A. Proofs

A.1. Proof of Proposition 1

This section derives the closed-form formula for the Hessian of the loss function for a deep ReLU network. Since a ReLU network is piecewise linear, it is locally linear around an input \(x \). Thus the logits can be represented as:

\[
f_\theta(x) = W^T x + b,
\]

where \(x \) is the input of dimension \(d \), \(f_\theta(x) \) are the logits, \(W \) are the weights, and \(b \) are the biases of the linear function. In this proof, we use \(\hat{y} \) to denote the logits, \(p \) to denote the class probabilities, \(y \) to denote the label vector and \(c \) to denote the number of classes. Each column \(W_i \) of \(W \) is the gradient of logit \(\hat{y}_i \) with respect to flattened input \(x \) and can be easily handled in auto-grad software such as PyTorch (Paszke et al., 2017).

Thus

\[
\frac{\partial \hat{y}_i}{\partial x} = W_i
\]

\(p = \text{softmax}(\hat{y}) \)

\[
\ell(p, y) = -\sum_{i=1}^c y_i \log(p_i).
\]

\[
\nabla_x \ell(p, y) = p - y
\]

\[
\nabla_x \ell(p, y) = \sum_{i=1}^c \frac{\partial \hat{y}_i}{\partial x} = p_i - y_i
\]

Using (1) and (2)

\[
\nabla_x \ell(p, y) = \sum_{i=1}^c W_i (p_i - y_i)
\]

\[
\Longrightarrow \nabla_x \ell(p, y) = W (p - y)
\]

Therefore, we have:

\[
H_x = \nabla_x (\nabla_x \ell(p, y)) = \nabla_x (\sum_{i=1}^c W_i (p_i - y_i))
\]

\[
H_x = \sum_{i=1}^c W_i (\nabla_x (p_i - y_i))^T
\]

Deriving \(\nabla_x p_i \):

\[
\nabla_x p_i = \sum_{j=1}^c \frac{\partial p_i}{\partial x} \frac{\partial x}{\partial y_j}
\]

\[
\Longrightarrow \nabla_x p_i = \sum_{j=1}^c \left(W_j \times \frac{\partial p_i}{\partial y_j} \right) \quad (\text{Using (1)})
\]

\[
\frac{\partial p_i}{\partial y_j} = \begin{cases} p_i - p_j^2 & i = j \\ -p_i p_j & i \neq j \end{cases}
\]

\[
\Longrightarrow \nabla_y p = \text{diag}(p) - pp^T
\]

\[
H_x = \sum_{i=1}^c \sum_{j=1}^c W_i \left(\sum_{j=1}^c W_j \times \frac{\partial p_i}{\partial y_j} \right)^T \quad (\text{Substituting (4) in (3)})
\]

\[
H_x = \sum_{i=1}^c \sum_{j=1}^c W_i \frac{\partial p_i}{\partial y_j} W_j^T
\]

\[
\Longrightarrow H_x = W (\text{diag}(p) - pp^T) W^T \quad (\text{Using (5)})
\]

Thus we have,

\[
\nabla_x \ell(p, y) = g_x = W (p - y)
\]

\[
H_x = WAW^T
\]

where

\[
A := \text{diag}(p) - pp^T.
\]

This completes the proof.
We define:

\[A_{ij} = \sum_{ji} |A_{ij}| = (\sum_{ji} - p_i p_j) \]

\[\implies \sum_{ji} |A_{ij}| = p_i \sum_{ji} p_j \]

\[\implies \sum_{ji} |A_{ij}| = p_i (1 - p_i) \]

\[|A_{ii}| = p_i (1 - p_i) \]

Because \(|A_{ii}| > \sum_{ji} |A_{ij}|\), by the Gershgorin Circle theorem, we have that all eigenvalues of \(A \) are positive and \(A \) is a positive semidefinite matrix. Since \(A \) is positive semidefinite, we can write \(A = LL^T\). Using (7):

\[H_x = WAW^T = WLL^T W^T = WL(WL)^T. \]

Hence \(H_x \) is a positive semidefinite matrix as well.

A.3. Proof of Theorem 3

The second-order interpretation objective function is:

\[\tilde{\ell}(x) = \nabla_x \ell(f(x), \tilde{y})^T \Delta + \frac{1}{2} \Delta^T H_x \Delta - \lambda_2 \Delta \]

where \(\Delta := \tilde{x} - x \) (\(y \) is fixed). Therefore if \(\lambda_2 > L/2 \), \(H_x - 2\lambda_2 I \) is negative definite and \(\tilde{\ell}(\Delta) \) is strongly concave.

A.4. Proof of Theorem 4

Let the class probabilities be denoted by \(p \), the number of classes by \(c \) and the label vector by \(y \). We again use \(g_x \) and \(H_x \) as defined in (6) and (7) respectively. Without loss of generality, assume that the first class is the class with maximum probability. Hence,

\[y = [1, 0, 0, \ldots, 0]^T. \]

We assume all other classes have small probability (i.e., the confidence is high),

\[p_i = \epsilon \quad \forall \ i \in [2, c] \]

Since \(\sum_{i=1}^c p_i = 1 \),

\[\implies p_1 = 1 - (c-1)\epsilon, \]

\[\implies p = [1 - (c-1)\epsilon, \epsilon, \ldots, \epsilon]^T \]

We define:

\[A = \text{diag}(p) - pp^T \]

\[a_{11} = 1 - (c-1)\epsilon - (1 - (c-1)\epsilon)^2 \]

\[a_{ij} = a_{ji} = -(1 - (c-1)\epsilon) \quad \forall \ i \in [2, c] \]

\[a_{ii} = \epsilon - \epsilon^2 \quad \forall \ i \in [2, c] \]

\[a_{ij} = -\epsilon^2 \quad \forall \ i, j \in [2, c], \ i \neq j \]

Ignoring \(\epsilon^2 \) terms:

\[a_{11} = (c-1)\epsilon \]

\[a_{ij} = a_{ji} = -\epsilon \quad \forall \ i \in [2, c] \]

\[a_{ii} = \epsilon \quad \forall \ i \in [2, c] \]

\[a_{ij} = 0 \quad \forall \ i, j \in [2, c], \ i \neq j \]

Let \(\lambda \) be an eigenvalue of \(A \) and \(v \) be an eigenvector of \(A \), then \(Av = \lambda v \).

Let \(v_1, v_2, \ldots, v_c \) be the individual components of the eigenvector. The equation \(Av = \lambda v \) can be rewritten in terms of its individual components as follows:

\[(c-1)\epsilon v_1 - \epsilon \sum_{i=2}^c v_i = \lambda v_1 \]

\[-\epsilon v_1 + \epsilon v_i = \lambda v_i \quad \forall \ i \in [2, c] \]

\[\implies v_i = \frac{\epsilon}{\epsilon - \lambda} v_1 \quad \forall \ i \in [2, c], \text{ for } \lambda \neq \epsilon \]

\[\implies or v_1 = 0, \text{ for } \lambda = \epsilon \]

We first consider the case \(\lambda \neq \epsilon \) (12). Substituting \(v_i \) in (11):

\[(c-1)\epsilon v_1 - \epsilon \sum_{i=2}^c v_i = (c-1)\epsilon v_1 - \frac{\epsilon^2}{\epsilon - \lambda} \sum_{i=2}^c v_i \]

\[= (c-1)\epsilon v_1 - \frac{\epsilon^2}{\epsilon - \lambda} (c-1) v_1 \]

\[= (c-1)\epsilon v_1 - (c-1)\epsilon v_1 \frac{\epsilon}{\epsilon - \lambda} \]

\[= \lambda v_1 \]

\[(c-1)\epsilon v_1 \left[1 - \frac{\epsilon}{\epsilon - \lambda} \right] = \lambda v_1 \]

\[(c-1)\epsilon v_1 \left[-\frac{\lambda}{\epsilon - \lambda} \right] = \lambda v_1 \]

\[(c-1)\epsilon v_1 (\lambda - \lambda) = \lambda v_1 (\epsilon - \lambda) \]

\[\implies \lambda v_1 (\epsilon - \lambda) = 0 \]

\[\implies \lambda = 0 \text{ or } v_1 = 0 \text{ or } \lambda = c \epsilon \]

\[v_1 = 0 \implies v_i = \frac{\epsilon}{\epsilon - \lambda} v_1 = 0 \quad \forall \ i \in [2, c] \]

\[\implies v = 0 \]
Since v is an eigenvector, it cannot be zero,

$$\implies \lambda = 0 \text{ or } \lambda = \epsilon c.$$

Let u_1 be the corresponding eigenvector for $\lambda = \epsilon c$.

By substituting $\lambda = \epsilon c$ in (12):

$$u_1^T \propto [1 - c, 1, ..., 1]$$

Dividing by the normalization constant,

$$u_1^T = \frac{1}{\sqrt{c(c-1)}}[1 - c, 1, ..., 1] \quad (14)$$

Now we consider the case $\lambda = \epsilon$ (13). Substituting $v_1 = 0, \lambda = \epsilon$ in (11);

The space of eigenvectors for $\lambda = \epsilon$ is a $c - 2$ dimensional subspace with $v_1 = 0, \sum_{i=2}^c v_i = 0$.

Let u_i be the eigenvectors with $\lambda = \epsilon \quad \forall \ i \in [2, c - 1]$.

Let u_c be the eigenvector with $\lambda = 0$.

Writing A in terms of its eigenvalues and eigenvectors,

$$A = \epsilon c u_1 u_1^T + \epsilon \sum_{i=2}^{c-1} u_i u_i^T$$

Let

$$A_1 = \epsilon c u_1 u_1^T, \quad A_2 = \epsilon \sum_{i=2}^{c-1} u_i u_i^T$$

$$\|A_1\|_F = \epsilon c, \quad \|A_2\|_F = \epsilon \sqrt{c - 2}$$

Hence as $c \to \infty$,

$$A = A_1 + A_2 \approx A_1$$

Using (7),

$$H_x = WAW^T \approx WA_1 W^T$$

Substituting $A_1 = \epsilon c u_1 u_1^T$,

$$H_x \approx \epsilon c W u_1 u_1^T W^T \quad (15)$$

Using (6),

$$g_x = \nabla_x \ell(p, y) = W(p - y)$$

Let W_i denote the i^{th} row of W.

Using (9) and (10),

$$g_x = W_1(1-c)\epsilon + \sum_{i=2}^c W_i \epsilon$$

$$g_x = \epsilon(W_1(1-c) + \sum_{i=2}^c W_i)$$

Using (14),

$$g_x = \epsilon \sqrt{c(c-1)} W u_1$$

$$\implies W u_1 = \frac{g_x}{\epsilon \sqrt{c(c-1)}} \quad (16)$$

Using (15),

$$H_x \approx \epsilon c W u_1 u_1^T W^T = \epsilon c W u_1 (W u_1)^T$$

Using (16),

$$H_x \approx \epsilon c \frac{g_x g_x^T}{\epsilon \sqrt{c(c-1)} \epsilon \sqrt{c(c-1)}} = \frac{g_x g_x^T}{\epsilon(c-1)}$$

$$\implies H_x \approx \frac{g_x g_x^T}{\epsilon(c-1)} \quad (17)$$

Thus, the Hessian is approximately rank one and the gradient is parallel to the Hessian’s only eigenvector.

A.5. Proof of Theorem 5

We use $g_x = \nabla_x \ell(p, y) = W(p - y)$ (6).

Let $\lambda_1 = 0$ in the CASO and CAFO objectives. The CASO objective then becomes:

$$\max_{\Delta} (g_x^T \Delta + \frac{1}{2} \Delta^T H_x \Delta - \lambda_2 \| \Delta \|^2)$$

Taking the derivative with respect to Δ and solving:

$$\Delta_{CASO}^* = (2\lambda_2 I - H_x)^{-1} g_x$$

Similarly, for the CAFO objective we get:

$$\Delta_{CAFO}^* = \frac{1}{2\lambda_2} g_x$$

Using (17),

$$H_x \approx \frac{g_x g_x^T}{\epsilon(c-1)} = \frac{\| g_x \|^2}{\epsilon(c-1)} \frac{g_x g_x^T}{\| g_x \|^2}$$

Define:

$$\mu = \frac{\| g_x \|^2}{\epsilon(c-1)}$$

Thus μ is the eigenvalue of H_x for the eigenvector:

$$\frac{g_x}{\| g_x \|}$$

Consider the matrix $B = (2\lambda_2 I - H_x)$:

Let z_1, \ldots, z_d be the eigenvectors of B where:

$$z_1 = \frac{g_x}{\| g_x \|}$$
Eigenvalue for $z_1 = 2\lambda_2 - \mu$
Eigenvalue for $z_i = 2\lambda_2 \quad \forall \, i \in [2, d]$

$$B = (2\lambda_2 - \mu)z_1z_1^T + 2\lambda_2 \sum_{i=2}^{iad} z_i z_i^T$$

$$B^{-1} = \frac{1}{(2\lambda_2 - \mu)} z_1 z_1^T + \frac{1}{2\lambda_2} \sum_{i=2}^{iad} z_i z_i^T$$

$$B^{-1} = \frac{1}{(2\lambda_2 - \mu)} \|g_x\|^2 + \frac{1}{2\lambda_2} \sum_{i=2}^{iad} z_i z_i^T$$

$\Delta^*_C ASO = B^{-1}g_x$

Since each z_i is orthogonal to g_x

$$\Rightarrow \Delta^*_C ASO = \frac{g_x}{(2\lambda_2 - \mu)} = \frac{2\lambda_2 \Delta^*_C AFO}{(2\lambda_2 - \mu)}$$

Hence $\Delta^*_C ASO \| \Delta^*_C AFO$ and since scaling does not affect the visualization, the two interpretations are equivalent.

B. Convergence of Gradient Descent to Solve CASO

A consequence of Theorem 3 is that gradient descent converges to the global optimizer of the second-order interpretation objective with a convergence rate of $O(1/t^2)$. More precisely, we have:

Corollary 1 Let $\tilde{\ell}(\Delta)$ be the objective function of the second-order interpretation objective (Definition 3). Let $\Delta^{(t)}$ be the value of Δ in the t^{th} step with a learning rate $\alpha \leq \lambda_2 - L/2$. We have

$$\tilde{\ell}(\Delta^{(t)}) - \tilde{\ell}(\Delta^*) \leq \frac{2\|\Delta^{(0)} - \Delta^*\|^2}{\alpha(t + 1)^2}.$$

C. Efficient Computation of the Hessian Matrix Using the Cholesky Decomposition

By Theorem 2, the Cholesky decomposition of A (defined in (8)) exists. Let L be the Cholesky decomposition of A. Thus, we have

$$A = LL^T$$

$$H_x = WLL^TW^T$$

Let $B := WL$. Thus, H_x can be re-written as $H_x = BB^T$.

Let the SVD of B be as the following:

$$B = U\Sigma V^T$$

Thus, we can write:

$$H_x = U\Sigma^2U^T$$

Define $C = B^TB = V\Sigma^2V$. Note that Σ^2, the eigenvalues of C and H_x are the same. For a dataset such as ImageNet, the input has dimension $d = 224 \times 224 \times 3$ and $c = 1000$. Decomposing C (size 1000×1000) into its eigenvalues Σ and eigenvectors V is computationally efficient. Thus, from $B = U\Sigma V^T$, we can compute the eigenvectors U of H_x.

D. Saliency Visualization Methods

Normalizing Feature Importance Values: After assigning importance values to each input feature, the values must be normalized for visualization in a saliency map. For fair comparison across all methods, we use the non-diverging normalization method from SmoothGrad (Smilkov et al., 2017). This normalization method first takes the absolute value of the importance scores and then sums across the three color channels of the image. Next, the largest importance values are capped to the value of 99^th percentile. Finally, the importance values are divided and clipped to enforce the range $[0, 1]$. Code for the method is available.

Domain-Specific Post-Processing: Gradient \odot Input (Shrikumar et al., 2017) multiplies the importance values by the raw feature values. In image tasks where the baseline is zero, Integrated Gradients (Sundararajan et al., 2017) does the same. This heuristic can visually sharpen the saliency map and has some theoretical justification: it is equivalent to the original Layerwise Relevance Propagation Technique (Bach et al., 2015) modulo a scaling factor (Kindermans et al., 2016; Shrikumar et al., 2017). Additionally, if the model is linear, $y = Wx$, multiplying the gradient by the input is equivalent to a feature’s true contribution to the final class score.

However, multiplying by the input can introduce visual artifacts not present in the importance values (Smilkov et al., 2017). We argue against multiplying by the input: it artificially enhances the visualization and only yields benefits in the image domain. Adebayo et al. (2018) argue similarly and show cases when the input term can dominate the interpretation. Moreover, multiplication by the input removes the input invariance of the interpretation regardless of the invariances of the underlying model (Kindermans et al., 2018). We observed numerous failures in existing interpretation methods when input multiplication is removed.

\[1\text{https://github.com/PAIR-code/saliency/blob/master/saliency/visualization.py} \]
E. Tightness of the $L_0 - L_1$ Relaxation

We assume the condition of Theorem 3 holds, thus, the CASO optimization is a concave maximization (equivalently a convex minimization) problem.

Note the CASO optimization with the cardinality constraint can be re-written as follows:

$$\min_\Delta \quad |y - A\Delta|^2, \quad (18)$$

$$|\Delta|_0 \leq k,$$

where

$$A := \left(\lambda_2 I - \frac{1}{2} H_x\right)^{1/2}$$

$$y := \frac{1}{2} A^{-1} \nabla_x f(f_\theta(x), y). \quad (19)$$

(20)

Where $\cdot^{1/2}$ indicates the square root of a positive definite matrix. Equation (19) highlights the condition for tuning the parameter λ_2: it needs to be sufficiently large to allow inversion of A but sufficiently small to not “overpower” the Hessian term. Note, we are now minimizing Δ for consistency with the compressive sensing literature. To explain the conditions under which the $L_0 - L_1$ relaxation is tight, we define the following notation. For a given subset $S \subset \{1, 2, \ldots, d\}$ and constant $\alpha \geq 1$, we define the following cone:

$$\mathcal{C}(S; \alpha) := \{\Delta \in \mathbb{R}^d : |\Delta_S|_1 \leq |\Delta_S|_1\}, \quad (21)$$

where S^c is the complement of S. We say that the matrix A satisfies the restricted eigenvalue (RE) (Bickel et al., 2009; Raskutti et al., 2010) condition over S with parameters $(\alpha, \gamma) \in [1, \infty) \times (0, \infty)$ if

$$\frac{1}{d} |A\Delta|_2^2 \geq \gamma^2 |\Delta|_2^2 \quad \forall \Delta \in \mathcal{C}(S; \alpha). \quad (22)$$

If this condition is satisfied for all subsets of S where $|S| = k$, we say that A satisfies the RE condition of order k with parameters (α, γ). If A satisfies the RE condition with $\alpha \geq 3$ and $\gamma > 0$, then the $L_0 - L_1$ relaxation of optimization (18) is tight (Bickel et al., 2009). In other words, if Δ^* is the solution of optimization (18), it is also the solution of optimization

$$\min_\Delta \quad |y - A\Delta|^2, \quad (23)$$

$$|\Delta|_1 \leq |\Delta^*|_1.$$}

The Lagrangian relaxation of this optimization leads to the CASO interpretation objective. We note that the RE condition is less severe than other optimality conditions such as the restricted isometry property (Candes et al., 2007). Although it is difficult to verify that the RE condition holds for the Hessian matrix of a deep neural network, our empirical experiments are consistent with our theory: the resulting Δ of the CASO interpretation objective is sparse for proper choices of the regularization parameters.

F. Empirical Analysis of the Hessian Impact

F.1. Empirically Verifying the Hessian Approximation

Theorems 4 and 5 are valid only in the asymptotic regime. A similar analysis in the finite regime is more challenging as it requires the use of perturbation analysis of matrix eigenvalues and eigenvectors. However, we can do a simulation to assess the rate of convergence of the Hessian matrix to such a rank one matrix as the number of classes increases (in Figure 1) and the probability of the predicted class tends to 1 (in Figure 2).

For the simulation, we create a linear model $\hat{y} = W^T x + b$ where W and b are initialized to random values. Since Theorem 4 does not assume a trained network, our analysis is valid even with randomly initialized values of W and b. Let the class probabilities be denoted by p, the number of classes by c and the label vector by y. We again use g_x and H_x as defined in (6) and (7), respectively. Without loss of generality, assume that the first class is the one with maximum probability. Thus we create a probability vector $p = [1 - (c - 1)e, e, \ldots, e]$ and a prediction vector $y = [1, 0, \ldots, 0]$. Using Proof A.4, we have that the Hessian of this model can be approximated using:

$$H_x = \frac{g_x g_x^T}{\epsilon(c - 1)} \quad (24)$$

$$g_x = W(p - y) \quad (25)$$

For Figure 1, we fix the probability of predicted class to be 0.9999 (we call it $p_0[0]$) and vary c from 10 to 1000. Thus, note that ϵ varies as c varies and is given by $\epsilon = \frac{1 - p_0[0]}{c - 1}$. For Figure 2, we fix number of classes to be 100 and vary ϵ from $5e^{-3}$ to $1e^{-6}$ (an interval length of $1e^{-6}$). Similarly, Figure 3 shows a comparison between the relative error as the number of classes and probability are both varied. We observe that the relative error converges quickly as a function of both the number of classes and $-\log(1 - p_0[0])$.

F.2. Comparing CASO and CAFO for ReLU networks

We show additional examples (for relu networks) with low confidence in the predicted class in Figure 4. The interpretations produced by CASO and CAFO are qualitatively different.
Understanding High-Order Loss Approximations and Features in Deep Learning Interpretation

Figure 1. The relative error between a rank one approximation of the Hessian and the true Hessian as the number of classes increases. Although our theoretical analysis only holds in the asymptotic regime, the Hessian’s convergence to a rank one matrix happens quickly empirically.

Figure 2. The relative error between a rank one approximation of the Hessian and the true Hessian as the probability of the predicted class grows. We use a log scale and denote the predicted probability as $p[0]$.

Figure 3. The relative error between a rank one approximation of the Hessian and the true Hessian when varying the number of classes and the probability of predicted class (denoted by $p[0]$).

F.3. Experiments with General Non-linearities

We use a SE-Resnet-50 (Hu et al., 2018), a neural network with sigmoid non-linearities. The sigmoid non-linearity causes the model to no longer be piecewise linear. We generate saliency maps using the same 1000 random samples as in Section 3.3.

We plot the Frobenius norm of the difference between CASO and CAFO in Figure 6. We normalize the solutions produced by CASO and CAFO to have the same L_2 norm before taking the difference. Even though the model is no longer piecewise linear, the empirical results are consistent with Theorem 5 (which only holds for piecewise linear networks).

To observe the difference between CAFO and CASO interpretations, we compare them for two images with low classification confidence in Figure 5. The interpretations produced by CASO and CAFO are qualitatively different.

G. Additional Details on Experiments

G.1. Details on Experiments Reported in Figure 1

Current autograd software does not support fast eigenvalue decomposition of a matrix in a batched setting. This makes computing the exact hessian inefficient when interpreting numerous samples. For the purposes of this experiment, we use proximal gradient descent to compute the interpretations Δ_{CASO} and Δ_{CAFO}, even though the parameter λ_1 is set to zero. Details for the other hyperparameters are given in Table 1.

G.2. Details on Experiments Reported in Figure 3

Details of the hyperparameters used in Figure 3 are shown in Table 2.

G.3. Details on Experiments Reported in Figure 4

Details of the hyperparameters used in Figure 4 are shown in Table 3.
H. Comparison with existing methods

Figures 7–12 provide further examples of our interpretation method with existing techniques.

References

Bickel, P. J., Ritov, Y., Tsybakov, A. B., et al. Simultaneous
Figure 6. Scatter plot showing the Frobenius norm difference between CASO and CAFO (after normalizing both vectors to have the same L_2 norm) for a network which is not piecewise linear (SE-Resnet-50).

Table 1. Hyper-parameter details for Figure 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>0</td>
</tr>
<tr>
<td>λ_2 threshold</td>
<td>20</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Proximal Gradient Descent</td>
</tr>
<tr>
<td>Network architecture</td>
<td>Resnet-50</td>
</tr>
<tr>
<td>Batch size</td>
<td>32</td>
</tr>
<tr>
<td>Power method iterations</td>
<td>10</td>
</tr>
<tr>
<td>Gradient descent iterations</td>
<td>10</td>
</tr>
<tr>
<td>Backtracking decay factor</td>
<td>0.5</td>
</tr>
<tr>
<td>Initialization</td>
<td>Zero</td>
</tr>
</tbody>
</table>

Table 2. Hyper-parameter details for Figure 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1 values</td>
<td>$0, 10^{-5}$, 10^{-4}, 10^{-3}, 6.25×10^{-3}, 1.25×10^{-2}, 2.5×10^{-2}, 5×10^{-2}</td>
</tr>
<tr>
<td>λ_2 threshold</td>
<td>20</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Proximal Gradient Descent</td>
</tr>
<tr>
<td>Network architecture</td>
<td>Resnet-50</td>
</tr>
<tr>
<td>Batch size</td>
<td>32</td>
</tr>
<tr>
<td>Power method iterations</td>
<td>10</td>
</tr>
<tr>
<td>Gradient descent iterations</td>
<td>10</td>
</tr>
<tr>
<td>Backtracking decay factor</td>
<td>0.5</td>
</tr>
<tr>
<td>Initialization</td>
<td>Zero</td>
</tr>
</tbody>
</table>

Table 3. Hyper-parameter details for Figure 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1 values</td>
<td>$0, 10^{-5}$, 10^{-4}, 10^{-3}, 6.25×10^{-3}, 1.25×10^{-2}, 2.5×10^{-2}, 5×10^{-2}</td>
</tr>
<tr>
<td>λ_2 threshold</td>
<td>20</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Proximal Gradient Descent</td>
</tr>
<tr>
<td>Network architecture</td>
<td>Resnet-50</td>
</tr>
<tr>
<td>Batch size</td>
<td>32</td>
</tr>
<tr>
<td>Power method iterations</td>
<td>10</td>
</tr>
<tr>
<td>Gradient descent iterations</td>
<td>10</td>
</tr>
<tr>
<td>Backtracking decay factor</td>
<td>0.5</td>
</tr>
<tr>
<td>Initialization</td>
<td>Zero</td>
</tr>
</tbody>
</table>

Figure 9.

Figure 10.
Figure 11.

Figure 12.