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1. Property of the TL Estimator
Proof of Lemma 3. We use standard techniques for consistency proof, similar to (Čı́žek, 2008). First, let f be the loss of a
single sample, Fn be the loss of sum of n smallest losses over the total sample size. fbαnc is the bαnc-th smallest loss. We
can re-write Fn into the following two terms:

Fn(θ) =
1

n

n∑
i=1

f(si; θ) · I
{
f(si; θ) ≤ fbαnc(θ)

}
=

1

n

n∑
i=1

f(si; θ) ·
(
I
{
f(si; θ) ≤ fbαnc(θ)

}
− I
{
f(si; θ) ≤ D−1θ (α)

})
(1)

+
1

n

n∑
i=1

f(si; θ) · I
{
f(si; θ) ≤ D−1θ (α)

}
(2)

where Dθ is the distribution function of fθ(s), and D−1θ is its inverse function, which calculates the quantile value. On the
other hand, define F to be the expected average trimmed loss, i.e.,

F (θ) =E
[
f(si; θ) · I

{
f(si; θ) ≤ D−1θ (α)

}]
(3)

Then, the difference between Fn(θ) and F (θ) can be separated into two terms: the first term is the difference between (2)
and (3), which asymptotically goes to zero due to the law of large numbers; on the other hand, the term (1) goes to zero
because of the convergence of order statistics to the quantile. See (Čı́žek, 2008) for showing the consistency of both terms
under the regularity conditions.

By definition, TL θ̂(TL) satisfies Pr
[
Fn(θ̂(TL)) < Fn(θ?)

]
= 1. For any ε > 0,

1 = Pr
[
Fn(θ̂(TL)) < Fn(θ?)

]
= Pr

[
Fn(θ̂(TL)) < Fn(θ?), θ̂(TL) ∈ U(θ?, ε)

]
+ Pr

[
Fn(θ̂(TL)) < Fn(θ?), θ̂(TL) ∈ B\U(θ?, ε)

]
≤Pr

[
θ̂(TL) ∈ U(θ?, ε)

]
+ Pr

[
inf

θ∈B\U(θ?,ε)
Fn(θ) < Fn(θ?)

]
(4)

where in the last inequality, we use the fact that the probability measure on a set is no less than the probability measure on
its subset. Notice that our goal is to show θ̂(TL) is in U(θ?, ε) with probability 1. This is true as long as the second term is
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zero. The second term in the above can be controlled by

Pr

[
inf

θ∈B\U(θ?,ε)
Fn(θ) < Fn(θ?)

]
= Pr

[
inf

θ∈B\U(θ?,ε)
[Fn(θ)− F (θ) + F (θ)] < Fn(θ?)

]
≤Pr

[
inf

θ∈B\U(θ?,ε)
[Fn(θ)− F (θ)] < Fn(θ?)− inf

θ∈B\U(θ?,ε)
F (θ)

]
(5)

≤Pr

[
sup
θ∈B
|Fn(θ)− F (θ)| > inf

θ∈B\U(θ?,ε)
F (θ)− Fn(θ?)

]
(6)

≤Pr

[
2 sup
θ∈B
|Fn(θ)− F (θ)| > inf

θ∈B\U(θ?,ε)
F (θ)− F (θ?)

]
(7)

where (5) is due to triangle inequality, in (6), we flip the sign on both sides and upper bound the difference by the abstract value.
(7) again uses triangle inequality, in order to separate the population loss on θ and the sample loss on θ?. As we have discussed
at the beginning, under regularity conditions, Fn(θ)− F (θ) goes to zero asymptotically. More specifically, for any ε > 0,
Pr
[
supθ∈B |Fn(θ)− F (θ)| > δ(ε)

2

]
→ 0 as n→ +∞. On the other hand, Pr

[
infθ∈B\U(θ?,ε) F (θ)− F (θ?) < δ(ε)

]
= 0,

which is given by the idenfication condition. Combining with (4), and triangle inequality, we have |Sn(θ̂(TL))−Sn(θ?)| → 0
with probability 1, as n→∞.

2. Clarification of the ITLM Algorithm
For different settings, we use the same procedure as described in Algorithm 1 and 2 (in the main paper), but may select
different hyper-parameters. We summarize the alternatives we use for all the settings as follows:

(a) In the linear setting, choosing a large M with small step size η corresponds to finding the closed form solution, which
is the setting we analyze;

(b) For generalized linear setting, we analyze for M = 1 and N = |S|, which corresponds to a single full gradient update
per round;

(c) For all experiments with DNNs, we run re-initialization for every round of update to make it harder to stuck at bad
local minimum;

(d) For training generative model using GANs, we use the loss of discriminator’s output in step 4 in Algorithm 1, and use
the joint loss of both the generator and the discriminator in Algorithm 2;

(e) For CIFAR-10 classification tasks with (i) bad labels, (ii) backdoor samples, we choose smaller M for the first 4 rounds,
which corresponds to early stopping. As motivated in Section 1 (in the main paper), early stopping may help us better
filter out bad samples since the later rounds may overfit on them.

Comparison with several very recent works: Several recent works also use similar ideas that rely on smaller loss samples
(Han et al., 2018b; Yu et al., 2019; Han et al., 2018a). On the theoretical side, we provide theoretical analysis/insights for
why these types of methods would work. On the practical side, different from their algorithms, ITLM re-initialize the model
for every round, which we believe helps the model to avoid bad local minimum. Also, ITLM uses early stopping, which
helps to deal with extremely noisy setting (e.g., 80% random label noise).

3. Proofs for ILTM Algorithm
Proof of Lemma 5. Let θt be the learned parameter at round t, and θt+1 be the learned parameter in the next round, following
Algorithm 1. More specifically, a subset St of size αn with the smallest losses (yi − θ>t · φ(xi))

2 is selected. θt+1 is the
minimizer on the selected set of sample losses. Denote Wt as the diagonal matrix whose diagonal entry Wt,ii equals 1 when
the i-th sample is in set St, otherwise 0. Then, assume that we take infinite steps and reach the optimal solution (we will
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discuss how to extend this to arbitrary Mt with small step size later), we have :

θt+1 =
(
Φ(X)>WtΦ(X)

)−1
Φ(X)>Wty

where Φ(X) is an n× d matrix, whose i-th row is φ(xi)
>, and we have used the fact that W 2

t = Wt. Remind that for the
feature matrix Φ(X), we have defined

ψ−(k) = min
W :W∈Wk

σmin

(
Φ(X)>WΦ(X)

)
,

ψ+(k) = max
W :W∈Wk

σmax

(
Φ(X)>WΦ(X)

)
,

which will be used in the later analysis. For Φ(X) whose every row follows i.i.d. sub-Gaussian random vector, by using
concentration of the spectral norm of Gaussian matrices, and uniform bound, Φ(X) is a regular feature matrix, see, e.g.,
Theorem 17 in (Bhatia et al., 2015), and other literatures (Davenport et al., 2009).

On the other hand, denote W ? as the ground truth diagonal matrix for the samples, i.e., W ?
ii = 1 if the i-th sample is a

clean sample, otherwise W ?
ii = 0. Accordingly, define S? as the ground truth set of clean samples. For clearness of the

presentation, we may drop the subscript t when there is no ambiguation. For bad samples, the output is written in the form
of yi = ri + ei, where ei represents the observation noise, and ri depends on the specific setting we consider (we will
discuss more in later Theorems). Under this general representation, we can re-write the term θt+1 as

θt+1 =
(
Φ(X)>WΦ(X)

)−1
Φ(X)>W (W ?Φ(X)θ? + (I −W ?)r + e)

=θ? +
(
Φ(X)>WΦ(X)

)−1 (
Φ(X)>WW ?Φ(X)θ? + Φ(X)>Wr − Φ(X)>WW ?r − Φ(X)>WΦ(X)θ? + Φ(X)>We

)
=θ? +

(
Φ(X)>WΦ(X)

)−1
Φ(X)> (WW ? −W ) (Φ(X)θ? − r − e) +

(
Φ(X)>WΦ(X)

)−1
Φ(X)>WW ?e

by basic linear algebra. Therefore, the `2 distance between the learned parameter and ground truth parameter can be bounded
by:

‖θt+1 − θ?‖2

=
∥∥∥(Φ(X)>WΦ(X)

)−1
Φ(X)> (WW ? −W ) (Φ(X)θ? − r − e) +

(
Φ(X)>WΦ(X)

)−1
Φ(X)>WW ?e

∥∥∥
2

≤
∥∥∥(Φ(X)>WΦ(X)

)−1∥∥∥
2︸ ︷︷ ︸

T1

·

∥∥Φ(X)> (WW ? −W ) (Φ(X)θ? − r − e)
∥∥
2︸ ︷︷ ︸

T2

+
∥∥Φ(X)>WW ?e

∥∥
2︸ ︷︷ ︸

T3


where basic spectral norm inequalities and triangle inequalities. For the term T1, notice that W selects αn rows of Φ(X),
i.e., Tr(W ) = αn. Therefore, T1 ≤ 1

ψ�(αn) .

Next, the term T2 can be bounded as:

T 2
2 =

∥∥Φ(X)> (W −WW ?) (Φ(X)θ? − r − e)
∥∥2
2

= (Φ(X)θ? − r − e)>
[
(W −WW ?) Φ(X)Φ(X)> (W −WW ?)

]
(Φ(X)θ? − r − e)

≤2 (Φ(X)θ? − Φ(X)θt)
> [

(W −WW ?) Φ(X)Φ(X)> (W −WW ?)
]

(Φ(X)θ? − Φ(X)θt)

+ 2 (Φ(X)θt − r − e)>
[
(W −WW ?) Φ(X)Φ(X)> (W −WW ?)

]
(Φ(X)θt − r − e)

≤2σmax

(
Φ(X)>(W −WW ?)Φ(X)

)2 ‖θ? − θt‖22 (8)

+ 2 (Φ(X)θt − r − e)>
[
(W −WW ?) Φ(X)Φ(X)> (W −WW ?)

]
(Φ(X)θt − r − e)︸ ︷︷ ︸

ϕ(St,S?,‖θ?−θt‖2)2

(9)

The last term (9) is defined as ϕt := ϕ(St, S
?, ‖θ? − θt‖2) =

∥∥∥∑i∈S\S?(φ(xi)
>θt − ri − ei)φ(xi)

∥∥∥
2
. For the term (8),

let |St\S?| be the number of bad samples in St. Then, the eigenvalue is bounded by ψ+(|St\S?|).
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The term T3 can be bounded as:

T 2
3 =

∥∥Φ(X)>WW ?e
∥∥2
2
≤ e>Φ(X)Φ(X)>e =

d∑
i=1

 n∑
j=1

ejφ(xj)i

2

≤ c
n∑
i=1

‖φ(xi)‖22 log nσ2

where the last inequality holds with high probability, and all the randomness comes from the measurement noise e. The last
inequality is based on the sub-exponential concentration property.

Then, as a summary, combining the results for all three terms, we have:

‖θ? − θt+1‖2 ≤
√

2ψ+(|S\S?|)
ψ−(αn)

‖θ? − θt‖2 +

√
2ϕ(St, S

?, ‖θ? − θt‖2)

ψ−(αn)
+
c
√∑n

i=1 ‖φ(xi)‖22 log n

ψ−(αn)
σ

Discussion on finite Mt As we mentioned before, for the simplicity of the result, we consider θt+1 as a full update on the
subset of samples. However, based on this current framework, we can also analyze for finite Mt, with small step size η. The
key idea is that in the linear setting, we can connect the updated parameter at each epoch with a closed form solution to a
penalized minimization problem. More specifically, accordng to (Suggala et al., 2018), define

θ̇(t) :=
d

dt
θ(t) = −∇f(θ(t)), θ(0) = θ0

and

θ(ν) = arg min
θ
f(θ) +

1

2ν
‖θ − θ0‖22

where f(θ) = 1
2|S|

∑
i∈S(yi − φ(xi)

>θ)2. Then, θ(t) and θ(ν) have the following relationship:

‖θ(t)− θ(ν(t))‖2 ≤
‖∇f(θ0)‖2

m

(
e−mt +

c

1− c− ecMt

)
where ν(t) = 1

cm

(
ecMt − 1

)
, for m = σmin( 1

|S|Φ(X)>WΦ(X)), M = σmax( 1
|S|Φ(X)>WΦ(X)), c = 2m

M+m . Since
θ(ν) has a closed form solution in this linear setting, by connecting θt+1 with θ, we are able to bound θt+1 using similar
proof technique as above.

Proof of Lemma 6. Define F : Rn → Rn as an entry-wise f(·)-operation.

θt+1 =θt −
η

αn

∑
i∈St

(
f
(
φ(xi)

>θt
)
− yi

)
· f ′
(
φ(xi)

>θt
)
· φ(xi)

=θt −
η

αn
Φ(X)>Diag (F ′ (Φ(X)θt))Wt (F (Φ(X)θt)− y)

=θt −
η

αn
Φ(X)>Diag (F ′ (Φ(X)θt))Wt (F (Φ(X)θt)−W ?F (Φ(X)θ?)− (I −W ?) (r + e)−W ?e)

=θt −
η

αn
Φ(X)>Diag (F ′ (Φ(X)θt))Wt (F (Φ(X)θt)−W ?F (Φ(X)θ?)− (I −W ?)F (Φ(X)θ?))

− η

αn
Φ(X)>Diag (F ′ (Φ(X)θt))Wt ((I −W ?)F (Φ(X)θ?)− (I −W ?) (r + e)−W ?e)

=θt −
η

αn
Φ(X)>Diag (F ′ (Φ(X)θt))Wt (F (Φ(X)θt)− F (Φ(X)θ?))

− η

αn
Φ(X)>Diag (F ′ (Φ(X)θt)) (Wt −WtW

?) (F (Φ(X)θ?)− r − e)

+
η

αn
Φ(X)Diag (F ′ (Φ(X)θt))WtW

?e
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We simplify the notation using Ht , Diag (F ′ (Φ(X)θt)). Also, by mean value theorem, for any a, b, there exists some
c ∈ [a, b], such that f(b)−f(a)b−a = f ′(c). Therefore, for the term F (Φ(X)θt)− F (Φ(X)θ?), there exists a diagonal matrix
Ct, such that F (Φ(X)θt)− F (Φ(X)θ?) = CtΦ(X) (θt − θ?). Therefore, we have

‖θt+1 − θ?‖2 ≤

1− η

αn
Φ(X)>HtWtCtΦ(X)︸ ︷︷ ︸

U1

 ‖θt − θ?‖2 +
η

αn

∥∥Φ(X)>Ht(Wt −WtW
?) (F (Φ(X)θ?)− r − e)

∥∥
2︸ ︷︷ ︸

U2

+
η

αn
‖Φ(X)HtWtW

?e‖2︸ ︷︷ ︸
U3

.

Here,

U1 ≤ 1− ηa2ψ
−(αn)

αn
,U3 ≤ bξtσ

For U2, define φ̃t similar to φt:

ϕ̃t =

∥∥∥∥∥∥
∑

i∈St\S?

(
w(φ(xi)

>θ?)− ri − ei
)
w′(φ(xi)

>θ?)φ(xi)

∥∥∥∥∥∥ .
As a result, we have:

‖θt+1 − θ?‖2 ≤
(

1− η

αn
a2ψ−(αn)

)
‖θt − θ?‖2 + η

ϕ̃t + ξtbσ

αn

Proof of Theroem 7. Now we consider recovery in the context of aribitrary corrupted output, and random noise setting.

Notice that since samples in St\S? are selected because of smaller losses, and α < α?, there exists a permutation matrix P ,
such that the following inequality holds element-wise:

(W −WW ?) |Φ(X)θt − r − e| ≤ (W −WW ?)P |Φ(X)(θt − θ?)− e| .

Accordingly, given a valid permutation matrix P , φt is further bounded by

φ(St, S
?, ‖θ? − θt‖2)2

≤ (Φ(X)(θt − θ?)− e)>NP>(W −WW ?)Φ(X)Φ(X)>(W −WW ?)PN (Φ(X)(θt − θ?)− e)
≤2(θt − θ?)>Φ(X)>NP>(W −WW ?)Φ(X)Φ(X)>(W −WW ?)PNΦ(X)(θt − θ?) (10)

+ 2e>NP>(W −WW ?)Φ(X)Φ(X)>(W −WW ?)PNe (11)

≤2ψ+(|St\S?|)2 ‖θt − θ?‖22 + 2cψ+(|St\S?|)nσ2, (12)

where the last inequality (12) holds with high probability. Here, N is some diagonal matrix whose entries are either 1 or −1.
More specifically, (10) can be bounded by 2σ̃2‖θt − θ?‖22, where σ̃ is the top singular value of the matrix

Φ(X)>(W −WW ?)PNΦ(X).

Equivalently, it can be written as

σ̃ = max
u,v:‖u‖2=‖v‖2=1

u>Φ(X)>(W −WW ?)PNΦ(X)v.

If we denote Φ(X)v and Φ(X)u as ṽ, ũ respectively, then

σ̃ ≤
|S\S?|∑
i=1

|ũri ṽti | ≤ max


|S\S?|∑
i=1

ũ2ri ,

|S\S?|∑
i=1

ṽ2ti

 ,
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for some sequences {ri} and {ti}. This shows that the top singular value is indeed bounded by

max
{
σmax

(
Φ(X)>(W −WW ?)Φ(X)

)
, σmax

(
Φ(X)>NP>(W −WW ?)PNΦ(X)

)}
,

which is bounded by ψ+(|St\S?|), since both W −WW ? and NP>(W −WW ?)PN have Tr(W −WW ?) non-zero
entries in the diagonal.

The term (11) is bounded because of the feature regularity property. Notice that (W −WW ?)Φ(X)Φ(X)>(W −WW ?)
has the same non-zero eigenvalues as Φ(X)>(W −WW ?)Φ(X).

Therefore, with high probability,

φt ≤
√

2ψ+(|St\S?|)2‖θ? − θt‖22 + 2cψ+(|St\S?|)nσ2

≤
√

2ψ+(|St\S?|)‖θ? − θt‖2 +
√

2cψ+(|St\S?|)nσ.

Combining previous results, with high probability, we have

‖θ? − θt+1‖2 ≤
2
√

2ψ+(|St\S?|)
ψ−(αn)︸ ︷︷ ︸

κt

‖θ? − θt‖2 +

√
2cψ+(|St\S?|)n
ψ−(αn)

σ +
c
√∑n

i=1 ‖φ(xi)‖22 log n

ψ−(αn)
σ. (13)

The above result holds for both the setting of random output and arbitrary corruption setting. For arbitrary output setting,
since ψ+(|St\S?|) can be upper bounded by O(n), we have:

‖θ? − θt+1‖2 ≤
1

2
‖θ? − θt‖2 + cσ +

cξt
n
σ.

In the random output setting, however, in fact we can calculate how the quantity |St\S?| changes, and have a better
characterization of the convergence. Based on Theorem A.1, we have:

κt ≤ c
{√
‖θt − θ?‖22 + σ2 ∨ log n

n

}
,

for any fixed θt. One can use a standard ε-net argument to show that the above indeed holds for any θt. Therefore, for the
case of random output corruption,

‖θ? − θt+1‖2 ≤ κt‖θ? − θt‖2 + c
√
κtσ +

cξt
n
σ,

for κt ≤ c{
√
‖θt − θ?‖22 + σ2 ∨ logn

n }.

Proof of Theorem 8. In the context of mixed model setting, we are interested in when the algorithm will find the component
that it is closest to. The proof outline is similar to Theorem 7. However, for the case of mixture output, two parts in (13)
need re-consideration: the first part is to show that there is an Ω(n) lower bound for ψ−(αn) for arbitrary constant α. Notice
that in Theorem 17 of (Bhatia et al., 2015), α can not be too small, e.g., 0.1. The main idea of their proof was to use a
uniform bound over all possible W s, which depends on n. However, we take another route and using ε-net argument on the
parameter space. Notice that we can choose an ε-net in Rd, which includes (1 + 2

ε )d points (Vershynin, 2016). For any
fixed θ, notice that the square of minW∈Wαn

σmin(Φ(X)>WΦ(X)) corresponds to the sum of the minimum αn squares,
which is greater than c1n with high probability (Boucheron et al., 2012). On the other hand, for arbitrary θ̃, the additional
error is at most εψ+(αn) = O(εn). By using the uniform bound over all fixed θ, and choosing n ≥ Cd log d for some large
constant c, we can see that ψ−(αn) is lower bounded by Ω(n) with high probability. For getting the second term in (13), we
use the same idea as in the proof of Theorem ??. For any fixed θt, the residuals for all the samples can be considered as
generated from m components, and can be reduced to a two-component setting. Therefore, the numerator in κt is again

controlled by Theorem A.1. Combining these results, we have κt ≤ c

{ √
‖θt−θ?(j)‖

2
2+σ

2

mink2[m]nfjg
√
‖θt−θ?(k)‖

2
2+σ

2
∨ logn

n

}
.
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As a consequence,

‖θt+1 − θ?‖2 ≤ κt‖θt − θ?‖2 + c1
√
κtσ +

c2ξt
n
σ,

where we require n = Ω(d log d). Notice that for small α, in order to make κt less than one, the noise should not be too
large. Otherwise, even if θt is very close to θ?, because of the noise and the high density of bad samples, |St\S?| would still
be quite large, and the update will not converge.

Theorem 9. Following the setting in Lemma 6, for the given α ≤ α?, Φ(X) being a regular feature matrix, and α? > cth,
sample size n = Ω(d log d), w.h.p., we have:

‖θ? − θt+1‖2 ≤
(
1− c1η(a2 − κtb2

)
‖θt − θ?‖2 + c2b

√
κtσ +

ηbξt
n
σ,

where for r being arbitrary output, κt ≤ 1
2 . For r being random sub-Gaussian output, κt ≤ c{ ba

√
‖θt − θ?‖22 + σ2∨ logn

n }.
Theorem 10. Following the setting in Lemma 6, for the mixed regression setting in (2), suppose for some j ∈ [m], α ≤ α?(j).
Then, for n = Ω(d log d), w.h.p., the next iterate θt+1 of the algorithm satisfies

‖θt+1−θ?(j)‖2 ≤
(
1− c1η(a2 − κtb2

)
‖θt − θ?(j)‖2 + c1b

√
κtσ+

c2ηbξt
n

σ,

where κt ≤ c

{
b
√
‖θt−θ?(j)‖

2
2+σ

2

amink2[m]nfjg
√
‖θt−θ?(k)‖

2
2+σ

2
∨ logn

n

}
.

The proof idea for the above two Theorems are similr to what we have shown in the proof of Theorem 7 and Theorem 8.

Theorem A.1. Suppose we have two Gaussian distributions D1 = N (0,∆2),D2 = N (0, 1). We have α?n i.i.d. samples
from D1 and (1− α?)n i.i.d. samples from D2. Denote the set of the top αn samples with smallest abstract values as Sαn,
where α ≤ α?. Then, with high probability, for ∆ ≤ 1, at most

(
cmax

{
∆ (1− α?)n

√
log n, log n

})
samples in Sαn are

from D2.

Proof. Step I. We know that for random normal i.i.d. Gaussian variables xi, i ∈ [n],

P

[
max
i∈[n]
|xi| ≥

√
2 log 2n+ t

]
≤ 2e−

t2

2 .

Therefore, for α?n samples from D1, with high probability, the maximum abstract value is in the order of O(
√

log n∆).

Step II. On the other hand, for a random u2 ∼ D2, we know that for small positive values δ = c
√

log n∆, P [|u2| ≤ δ] ≤√
2
π δ gives a tight upper bound. LetMδ,i be the event sample ui from D2 has abstract value less than δ, and a Bernoulli

random variable mi,δ that is the indicator of eventMδ,i holds or not. Then,

E

(1−α?)n∑
i=1

mi,δ

 ≤√ 2

π
δ (1− α?)n.

For independent random variable xis, i ∈ [ñ] that lie in interval [0, 1], withX =
∑
i xi and µ = E[X], Chernoff’s inequality

tells us

P [X ≥ (1 + γ)µ] ≤ e−
µγ2

3 , ∀γ ∈ [0, 1]

P [X ≥ (1 + γ)µ] ≤ e−
µγ
3 , ∀γ > 1
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As a consequence, for mi,δs, we have

P

(1−α?)n∑
i=1

mi,δ ≥ (1 + γ)

√
2

π
δ (1− α?)n

 ≤ e− γ2√ 2
π
δ(1�α?)n
3 , ∀γ ∈ [0, 1]

P

(1−α?)n∑
i=1

mi,δ ≥ (1 + γ)

√
2

π
δ (1− α?)n

 ≤ e− γ√ 2
π
δ(1�α?)n
3 , ∀γ > 1.

For the first case, where γ ∈ [0, 1], we can set γ = c
√

logn
δ(1−α?)n to get high probability guarantee. The constraint on γ

requires δn > c log n for some fixed c. On the contrary, when this is violated, i.e., when δ is much smaller, then, by the
Chernoff bound for the case γ > 1, we can set γ = c logn

δ(1−α?)n .

Combining Step I and Step II. To summarize, for some fixed constant c, with high probability:

• For ∆ > c
√
logn
n , at most 2cδ (1− α?)n = c

√
log n∆ (1− α?)n samples in Sαn are from D2.

• For ∆ ≤ c
√
logn
n , at most (1 + γ) δ (1− α?)n = c log n samples in Sαn are from D2.

4. Additional Synthetic Experiments
In this section, we present the full results for the synthetic experiments, which aligns with our theoretic results in Section 5
(in the main paper). We focus on discussing behaviors for the linear case first, and then provide results on the non-linear
setting.

Synthetic experiments for random output setting We generate the data according to (1), with w(x) = x, where we
choose θ? to be a random unit vector with dimension d = 100, every feature vector φ(xi) is generated i.i.d. as a d-dimension
normal spherical Gaussian. Random output ri is generated i.i.d. followingN (0, 1), which makes the distribution of both the
bad and good outputs the same. We generate in total n = 1000 samples, where α?-fraction of them are clean samples and
the rest are bad samples (with random output). The noise vector e is generated i.i.d. Gaussian with variance σ2.

Synthetic experiments for mixed regression setting We generate the data following (2) with w(x) = x, for the settng
of two components. The rest of the settings are similar to the random output setting, except for the bad samples, we select
another θ(1) with unit norm, orthogonal to θ?.

In Figure 1 and Figure 2, we study:

• (Inconsistency) The recovery performance as sample size increases, in both small-noise and large-noise settings;

• (Recovery) The recovery performance under different good sample ratios;

• (Mis-specification) The effect of mis-specified α;

• (Convergence) The convergence speed under different noise levels, for both large and small Mt settings.

All y-axis measures the `2 distance, i.e., ‖θt−θ?‖2. Each data point in the plots is based on 100 runs of the same experiment
to cancel out the random factors.

Inconsistency Figure 1-(a) & (b) and Figure 2-(a) & (b) show the result for asymptotic behavior. ITLM -1 corresponds to
our algorithm with large Mt, which corresponds to our analysis using the closed form solution at each update round. ITLM
-2 corresponds to our algorithm with Mt = 1. The performance in both settings are quite similar: in the (b) plots with noise
level σ = 1, as sample size increases, the oracle performance is getting better, while the performance of ITLM does not
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keep improving, which shows the inconsistency of the algorithm. However, in the (a) plots with small noise (σ = 0.1), the
difference between oracle and ITLM is not significant, for sample size less than 25k. However, as sample size keeps getter
larger, we will observe the behavior of inconsistency for ITLM . The observation matches with our results in Theorem 7 &
8, where our per-round convergence property will guarantee the recovered parameter is within a noise ball to the ground
truth parameter.

Recovery Figure 1-(c) and Figure 2-(c) show the recovery performance when good sample ratio varies. ITLM -1 and
ITLM -2 perform similarly. As good sample ratio gets larger, the algorithm is capable of recovering close to the ground
truth with high probability. Here, noise level σ = 0.2, α is set as α? − 5% by default.

Mis-specification In Figure 1-(d) and Figure 2-(d), we study the recovery behavior for different mis-specified αs. We see
that the recovery performance is not very sensitive to the selection of α, especially when the dataset has more clean samples.

Convergence In Figure 1-(e) & (f), and Figure 2-(e) & (f), we see the convergence is more than linear before the learned
parameter gets into the noise-level close to the ground truth, for both settings. This convergence behavior, for both the
random output and mixture output settings, matches with our results in Theorem 7 and Theorem 8.

Non-linear activation functions In Figure 3, we present convergence result for a non-linear setting: we choose w() to be
a piece-wise linear function, i.e., w(x) = x if x < 0, and w(x) = 1.2x if x ≥ 0. We keep all other settings exactly the same
as in previous synthetic experiments. We see that the ITLM has similar convergence behavior as in the linear setting.

5. Additional Experiments and Implementation Details
All experiments are implemented using MXNet and gluon. Here, we add more experimental details and supporting
experimental results.

5.1. Details for the image classification task with random/systematic label errors

Training details: We use batch size 1000 with learning rate 0.3 for subsampled MNIST dataset, and batch size 256 with
learning rate 0.1 for CIFAR-10 dataset, with naive sgd as the optimizer. We use 80 epochs for naive training, and decrease
step size at the 50 epoch by 5. The results for MNIST dataset is reported as the median of 5 random runs. In all the
experiments, there is no clean sample in both the training set and the validation set. The reported accuracy is based tested
on the true validation set, but the algorithm saves the best model based on the accuracy on the bad validation set, which has
the same corruption pattern as the training set.

5.2. Additional experiments for image generation

Training details: We use the popular DC-GAN architecture, and the loss for training is re-written in (14), which is also
used for the update step in ITLM .

Table 1. MNIST GAN: comparison with other choices
dataset MNIST

α? = # clean
# total Baseline ITLM Centroid 1-Step ∆τ = 10% ∆τ = 15% ∆τ = 20%

70% 70 97.00 61.46 77.77 83.33 78.06 83.59
80% 80 100.00 77.46 76.84 98.80 99.56 97.77
90% 90 100.00 89.57 91.90 98.85 99.01 98.04

Experimental settings: In this part, we present additional experimental results, in order to verify the performance of
ITLM under different parameter settings, and compare with other algorithms. More specifically, we present the results using
the following methods/algorithms:

• Baseline: naive trainig using all the samples;
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• ITLM : our proposed iterative learning algorithm with 5 iterations, using a mis-specified τ which is 5% less than the
true value;

• Centroid: using the centroid of the input data to filter out outliers. For classification task, we calculate the centroids
for the samples with the same label/class and filter each class separately;

• 1-Step: ITLM algorithm with a single iteration;

• ∆τ = τ? − τ ∈ {10%, 15%, 20%}: ITLM under different mis-specified τ value,

under MNIST generation with Fashion-MNIST images.

For the generation task (Table 1), we present the ratio of true MNIST samples selected by each method. For the baseline
method, since the DC-GAN is trained using all samples, the reported value is exactly the τ?.

Results: Table 1 shows the performance of generation quality under different noise levels. We observe that centroid
method does not work, which may due to the fact that all MNIST and Fashion-MNIST images are hard to be distinguished
as two clusters in the pixel space. Notice that there are in fact 20 clusters (10 from MNIST, and 10 from Fashion-MNIST),
and we are interested in 10 of them. ITLM works well since it automatically learns a clustering rule when generating on the
noisy dataset. For example, for τ? = 80%, even with a mis-specified τ = 60%, ITLM is capable of ignoring almost all bad
samples. Again, we also observe significant improvement of ITLM over its 1-step counterpart.

We also have results showing that ITLM works well for generation when the corrupted samples are pure Gaussian noise.
However, we do not think it is a practical assumption, and the result is not presented here.

In Figure 4, we present a result under large bad sample ratio: 60% clean MNIST images with 40% bad Fashion-MNIST
images. The algorithm, after the 5-th iteration, tries to filter out the all digit-type images.
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Figure 1. Synthetic experiments with random output: (a): asymptotic performance under small measurement noise; (b): asymptotic
performance under large measurement noise; (c): performance under different good sample ratio; (d): the effect of mis-specification;
(e): convergence rate of ITLM with large Mt (noise from 0.01 to 0.2 ; (f): convergence rate of ITLM with small Mt (noise from 0.01
to 0.2 ).
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Figure 2. Synthetic experiments with mixture output: (a): asymptotic performance under small measurement noise; (b): asymptotic
performance under large measurement noise; (c): performance under different good sample ratio; (d): the effect of mis-specification;
(e): convergence rate of ITLM with large Mt (noise from 0.01 to 0.2 ; (f): convergence rate of ITLM with small Mt (noise from 0.01
to 0.2 ).
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Figure 3. Synthetic experiments with non-linear activation function: (a): ‖θt − θ?‖2 v.s. t for random output setting; (b): ‖θt − θ?‖2
v.s. t for mixture output setting.

LGAN
S (θD, θG) :=

1

|S|
∑
i∈S

logDθD (si) + Ez∼pZ(z) [log(1−DθD (GθG(z)))] (14)

St ← arg min
S:|S|=αn

∑
i∈S

DθDt
(si) (15)

(a) baseline (b) 1st iteration (c) 3rd iteration (d) 5th iteration

Figure 4. Illustrative failure case: This figure shows that when the fraction of bad samples is too large, ILFB cannot clean them out. The
setting is exactly the same as in Figure 3 (in the main paper), but now with 60% MNIST clean images + 40% Fashion-MNIST bad images.
We can see that now the 5th iteration still retains the fake fashion images.


