗α,π0)(st, ā) + (1−Xt)(rt + γvα,t(st+1))

+Xt(qt(st, ā)− qπ
α(π∗α,π0)(st, ā))− q∗α(st, ā).

We now show that for all action entries ā ∈ A, E [ft(st, ā) | Ft] || ≤ κ||∆t(st, ā)||+ ct, and ct converges to zero w.p. 1.

If ā = achosen then,

E [ft(st, ā) | Ft] = (1− α)(r(st, ā) + γ
∑
s′

P (s′ | st, ā) max
a′

qα,t(s
′, a′))

+α(rπ0(st)+γ
∑
s′

Pπ0(s′ | st) max
a′

qα,t(s
′, a′))−q∗α(s, a)

= Tαqα,t(st+1, a
′))− q∗α(s, a).

Thus, for this case,

||E [ft(st, ā) | Ft] || = ||Tαqα,t(st+1, a
′))− q∗α(s, a)||

= ||Tαqα,t(st+1, a
′))− q∗α(s, a)||

≤ γ||qα,t(st+1, a
′))− q∗α(s, a)||,

meaning, ct = 0 for this entry. We now turn to the case ā 6= achosen.

E [ft(st, ā) | Ft] = (1− α)qπ
α(π∗α,π0)(st, ā)− q∗α(s, ā)

+ α(rπ0 + γ
∑
s′

Pπ0(s′ | s) max
a′

qα,t(s
′, a′))

+ (1− α)(qt(st, ā)− qπ
α(π∗α,π0)(st, ā)).

Define

ct , (1− α)(qt(st, ā)− qπ
α(π∗α,π0)(st, ā)).

See that ct converges to zero w.p. 1, since qt converges to qπ
α(π∗α,π0). Furthermore, using Lemma 9, we have that

(1− α)qπ
α(π∗α,π0)(st, ā)− q∗α(s, ā) = −α(rπ0 + γ

∑
s′

Pπ0(s′ | s) max
a′

q∗α(s′, a′)).
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Thus,

E [ft(st, ā) | Ft] = −α(rπ0 + γ
∑
s′

Pπ0(s′ | s) max
a′

q∗α(s′, a′)) + α(rπ0 + γ
∑
s′

Pπ0(s′ | s) max
a′

qα,t(s
′, a′)) + ct

= αγ
∑
s′

Pπ0(s′ | s)(max
a′

qα,t(s
′, a′)−max

a′
q∗α(s′, a′)) + ct

= αγ
∑
s′

Pπ0(s′ | s)|(max
a′

qα,t(s
′, a′)−max

a′
q∗α(s′, a′))|+ ct

= αγ
∑
s′

Pπ0(s′ | s) max
a′
|(qα,t(s′, a′)− q∗α(s′, a′))|+ ct

= αγmax
s′,a′
||qα,t − q∗α||+ ct

Where in the first relation we applied Lemma 9. By showing similar result for −E [ft(st, ā) | Ft], we conclude that,

E [ft(st, ā) | Ft] ≤ αγmax
s′,a′
||qα,t − q∗α||+ ct,

where ct converges to zero w.p.1. The Var(ft(·, ·)) can be bounded by K(1 + ||∆t||)2, since the reward is bounded and∑∞
t=0 η

2
t (st = s, aenv,t = a) <∞.

We conclude that all conditions of Lemma 25 are satisfied for each ā ∈ A and, thus, Lemma 25 establishes the convergence
of the procedure.

L.3. Proof of the gradients’ equivalence in section 5.2

Proof.

∇uqπσ (s, u) = ∇u
∫
A

N (u′|u, σ) qπ (s, u′) du′

=

∫
A

qπ (s, u′)∇uN (u′|u, σ) du′

= −
∫
A

qπ (s, u′)∇u′N (u′|u, σ) du′

= − qπ (s, u′)N (u′|u, σ)|∞−∞ +

∫
A

N (u′|u, σ)∇u′qπ (s, u′) du′

=

∫
A

N (u′|u, σ)∇u′qπ (s, u′) du′

Where we used integration by parts.


