7. Appendix

7.1. Why SVRPG does not work

Recall the importance weight from Section 5.2, which is defined in (Papini et al., 2018)

$$
\begin{equation*}
w\left(\theta^{t}, \tilde{\theta} ; \tau\right):=\frac{p\left(\tau \mid \pi_{\tilde{\theta}}\right)}{p\left(\tau \mid \pi_{\theta^{t}}\right)}=\prod_{h=1}^{H} \frac{\pi_{\tilde{\theta}}\left(a_{h} \mid s_{h}\right)}{\pi_{\theta^{t}}\left(a_{h} \mid s_{h}\right)} \tag{28}
\end{equation*}
$$

and the SVRPG gradient estimator

$$
\begin{equation*}
\mathbf{g}_{v r}^{t}:=\tilde{\mathbf{g}}+\mathbf{g}\left(\theta^{t} ; \mathcal{M}\right)-\frac{1}{|\mathcal{M}|} \sum_{\tau \in \mathcal{M}} w\left(\theta^{t}, \tilde{\theta} ; \tau\right) \mathbf{g}(\tilde{\theta} ;\{\tau\}) \tag{29}
\end{equation*}
$$

where $\tilde{\theta}$ and $\tilde{\mathbf{g}}$ are the reference point and its corresponding unbiased estimator respectively, and \mathcal{M} is a mini-batch of trajectories sampled from $p\left(\cdot \mid \pi_{\theta^{t}}\right)$.
While this importance sampling technique removes the bias, the variance of estimator (29) cannot be properly bounded since

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{M}}\left\|\mathbf{g}_{v r}^{t}-\nabla J\left(\theta^{t}\right)\right\|^{2} \\
\leq & \frac{1}{|\mathcal{M}|} \mathbb{E}_{\tau}\left\|\mathbf{g}\left(\theta^{t} ;\{\tau\}\right)-w\left(\theta^{t}, \tilde{\theta} ; \tau\right) \mathbf{g}(\tilde{\theta} ;\{\tau\})\right\|^{2} \\
= & \frac{1}{|\mathcal{M}|} \int_{\tau} \frac{1}{p\left(\tau ; \pi_{\theta^{t}}\right)}\left\|p\left(\tau ; \pi_{\theta^{t}}\right) \cdot \mathbf{g}\left(\theta^{t} ;\{\tau\}\right)-p\left(\tau ; \pi_{\tilde{\theta}}\right) \cdot \mathbf{g}(\tilde{\theta} ;\{\tau\})\right\|^{2} \mathbf{d} \tau
\end{aligned}
$$

and the term $\frac{1}{p\left(\tau ; \pi_{\theta} t\right)}$ in the integral can be infinity large. The lack of proper variance control deprives SVRPG of its high sample-efficiency. Even under the strong assumption that the variance of the importance weight $w\left(\theta^{t}, \tilde{\theta} ; \tau\right)$ is bounded (Assumption 4.3 in (Papini et al., 2018)), $\mathcal{O}\left(\frac{1}{\epsilon^{4}}\right)$ random trajectories are still required by SVRPG to achieve an ϵ-FOSP (4) by scrutinizing the convergence result, which is the same as the original policy-gradient type method.

7.2. Derivation of Policy Gradient and Policy Hessian

Let $\tau=\left\{s_{1}, a_{1}, \ldots, s_{H}, a_{H}\right\}$ be a trajectory sampled according to $p\left(\tau ; \pi_{\theta}\right)$ and define $\tau_{h}:=\left\{s_{1}, a_{1}, \ldots, s_{h}, a_{h}\right\}$ for any $h \in[H]$. For simplicity of notation we will denote

$$
\ell_{\theta}^{\tau_{h}}:=\log p\left(\tau_{h} ; \pi_{\theta}\right), \quad \overline{\mathcal{R}}_{\gamma}^{\tau_{h}}:=\gamma^{h} \overline{\mathcal{R}}\left(a_{h} \mid s_{h}\right)
$$

in the following discussion. From (3) and (2), we have

$$
J(\theta)=\sum_{h=1}^{H} \mathbb{E}_{\tau \sim p\left(\tau ; \pi_{\theta}\right)}\left[\overline{\mathcal{R}}_{\gamma}^{\tau_{h}}\right]=\sum_{h=1}^{H} \mathbb{E}_{\tau_{h} \sim p\left(\tau_{h} ; \pi_{\theta}\right)}\left[\overline{\mathcal{R}}_{\gamma}^{\tau_{h}}\right]
$$

where we replace τ by τ_{h} since $\overline{\mathcal{R}}_{\gamma}^{\tau_{h}}$ is independent of the randomness after a_{h}. To compute the policy gradient

$$
\nabla J(\theta)=\sum_{h=1}^{H} \int_{\tau_{h}} \overline{\mathcal{R}}_{\gamma}^{\tau_{h}} \nabla p\left(\tau_{h} ; \pi_{\theta}\right) \mathbf{d} \tau_{h}=\sum_{h=1}^{H} \int_{\tau_{h}} \overline{\mathcal{R}}_{\gamma}^{\tau_{h}} p\left(\tau_{h} ; \pi_{\theta}\right) \nabla \ell_{\theta}^{\tau_{h}} \mathbf{d} \tau_{h}
$$

where we use the log-trick in the second equation

$$
\nabla p\left(\tau_{h} ; \pi_{\theta}\right)=p\left(\tau_{h} ; \pi_{\theta}\right) \nabla \log p\left(\tau_{h} ; \pi_{\theta}\right)=p\left(\tau_{h} ; \pi_{\theta}\right) \nabla \ell_{\theta}^{\tau_{h}}
$$

The policy gradient can be further simplified:

$$
\begin{aligned}
\nabla J(\theta) & =\sum_{h=1}^{H} \int_{\tau_{h}} \overline{\mathcal{R}}_{\gamma}^{\tau_{h}} p\left(\tau_{h} ; \pi_{\theta}\right) \nabla \ell_{\theta}^{\tau_{h}} \mathbf{d} \tau_{h} \\
& =\sum_{h=1}^{H} \mathbb{E}_{\tau_{h} \sim p\left(\tau_{h} ; \pi_{\theta}\right)}\left[\overline{\mathcal{R}}_{\gamma}^{\tau_{h}} \sum_{i=1}^{h} \nabla \log \pi_{\theta}\left(a_{i} \mid s_{i}\right)\right] \\
& =\sum_{h=1}^{H} \sum_{i=1}^{h} \mathbb{E}_{\tau_{h} \sim p\left(\tau_{h} ; \pi_{\theta}\right)}\left[\overline{\mathcal{R}}_{\gamma}^{\tau_{h}} \nabla \log \pi_{\theta}\left(a_{i} \mid s_{i}\right)\right] \\
& =\sum_{h=1}^{H} \sum_{i=1}^{h} \mathbb{E}_{\tau \sim p\left(\tau ; \pi_{\theta}\right)}\left[\overline{\mathcal{R}}_{\gamma}^{\tau_{h}} \nabla \log \pi_{\theta}\left(a_{i} \mid s_{i}\right)\right]
\end{aligned}
$$

where in the last equality we use that $\overline{\mathcal{R}}_{\gamma}^{\tau_{h}} \nabla \log \pi_{\theta}\left(a_{i} \mid s_{i}\right)$ with $i \leq h$ is independent of the randomness after a_{h}. Exchange the summation over i and h to obtain

$$
\begin{aligned}
\nabla J(\theta) & =\sum_{i=1}^{H} \sum_{h=i}^{H} \mathbb{E}_{\tau \sim p\left(\tau ; \pi_{\theta}\right)}\left[\overline{\mathcal{R}}_{\gamma}^{\tau_{h}} \nabla \log \pi_{\theta}\left(a_{i} \mid s_{i}\right)\right] \\
& =\sum_{i=1}^{H} \mathbb{E}_{\tau \sim p\left(\tau ; \pi_{\theta}\right)}\left[\left(\sum_{h=i}^{H} \overline{\mathcal{R}}_{\gamma}^{\tau_{h}}\right) \nabla \log \pi_{\theta}\left(a_{i} \mid s_{i}\right)\right] \\
& =\sum_{i=1}^{H} \mathbb{E}_{\tau \sim p\left(\tau ; \pi_{\theta}\right)}\left[\Psi_{i}(\tau) \nabla \log \pi_{\theta}\left(a_{i} \mid s_{i}\right)\right]
\end{aligned}
$$

where $\Psi_{i}:=\sum_{h=i}^{H} \gamma^{h} \overline{\mathcal{R}}\left(a_{h} \mid s_{h}\right)$ is the discounted reward after action a_{i} given state s_{i}. Let

$$
\Phi(\theta ; \tau)=\sum_{i=1}^{H} \Psi_{i}(\tau) \log p\left(a_{i} \mid s_{i} ; \pi_{\theta}\right)
$$

Using such notation, we have

$$
\nabla J(\theta)=\mathbb{E}_{\tau \sim p\left(\tau ; \pi_{\theta}\right)} \nabla \Phi(\theta ; \tau)=\int_{\tau} p\left(\tau ; \pi_{\theta}\right) \nabla \Phi(\theta ; \tau) \mathbf{d} \tau
$$

The second order derivative can be computed by

$$
\begin{aligned}
\nabla^{2} J(\theta) & =\int_{\tau} \nabla \Phi(\theta ; \tau) \nabla p\left(\tau ; \pi_{\theta}\right)^{\top}+p\left(\tau ; \pi_{\theta}\right) \nabla^{2} \Phi(\theta ; \tau) \mathbf{d} \tau \\
& =\int_{\tau} p\left(\tau ; \pi_{\theta}\right)\left[\nabla \Phi(\theta ; \tau) \nabla \log p\left(\tau ; \pi_{\theta}\right)^{\top}+\nabla^{2} \Phi(\theta ; \tau)\right] \mathbf{d} \tau \\
& =\mathbb{E}_{\tau \sim p\left(\tau ; \pi_{\theta}\right)}\left[\nabla \Phi(\theta ; \tau) \nabla \log p\left(\tau ; \pi_{\theta}\right)^{\top}+\nabla^{2} \Phi(\theta ; \tau)\right]
\end{aligned}
$$

7.3. Detail Hyper-parameter Settings

We present the Hyper-parameter settings in Table 1. The code for our experiments are available in https://github.com/m1zju/HAPG.

Table 1. Hyper-parameter Settings

	CartPole	Swimmer	Reacher	Walker2d	Humanoid	HumanoidStandup
Horizon	100	500	50	500	500	500
Baseline	No	Linear	Linear	Linear	Linear	Linear
Number of timesteps	$5 \cdot 10^{5}$	10^{7}	10^{7}	10^{7}	10^{7}	10^{7}
NN sizes	8	32×32	32×32	64×64	64×64	64×64
REINFORCE learning rate	0.01	0.01	0.01	0.01	0.01	0.01
REINFORCE batchsize	50	100	100	100	100	100
HAPG learning rate	0.01	0.01	0.01	0.01	0.01	0.01
HAPG $\left\|\mathcal{M}_{0}\right\|$	50	100	100	100	100	100
HAPG $\|\mathcal{M}\|$	10	10	10	10	10	10
HAPG p	5	10	10	10	10	10

