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Outline In the first two sections, we give proofs for all
our formal results while restating them for convenience. In
Section 2, we give the precise description of our Hashing-
Based-Sketch and its theoretical analysis. In Section 3, we
present our diagnostic and visualization procedures in more
detail. In Section 4, we explain our design decisions and
the procedure for generating a fair synthetic benchmark. In
Section 5, we provide additional setup details and results
for the experimental evaluation.

1. Proofs
1.1. Basic inequalities

We first state without proof some well known inequalities
that we will use in the proofs.

Lemma 1 (Chebyshev’s and Paley-Zygmund inequalities).
For a non-negative random variable Z and parameters t >
0, θ ∈ [0, 1], we have

P[Z ≥ (t+ 1) · E[Z]] ≤ 1

t2
· RelVar[Z], (1)

P[Z > (1− θ)E[Z]] ≥ 1

1 + 1
θ2 · RelVar[Z]

. (2)

Theorem 1 (Chernoff bounds). Let X =
∑n
i=1Xi, where

Xi = 1 with probability pi and Xi = 0 with probability
1 − pi, and all Xi are independent. Let v = E[X] =∑n

i=1 pi. Then for δ > 0

P[X ≥ (1 + δ)v] ≤ e−
δ2

2+δ v, (3)

P[X ≤ (1− δ)v] ≤ e− 1
2 δ

2v. (4)

1.2. Median-trick to boost success probability

The median-trick is based on concentration of sums of in-
dependent binary random variables. If we define binary

*Equal contribution 1Stanford University, Stanford,
California, US. Correspondence to: Paris Siminelakis
<psimin@stanford.edu>, Kexin Rong <krong@stanford.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

random variables appropriately we can obtain bounds for
the concentration of the median of i.i.d. random variables
around their expectation.

Lemma 2. Let Z1, . . . , ZL be L ≥ 1 i.i.d. copies of a
non-negative random variable with RelVar[Z] ≤ ε2

6 then:

P [median{Z1, . . . , ZL} ≥ (1 + ε)E[Z]] ≤ e−L6 ,

P [median{Z1, . . . , ZL} ≤ (1− ε)E[Z]] ≤ e−L4 .

Proof of Lemma 2. Let

Xi = I[Zi ≥ (1 + ε)E[Z]],

Yi = I[Zi ≤ (1− ε)E[Z]].

By Lemma 1, we have that

ai = E[Xi] ≤
1

ε2
ε2

6
≤ 1

6
, bi = E[Yi] ≤

1

7
.

We get the following upper bounds

P[median{Z1, . . . , ZL} ≥ (1 + ε)E[Z]] ≤ P[

L∑
i=1

Xi ≥
L

2
].

P[median{Z1, . . . , ZL} ≥ (1 + ε)E[Z]] ≤ P[

L∑
i=1

Yi ≥
L

2
],

that along with Chernoff bounds will give us our result. We
only show the first inequality as the second one follows
similarly. Let A =

∑L
i=1 ai ≤ L/6, the first event is

bounded by exp(− (
L/2
A −1)

2

2+(
L/2
A −1)

A) ≤ exp(−L/6).

1.3. Moments of Hashing-Based-Estimators

Lemma 3. Assuming that ∀i ∈ [n], p(xi, q) > 0 then

E[Zh] =

n∑
i=1

uik(x, xi), (5)

E[Z2
h] =

n∑
i,j=1

k2(q, xi)
uiP[i, j ∈ H(q)]uj

p2(q, xi)
. (6)
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Proof of Lemma 3. We start with the expectation:

Eh,X [
k(q,X)

p(q,X)
uH(q)] = Eh[EX [

k(q,X)

p(q,X)
]uH(q)]

= Eh[
∑

i∈H(q)

ui
uH(q)

k(q, xi)

p(q, xi)
uH(q)]

=

n∑
i=1

uiE[I[h(xi) = h(q)]]
k(xi, q)

p(xi, q)

=

n∑
i=1

uik(xi, q)

We proceed with the second moment:

Eh,X [
k2(q,X)

p2(q,X)
u2H(q)] = Eh[EX [

k2(q,X)

p2(q,X)
]u2H(q)]

= Eh[
∑

i∈H(q)

ui
uH(q)

k2(q, xi)

p2(q, xi)
u2H(q)]

= Eh[
∑

i∈H(q)

ui
k2(q, xi)

p2(q, xi)
uH(q)]

= Eh[
∑

i,j∈H(q)

uiuj
k2(q, xi)

p2(q, xi)
]

=

n∑
i,j=1

k2(xi, q)
uiP[i, j ∈ H(q)]uj

p2(xi, q)

1.4. Refined Variance bound

Here, we derive our new inequality bounding the variance
of HBE and RS. Let µ ≤ λ ≤ L ≤ 1 and define:

S1 = {i ∈ [n] : L ≤ wi ≤ 1} (7)
S2 = {i ∈ [n] \ S1 : λ ≤ wi ≤ L} (8)
S3 = {i ∈ [n] \ (S2 ∪ S1) : µ ≤ wi ≤ λ} (9)
S4 = {i ∈ [n] : wi < µ} (10)

as well as µ` =
∑
i∈S` uiwi ≤ µ. The intuition behind the

definition of the sets is that for radial decreasing kernels they
correspond to spherical annuli around the query (Figure 1).
Lemma 4. For non-negative weights w1, . . . , wn, vector
u ∈ ∆n and sets S1, . . . , S4 ⊆ [n] as above it holds∑
i,j∈[n]

w2
i {uiVijuj} ≤

∑
`∈[3],`′∈[3]

sup
i∈S`,
j∈S`′

{
Vijwi
wj

}
µ`µ`′

+ uS4

∑
`∈[3]

sup
i∈S`,
j∈S4

{
Vij

wi
µ

}
µ`µ

+ sup
i∈S4,j∈[n]

{Vijwi} · µ4 (11)

where uS :=
∑
j∈S uj ≤ 1.

Figure 1. Depiction of the sets that appear in Lemma 4

Proof of Lemma 4. First we observe that S1]S2]S3]S4 =
[n] forms a partition:∑

i,j∈[n]

uiujVijw
2
i =

∑
`,`′∈[3]

∑
i∈S`,j∈S`′

uiujVijw
2
i

+
∑
`∈[3]

∑
i∈S`,j∈S4

uiujVijw
2
i

+
∑

i∈S4,j∈[n]

uiujVij .w
2
i (12)

For the first three sets we have some bounds on the ration
wi
wj

whereas for the last set we have a bound on the wi. We
utilize these by:∑
i∈S`,
j∈S`′

Vijwi
wj

uiwiujwj ≤ sup
i∈S`,
j∈S`′

{Vijwi
wj
}
∑
i∈S`

wiui
∑
j∈S`′

wjuj ,

∑
i∈S`,
j∈S4

Vijwi
µ

wiuiujµ ≤ uS4
sup
i∈S`,
j∈S4

{
Vijwi
µ

}
µ
∑
i∈S`

wiui,

∑
i∈S4,
j∈[n]

{Vijwi}uiujwi ≤ sup
i∈S4,j∈[n]

{Vijwi}‖u‖1
∑
j∈S4

wiui.

Identifying µi in the above expressions and substituting the
bounds in (12) completes the proof.

1.5. Adaptive procedure

Theorem 2. Given an (a, β, γ)-regular estimator Z , the
AMR procedure outputs a number Ẑ such that

P[|Ẑ − µ| ≤ ε ·max{µ, τ}] ≥ 2

3
−Oγ,α(ε2)

and with the same probability uses Oγ( 1
ε2

1
µβ

) samples.

Proof of Theorem 2. Recall that µt = (1 + γ)−t and let
t0 := t0(µ) ∈ Z such that:

µt0+1 ≤ µ ≤ µt0 (13)

We consider two cases t0 < T or t0 ≥ T .
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Case I (t0 < T ). In this case, we want to show that our al-
gorithm with constant probability does not terminate before
t0 and not after t0 + 1.

Let Z̄t be the mean of mt i.i.d. samples Z(i)
t ∼ Z(t, γ)

with mean E[Z
(i)
t ] = µ and RelVar[Z

(i)
t ] ≤ Vt(µ). Then,

RelVar[Z̄t] ≤
ε2

6

Vt(µ)

Vt(µt+1)
. (14)

Let A0 be the event that the algorithm terminates before t0.

P[A0] = P[∃t < t0, Z̄t ≥ µt] (15)

≤
∑
t<t0

P[Z̄t ≥
(
µt
µ

)
µ] (16)

≤ ε2

6

t0−1∑
t=1

µ2

(µt − µ)2
Vt(µ)

Vt(µt+1)
(17)

≤ ε2

6

t0−1∑
t=1

µ2

(µt − µ)2
(
µt+1

µ
)2−α. (18)

where in (16) we use union bound, in (17) we use the first
part of Lemma 1 and in (18) property (B) of a regular esti-
mator. In the next three inequalities we use (13), t ≤ t0 − 1
and

∑s
t=0 x

s ≤ (1− x)−1 for x < 1.

P[A0] ≤ ε2

6

t0−1∑
t=1

1

(1− µt0
µt

)2
µ2
t+1

µ2
t

(
µt0
µt+1

)α (19)

≤ ε2

6

1

γ2
µαt0

t0−1∑
t=1

(1 + γ)−α(t0−t−1) (20)

≤ ε2

6

1

γ2
µαt0

1

1− (1 + γ)−α
. (21)

Furthermore, let A1 be the event that the algorithm termi-
nates after t > t0 + 1.

P[A1] = P[∀t ≤ t0 + 1, Z̄t < µt] (22)
≤ P[Z̄t0+1 < µt0+1] (23)
= 1− P[Z̄t0+1 ≥ µt0+1]. (24)

Using the second part of Lemma 1 (Paley-Zygmund)

P[Z̄t0+1 ≥ µt0+1] ≥ 1

1 + (γ+1)2

γ2
ε2

6

Vt0+1(µ)

Vt0+1(µt0+1)

(25)

≥
(

1 +
(γ + 1)2

γ2
ε2

6

)−1
. (26)

Therefore, P[A1] ≤ 1 −
(

1 + (γ+1)2

γ2
ε2

6

)−1
≤ (γ+1)2

γ2
ε2

6 .
Finally, let t∗ be the (random) level where the algorithm
terminates and A2 be the event that |Z̄t∗ − µ| > εµ. If any

of the three events happen we say that the procedure fails.
We can bound the failure probability by:

P[F ] = P[A0 ∨A1 ∨A2]

= P[A0 ∨A1 ∨A2 ∧ A0] + P[(A0 ∨A1 ∨A2) ∧ Ac0]

≤ P[A0] + P[A1 ∧Ac0] + P[A2 ∧Ac0]. (27)

To bound the last term we use:

P[A2 ∧Ac0] = P[A2 ∧Ac0 ∧A1] + P[A2 ∧Ac0 ∧Ac1]

≤ P[A1] + P[A2 ∧Ac0 ∧Ac1].

and

P[A2 ∧Ac0 ∧Ac1] =
∑

t∈{t0,t0+1}

P[|Z̄t − µ| > εµ ∧ t∗ = t]

≤
∑

t∈{t0,t0+1}

P[|Z̄t − µ| > εµ]

≤ 1

ε2

∑
t∈{t0,t0+1}

RelVar[Z̄t]

≤ 1

ε2

∑
t∈{t0,t0+1}

ε2

6

Vt(µ)

Vt(µt+1)
.

By definition µ ≥ µt+1 for all t ≥ t0, thus by (B) and (28):

P[A2 ∧Ac0 ∧Ac1] ≤ 2

6
=

1

3
. (28)

Hence, the overall probability failure is bounded by:

P[F ] ≤ P[A0] + 2P[A1] + P[A2 ∧Ac0 ∧Ac1]

≤ ε2

6

1

γ2
µαt0

1

1− (1 + γ)−α
+ 2

(γ + 1)2

γ2
ε2

6
+

1

3
.

When the algorithm succeeds the total number of samples
is bounded by

t0+1∑
t=1

d 6

ε2
Vt(µt+1)e ≤ (t0 + 1) +

6C

ε2

t0+1∑
t=1

(1 + γ)β(t+1)

≤ (t0 + 1) +
6C

ε2
(1 + γ)2β

(1 + γ)βt0

γ

≤ (t0 + 1) +
6C

ε2
(1 + γ)β

γ

1

µβ
.

Case II (t0 ≥ T ). In this case µ ≤ µT ≤ 1
1+γ ετ . By the

same arguments as in the case t0 < T we get that the proba-
bility terminates before t < t0 is at most ε2

6γ2µ
α
t0

1
1−(1+γ)−α .

If the condition Z̄T ≥ µT is satisfied then:

P[|Z̄T − µ| > εµ] ≤ 1

ε2
RelVar[Z̄T ] ≤ 1

6
(29)

If Z̄T < µT then:

|0− µ| ≤ µ ≤ µT ≤
1

1 + γ
ετ ≤ εmax{µ, τ} (30)
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Conclusion. Thus, overall if Ẑ is the output of AMR:

P[|Ẑ − µ| > εmax{µ, τ}] ≤ ε2

6

1

γ2
µαt0

1

1− (1 + γ)−α

+ 2
(γ + 1)2

γ2
ε2

6
+

1

3

As we see in the above expression the failure probability is
dominated by the 1

3 term. For example for γ = 1, ε = 0.2,
α = 1 we have that the extra term is less than 0.0667.

1.6. Regular estimator for Gaussian Kernel

Theorem 3. ZGauss is (1, 34 , γ)-regular and takes prepro-
cessing time/space bounded by Od,κT ,γ(ε−3+

1
4 τ−

3
4 · n).

Proof of Theorem 3. By Lemma 3 and Theorem 1 (Sec-
tion 2.3 in main paper), (A) holds with Vt(µ) :=

4e
3
2

µ e
r2t−rt

√
log( 1

µ ). Moreover, since ∀x ≥ y > 0

Vt(y)

Vt(x)
=
x

y
e
−rt(

√
log( 1

y )−
√

log( 1
x )) ≤

(
x

y

)2−1

(31)

and V
′

t (x) = − 4e
3
2

x e
r2t−rt

√
log( 1

µ )( 1
x + rt

2
√

log( 1
x )

) < 0,

property (B) holds with α = 1. Finally,

Vt(µt+1) = 4e
3
2 e{

1
4−

1
2

√
t+1
t +(1+ 1

t )}t log(1+γ) (32)

= 4e
3
2

(
1

µt

) 1
4−

1
2

√
t+1
t +(1+ 1

t )

(33)

≤ 4e
3
2 (1 + γ)

1− 1√
2 ·
(

1

µt

) 3
4

, (34)

and consequently (C) holds with β = 3
4 . Finally, the estima-

tor uses at most O( 1
ε2VT (µT+1)) hash tables each taking

preprocessing time/space Od,qT ,γ(n) space.

2. Sketching
For any hash table H and a vector u ∈ ∆n (simplex), let
B = B(H) denote the number of buckets and umax =
umax(H) := max{uHi : i ∈ [B]} the maximum weight
of any hash bucket of H . The precise definition of our
Hashing-Based-Sketch is given below in Algorithm 1.

For a fixed H , we can obtain the following bounds on the
first two moments of our sketch (Sm, w).

Lemma 5 (Moments). For the sketch (Sm, w) produced by
the HBS procedure it holds that

E[KDEwSm |H] = KDEuP (q),

Var[(KDEwSm)2|H] ≤ 1

m
(Bumax)1−γ

∗
n∑
i=1

k2(xi, q)ui.

Algorithm 1 Hashing-Based-Sketch (HBS)

1: Input: set P , size m, hashing scheme Hν , threshold
τ ∈ (0, 1), u ∈ ∆n

2: Sample h ∼ Hν and create hash tabel H = h(P ).
3: Set γ according to (35)
4: Sm ← ∅, w ← 0 · 1m, B ← B(H)
5: for j = 1, . . . ,m do
6: Sample hash bucket Hi with probability ∝ uγHi
7: Sample a point Xj from Hi with probability ∝ uj
8: Sm ← Sm ∪ {Xj}

9: wj(γ,m)← uHi
m

∑B
i′=1

uγH
i′

uγHi

10: Output: (Sm, w)

The above analysis shows that the sketch is always unbiased
and that the variance depends on the hash function H only
through (Bumax)1−γ

∗ ≥ 1. We postpone the proof of this
lemma after showing how it implies the following theorem.

Theorem 4. Let H be the hash function sampled by the
HBS procedure. For ε > 0 and δ ∈ [e−

6
ε2

umax
nτ , e−

6
ε2 ), let:

γ∗ =

{
1−

log( ε
2

6 log(1/δ))

log(umax

τ )

}I[B≤( 1
2 )

1
6 1
τ ]

, (35)

m =
6

ε2
1

τ
(Bumax)

1−γ∗
<

log( 1
δ )

τ
. (36)

Then (Sm, w) is an (ε, 16 , τ)-sketch and if B ≤
(
1
2

) 1
6 1
τ

any hash bucket with weight at least τ will have non empty
intersection with Sm with probability at least 1− δ.

Proof of Theorem 4. Given a hash bucket with weight at
least τ , the probability that we sample a point from that
bucket is at least:

ρ ≥ τγ

B1−γ = τ
1

(Bτ)1−γ
(37)

The probability that we see no point after m indepen-
dent samples is less than (1 − ρ)m ≤ e−m

τγ

B1−γ For
m ≥ log(1/δ)

τ (Bτ)1−γ this probability is at most δ. On
the other hand by Lemma 5 if m ≥ 6

ε2
1
τ (Bumax)

1−γ we
have that Var[KDEwSm ] ≤ ε2

6 µτ . The case B > 2−
1
6
1
τ is

trivial as γ∗ = 1. For B ≤ 2−
1
6
1
τ ⇒ umax ≥ 1

B ≥ τ2
1
6 .

We set γ to make the two lower bounds on m equal,

6

ε2
1

τ
(Bumax)

1−γ
=

log(1/δ)

τ
(Bτ)1−γ (38)

⇔
(umax

τ

)1−γ
=
ε2 log(1/δ)

6
(39)

⇔ γ = 1−
log( ε

2

6 log(1/δ))

log(umax

τ )
. (40)
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This is strictly less than one for log(1/δ) ε
2

6 > 1 ⇒ δ <

e−
6
ε2 , and more than zero for δ ≥ e−

6
ε2

umax
τ . Since umax ≥

τ21/6 the two inequalities are consistent. Furthermore,

m =
6

τε2
· (Bumax)1−γ

∗
(41)

=
6

τε2
· (Bumax)

log(
ε2 log(1/δ)

6 ) 1
log(

umax
τ

) (42)

=
6

τε2
· e

log(log(1/δ) ε
2

6 )
log(Bumax)

log(
umax
τ

) (43)

≤ 6

τε2
·
(

log(1/δ)
ε2

6

)(1− 1
6

log 2

log(
umax
τ

)
)

(44)

<
log(1/δ)

τ
. (45)

Remark 1. Observe that log 1
δ

τ is the number of samples
that random sampling would require in order to have
the same property for any bucket with uHi ≥ τ . When
γ∗ < 1, our scheme always uses less samples by a factor of(

log(1/δ) ε
2

6

) log(Bτ)

log(
umax
τ

)
< 1.

Thus, our sketch will have similar variance with random
sampling in dense regions of the space but will have better
performance for relatively “sparse” regions.

2.1. Proof of Lemma 5

Proof of Lemma 5. Let I be the random hash bucket and
XI the corresponding random point, then for a single point:

E[KDEw1

{XI}] = EI [EXI [
uHI
m

∑B
i′=1 u

γ
Hi′

uγHI
k(XI , q)]]

= EI [
∑
j∈HI

uHI
m

∑B
i′=1 u

γ
Hi′

uγHI
k(xj , q)

uj
uHI

]

=
1

m
EI [
∑B
i′=1 u

γ
Hi′

uγHI

∑
j∈HI

k(xj , q)uj ]

=
1

m

∑
i∈[B]

∑
j∈Hi

k(xj , q)uj

=
1

m
KDFuP (q).

The first part follows by linearity of expectation. Similarly,

E[(KDFwSm)2] ≤
m∑
j=1

E[(KDF
wj
{xj})

2] + (KDFuP (q))2.

By linearity we only have to bound the first term

E[(KDEw1

{XI})
2] = EI [EXI [(

uHI
m

∑B
i′=1 u

γ
Hi′

uγHI
k(XI , q))

2]]

= EI [
∑
j∈HI

(
uHI
m

∑B
i′=1 u

γ
Hi′

uγHI
k(xj , q))

2 uj
uHI

]

= EI [(
∑B
i′=1 u

γ
Hi′

muγHI
)2uHI

∑
j∈HI

k2(xj , q)uj ]

=

∑B
i′=1 u

γ
Hi′

m2

∑
i∈[B]

u1−γHI

∑
j∈HI

k2(xj , q)uj

≤
∑B
i′=1 u

γ
Hi′

m2
u1−γmax

∑
i∈[B]

∑
j∈HI

k2(xj , q)uj

≤ (Bumax)1−γ

m2

n∑
j=1

k2(xj , q)uj .

The last inequality follows by applying Hölder’s inequality
with p = 1

γ and q = 1
1−γ , and due to u ∈ ∆n.

3. Diagnostic and Visualization procedures
In this section, we show how our refined variance bounds
along with the adaptive procedure lead to a diagnostic pro-
cedure estimating the variance of RS and HBE, as well as
to a visualization procedure that gives intuition about the
“local structure” of the queries in a given dataset.

3.1. Diagnostic procedure

In order to go beyond worst-case bounds (typically ex-
pressed as a function of the query density µ) and provide
dataset specific bounds on the variance of different methods
(RS and HBE) we use Lemma 4. By setting the coeffi-
cients Vij appropriately, we can bound the variance of RS
(Vij = 1) and HBE (Vij =

min{p(q,xi),p(q,xj)}
p(q,xi)2

). Unfortu-
nately, evaluating the bound (11) directly over the whole
dataset for a single query is no cheaper than evaluating the
methods directly.

At a high level, our diagnostic procedure goes around this
by evaluating the upper bound for each query q on ‘repre-
sentative sample” S̃0(q) instead of P . By doing this for
a number T of random queries picked uniformly from the
dataset P , we get an estimate of the average relative variance
for different methods.

Specifically, given τ ∈ (0, 1) and ε ∈ (0, 1), for a sin-
gle query let S̃0 be the random set produced by the AMR
procedure (Algorithm 1, Section 4.2) called with random
sampling and define the sets S̃` = S̃0 ∩ S` for ` ∈ [4] and
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their corresponding “densities” µ̃` =
∑
i∈S̃` uiwi. Let

λε := arg max
µ̃0≤λ≤1

{
µ̃3 ≤

1

2
(εµ̃0 − µ̃4)

}
(46)

Lε := arg min
µ̃0≤L≤1

{
µ̃1 ≤

1

2
(εµ̃0 − µ̃4)

}
(47)

be such that µ̃2 ≥ (1 − ε)µ̃0, i.e. most of the mass is
captured by the set S̃2 (that is an spherical annulus for
kernels that are decreasing with distance). Since Lemma 4
holds for all µ ≤ λ ≤ L ≤ 1, Lε, λε complete the definition
of four sets S̃1, . . . , S̃4 which we use to evaluate (11), and
denote by Vmethod(q) the corresponding bound used with
Vij corresponding to a certain estimator, e.g. method ∈
{RS,HBE}. Below we give the procedure in pseudo-code.

Algorithm 2 Diagnostic

1: Input: set P , threshold τ ∈ ( 1
n , 1), accuracy ε, T ≥ 1,

collision probability p(x, y) of the hashing schemeHν .
2: for t = 1, . . . , T do
3: q ← Random(P ) . For each random query
4: (S̃0, µ̃0)← AMR(ZRS(q), ε, τ)
5: Set λε, Lε using (46) and (47)
6: Let VRS be the r.h.s of (11) for S̃0 and Vij = 1.
7: Let VHBE be the r.h.s of (11) for S̃0 and

Vij =
min{p(q, xi), p(q, xj)}

p(q, xi)2
(48)

8: rVRS(t)← VRS/max{µ̂, τ}2
9: rVHBE(t)← VHBE/max{µ̂, τ}2.

10: Output: (meanT (rVRS),meanT (rVHBE))

Remark 2. We only show the procedure for choosing be-
tween RS and HBE with a specific hashing scheme. The
same procedure can be used to evaluate a multitude of hash-
ing schemes to select the best one for a given dataset.

3.2. Visualization procedure

We can use the information from our diagnostics to visualize
what is the data set like by aggregating local information for
random queries. For a set S, let rS = mini∈S log( 1

k(xi,q)
)

and RS = maxj∈S log( 1
k(xj ,q)

). The basis of our visualiza-
tion is the following fact:

Lemma 6. Let X be a random sample from S, then
E[k2(X, q)] ≤ exp(RS − rS) · µ2

S .

Proof of Lemma 6. We have that e−RS ≤ k(xi, q) ≤ e−rS ,

therefore

E[k2(X, q)] =
∑
i∈S

k2(xi, q)ui (49)

≤ e−rS
∑
i∈S

k(xi, q)ui
µS
µS

(50)

≤ eRS−rSµ2
S (51)

where in the last part we used µS ≥ e−RS .

Thus if we plot an annulus of width wS = RS−rs then ewS
is an estimate of the relative variance for RS! The visualiza-
tion procedure when given a sequence of T pairs of numbers
(λt, Lt) for t ∈ [T ] (produced by the diagnostic procedure)
plots overlapping annuli around the origin representing the
queries. Since often the ratio maxi,j∈S

k(xi,q)
k(xj ,q)

is refered to
as the condition number of the set S, we call our procedure
the Log-Condition plot.

Algorithm 3 Log-Condition Plot

1: Input: {(λt, Lt)}t∈[T ].
2: for t = 1, . . . , T do . For each query
3: rt ← log(1/Lt),
4: Rt ← log(1/λt)
5: draw 2D-annulus(rt, Rt)
6: Output: figure with overlapping annuli.

Remark 3. In the specific case of the Laplace (exponen-
tial) kernel, the radii we are plotting correspond to actual
distances.

4. Synthetic benchmarks
In this section, we introduce a general procedure to cre-
ate tunable synthetic datasets that exhibit different local
structure around the query. We then show how to use this
procedure as a building block to create two different family
of instances with specific characteristics aimed to test kernel
density evaluation methods.

4.1. (µ,D, n, s, d, σ)-Instance

Since the problem of kernel density is query dependent
and the kernel typically depends only on the distance, we
shall always assume that the query point is at the origin
q = 0 ∈ Rd.

We further assume that the kernel is an invertible function
of the distance K(r) ∈ [0, 1] and let K−1(µ) ∈ [0,∞) be
the inverse function. For example, the exponential kernel is
given by K(r) = e−r and the inverse function is given by
K−1(µ) = log( 1

µ ).

The dataset is created with points lying in D different direc-
tions and s distance scales (equally spaced between 0 and
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Figure 2. (µ = 0.01, D = 3, s = 4, d = 2, σ = 0.05)-Instance.
Each of the D = 3 directions is coded with a different color.

R = K−1(µ)) such that the contribution from each direc-
tion and scale to the kernel density at the origin is equal.
To achieve this the number of points nj placed a at the j-th
distance scale rj is given by

n` := bn µ

K(rj)
c. (52)

The reasoning behind this design choice is to make sure that
we have diversity in the distance scales that matter in the
problem, so not to favor a particular class of methods (e.g.
random sampling , nearest-neighbor based). Also, placing
the points on the same direction makes the instance more dif-
ficult for HBE as the variance in (6) increases with the ratio
P[h(i)=h(j)=h(q)]

P[h(i)=h(q)]2 , that expresses how correlated the values
{h(i), h(j), h(q)} are. We give an example visualization
of such data sets in 2 dimensions in Figure 2. The detailed
procedure is described below (Algorithm 4).

Algorithm 4 (µ,D, n, s, d, σ)-Instance

1: Input: µ ∈ [ 1n , 1], D ≥ 1, n ≥ 1, s ≥ 2 , d ≥ 1,
σ ≥ 0, kernel K, inverse K−1.

2: R← K−1(µ), r0 ← K−1(1), P ← ∅.
3: for j = 0, . . . , s− 1 do
4: rj+1 ← R−r0

s−1 j + r0 . distances for each D
5: nj+1 ← bn µ

K(rj+1)
c . points at each distance

6: for i = 1, . . . , D do
7: vi ← gi

‖gi‖ with gi ∼ N (0, Id). . random direction
8: for j=1,. . . , s do . For each distance scale
9: for ` = 1, . . . , nj do . generate a “cluster”

10: gij` ∼ N (0, Id)
11: xij` ← sjvi + σ√

d
sjgij`

12: P ← P ∪ {xij`}
13: Output: Set of points P

Remark 4. IfD � n this class of instances becomes highly
structured with a small number of tightly knit “clusters”

(a) “worst-case” instance (b) D-structured instance

Figure 3. The two family of instances for d = 2.

(Figure 2). One would expect in this case, space-partioning
methods to perform well. At the same time by Lemma 4, this
type of instances are the ones that maximize the variance of
both HBE (s ≥ 1) and RS (s > 1) .

Remark 5. On the other hand if D � n the instances
become spread out (especially in high dimensions). This
type of instances are ideal for sampling based methods when
s = 1, and difficult for space-partitioning methods.

Based on the above remarks we propose the following sub-
class of instances.

4.2. “Worst-case” instance

In order to create an instance that is hard for all methods we
take a union of the two extremes D � n and D � n. We
call such instances “worst-case” as there does not seem to
be a single type of structure that one can exploit, and these
type of instances realize the worst-case variance bounds for
both HBE and RS. In particular, if we want to generate an
instance with N points, we first set D a small constant and
n = Θ(N) and take the union of such a dataset with another
using D = Ω(N1−o(1)) and n = O(No(1)). An example
of such a dataset is given in 3(a).

4.3. D-structured instance

“Worst-case” instances are aimed to be difficult for any ker-
nel evaluation method. In order to create instances that have
more varied structure, we use our basic method to create a
single parameter family of instance by fixing N,µ, σ, s, d
and setting n = N

D . We call this family of instances as
D-structured. As one increases D, two things happen:

• The number of directions (clusters) increases.

• n = N
D decreases and hence certain distance scales

disappear. By (52), if nµ < K(rj) ⇒ Dj >
Nµ
K(rj)

then distance scale j will have no points assigned to it.

Hence, for this family when D � N
D ↔ D �

√
N

the instances are highly structured and we expect space-



Rehashing Kernel Evaluation in High Dimensions

Table 1. Preprocessing time (init) and total query time (query)
on 10K random queries for additional datasets. All runtime mea-
surements are reported in seconds.

Dataset Time RS HBE ASKIT FigTree

higgs init 0 141 25505 > 1day
query 6 18 1966 > 1day

hep init 0 138 23421 > 20 hours
query 6 11 1581 > 1day

susy init 0 67 5326 3245
query 18 12 > 9756 5392

home init 0 11 237 7
query 2369 17 376 33

mnist init 0 211 14 437
query 168 389 ? 1823

Table 2. Preprocessing time (in seconds) for clustering test.

n D HBE FigTree ASKIT

500K 1 192 2 113
50K 10 20 3 105
5K 100 16 16 105
500 1000 19 174 104
50 10000 39 1516 102
5 100000 334 0.3 101

partitioning methods to perform well. On the other extreme
as D increases and different distance scales start to die out
(Figure 3(b)) the performance of random sampling keeps
improving until there is only one (the outer) distance scale,
where random sampling will be extremely efficient. On the
other hand HBE’s will have roughly similar performance on
the two extremes as both correspond to worst-case datasets
for scale-free estimators with β = 1/2, and will show slight
improvement in between 1 � D � n. This picture is
confirmed by our experiments.

5. Experiments
5.1. Datasets

We provide detailed descriptions of the datasets as well
as the bandwidth used for the kernel density evaluation
in Table 3. We also include specifications for the ad-
ditional datasets acquired from LIBSVM (Chang & Lin,
2011) and the UCI Machine Learning Repository (Dheeru
& Karra Taniskidou, 2017) that were used to evaluate the
accuracy of the diagnostic procedure.

We selected the top eight datasets in Table 3 for density
evaluation in the main paper as they are the largest, most
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Figure 4. Results from the synthetic experiment (repeat of results
in the main paper for easy reference).

complex datasets in our collection. We provide additional
density evaluation results in Table 1 for datasets with com-
parable sizes or dimensions to the ones reported in the main
paper. For higgs and hep, FigTree failed to finish the evalu-
ation within a day. Given the performance of RS on these
datasets, we don’t expect FigTree to achieve better perfor-
mance even if the query returns successfully. For mnist, we
were not able to get ASKIT to achieve relative error below 1
even after trying parameters that span a few orders of mag-
nitude; this is potentially caused by the high-dimensionality
and sparsity of this dataset.

5.2. Synthetic Experiment

For the clustering test, we set µ = 0.001, s = 4, d =
100, σ = 0.01, N = 500K. The varying parameters are
the number of clusters (D) and the number of points per
cluster n. We report preprocessing time (in seconds) for all
methods in Table 2. The ordering of methods according to
preprocessing time largely follows the that of query time.

As discussed in Section 4.3, for the D-structured instances
as the number of points per cluster n decreases, smaller
distance scales start to disappear due to (52). Let Di be the
threshold such that for D > Di, there are no-points in scale
i. The corresponding numbers for our experiment is roughly
D1 = 500 (at distance 0) , D2 = 1077, D3 = 10K,
D4 = N = 500K. In particular, only a single distance
scale remains when D = 100K > D3, a set up in which
RS is orders of magnitude more efficient than alternative
methods (Figure 4 right).

5.3. Sketching Experiment

In this section, we evaluate the quality of the proposed
hashing-based sketch. As baselines, we compare against
sparse kernel approximation (SKA) (Cortes & Scott, 2017),
kernel herding algorithm (Herding) (Chen et al., 2010) and
uniform sampling. To control for the difference in the
complexity (Table 4), we compare the approximation er-
ror achieved by sketches of the same size (s) under the same
compute budget (2n, where n is dataset size). We describe
the detailed setup below, including necessary modifications
to meet the computational constraints.
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Table 3. Specifications of real-world datasets.

Dataset N d σ Description

census 2.5M 68 3.46 Samples from 1900 US census.
TMY3 1.8M 8 0.43 Hourly energy load profiles for US references buildings.
TIMIT 1M 440 10.97 Speech data for acoustic-phonetic studies. First 1M data points used.
SVHN 630K 3072 28.16 Google Street View house numbers. Raw pixel values of 32x32 images.
covertype 581K 54 2.25 Cartographic variables for predicting forest cover type.
MSD 463K 90 4.92 Audio features of popular songs.
GloVe 400K 100 4.99 Pre-trained word vectors from

Wikipedia 2014 + Giga 5 word. 5. 6B tokens, 400K vocab.
ALOI 108K 128 3.89 Color image collection of 1000 small objects.

Each image is represented by a 128 dimensional SIFT feature vector.

higgs 11M 28 3.41 Signatures of Higgs bosons from Monte Carlo simulations.
hep 10.5M 27 3.36 Signatures of high energy physics particles (Monte Carlo simulations).
susy 5M 18 2.24 Signatures of supersymmetric particles (Monte Carlo simulations).
home 969K 10 0.53 Home gas sensor measurements.
skin 245K 3 0.24 Skin Segmentation dataset.
ijcnn 142K 22 0.90 IJCNN 2001 Neural Network Competition.
acoustic 79K 50 1.15 Vehicle classification in distributed sensor networks.
mnist 70K 784 11.15 28x28 images of handwritten digits.
corel 68K 32 1.04 Image dataset, with color histograms as features.
sensorless 59K 48 2.29 Dataset for sensorless drive diagnosis.
codrna 59K 8 1.13 Detection of non-coding RNAs.
shuttle 44K 9 0.62 Space shuttle flight sensors.
poker 25K 10 1.37 Poker hand dataset.
cadata 21K 8 0.62 California housing prices.

Table 4. Overview of algorithm complexity and parameter choice
for the sketching experiment (n: dataset size, s: sketch size, T :
number of hash tables, m: sample size for herding).

Algorithm Complexity Parameters

HBS O(n′T + s) n′ = 2n
5 , T = 5

SKA O(ncsc + s3c) sc = n
1
3 , nc = n

2
3

Herding O(nhm+ nhs) m = s, nh = n
s

HBS. For HBS, we used 5 hash tables, each hashing a
subset of 2

5n points in the dataset. In practice, we found that
varying this small constant on the number of hash tables
does not have a noticeable impact on the performance.

SKA. SKA (Algorithm 5) produces the sketch by greedily
finding s points in the dataset that minimizes the maxi-
mum distance. The associated weights are given by solving
an equation that involves the kernel matrix of the selected
points. SKA’s complexity O(ns+ s3) is dominated by the
matrix inversion procedure used to solve the kernel matrix
equation. To ensure that SKA is able to match the sketch
size of alternative methods under the compute budget of 2n,
we augment SKA with random samples when necessary:

• If the target sketch size is smaller than n
1
3 (s < n

1
3 ),

we use SKA to produce a sketch of size s from a sub-
sample of n/s data points.

• For s > n
1
3 , we use SKA to produce a sketch of size

sc = n
1
3 from a subsample of nc = n

2
3 data points.

We match the difference in sketch size by taking an
additional s− sc random samples from the remaining
n − nc data points that were not used for the SKA
sketch. The final estimate is a weighted average be-
tween the SKA sketch and the uniform sketch: 1

sc
for

SKA and (1− 1
sc

) for uniform, where the weights are
determined by the size of the two sketches.

The modification uses SKA as a form of regularization on
random samples. Since SKA iteratively selects points that
are farthest away from the current set, the resulting sketch
is helpful in predicting the “sparser” regions of the space.
These sparser regions, in turn, are the ones that survive in
the n2/3 random sample of the dataset (sub-sampling with
probability n−1/3), therefore SKA naturally includes points
from “sparse” clusters of size Ω(n1/3) in the original set.

Herding. The kernel Herding algorithm (Algorithm 6)
first estimates the density of the dataset via random sam-
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pling; the sketch is then produced by iteratively selecting
points with maximum residual density. The algorithm has a
complexity of O(nm+ ns), where m stands for the sample
size used to produce the initial density estimates.

To keep Herding under the same 2n compute budget, we
downsample the dataset to size nh = n

s , and use m = s
samples to estimate the initial density. This means that, the
larger the sketch size is, the less accurate the initial density
estimate is. As a result, we observe degrading performance
at larger sketch sizes s = Ω(

√
n).

Algorithm 5 Sparse Kernel Approximation (SKA)

1: Input: set P , kernel K, size s.
2: S = {x1, . . . , xs} ← Greedy-kcenter(P, s)
3: K ∈ Rs×s with Kij ← k(xi, xj) for xi, xj ∈ S.
4: y ∈ Rs with yi ← KDEwP (xi) for xi ∈ S.
5: Let ŵ be a solution to Kŵ = y.
6: Output: (S, ŵ)

Algorithm 6 Approximate Kernel Herding (AKH)

1: Input: set P , kernel K, size s, samples m.
2: for i = 1, . . . , |P | do
3: Pi ← Random(P,m). . random set of m points
4: di ← KDEPi(xi) . estimate of the density
5: S0 ← ∅ . initialization
6: for t = 1, . . . , s do
7: j∗ ← arg maxi∈[n]{di −KDESt−1

(xi)} . greedy
8: St ← St−1 ∪ {x∗j} . add point to the set

9: Output: (Ss,
1
s1s)) . return the sketch

Results. Figure 5 reports the relative error on random
queries (left), i.e. uniformly random points from the dataset,
and low-density queries (right), uniformly random points of
the dataset with density around a threshold τ . Uniform, SKA
and HBS achieve similar mean error on random queries,
while the latter two have improved performance on low-
density queries, with HBS performing slightly better than
SKA. By design, HBS has similar performance with ran-
dom sampling on average, but performs better on relatively
“sparse” regions due to the theoretical guarantee that buckets
with weight at least τ are sampled with high probability.
Combining SKA with random samples initially results in
performance degradation but eventually acts as a form of
regularization improving upon random. Kernel Herding is
competitive only for a small number of points in the sketch.

Overhead reduction. In Table 5, we report on the esti-
mated preprocessing runtime reduction enabled by HBS
for the density estimation results reported in Table 1 of the
main paper. The estimates are calculated by the dividing
the number of data points hashed according to the original
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Figure 5. Sketching results on random and low-density queries.
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Table 5. Estimated overhead reduction enabled by HBS.

census TMY3 TIMIT SVHN covertype MSD GloVe ALOI

Reduction (est.) 958× 755× 821× 659× 554× 607× 595× 303×

HBE procedure by the number of data points hashed after
enabling HBS.

5.4. Visualizations of real-world data sets

Our Log-Condition plots use circles with radius r to repre-
sent points with weights roughly e−r (roughly at distance√
r for the Gaussian kernel). The visualizations are gener-

ated by plotting overlapping annuli around the origin that
represent a random queries from the dataset, such that the
width of the annulus roughly corresponds to the log of the
relative variance of random sampling.

We observe two distinctive types of visualizations. Datasets
like census exhibit dense inner circles, meaning that a small
number of points close to the query contribute significantly
towards the density. To estimate the density accurately, one
must sample from these small clusters, which HBE does
better than RS. In contrast, datasets like MSD exhibit more
weight on the outer circles, meaning that a large number of
“far” points is the main source of density. Random sampling
has a good chance of seeing these “far” points, and therefore,
tends to perform better on such datasets. The top two plots
in Figure 6 amplify these observations on synthetic datasets
with highly clustered/scattered structures. RS performs
better for all datasets in the right column except for SVHN.
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