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Abstract
Owing to the extremely high expressive power

of deep neural networks, their side effect is to

totally memorize training data even when the la-

bels are extremely noisy. To overcome overfitting

on the noisy labels, we propose a novel robust

training method called SELFIE. Our key idea is

to selectively refurbish and exploit unclean sam-

ples that can be corrected with high precision,

thereby gradually increasing the number of avail-

able training samples. Taking advantage of this

design, SELFIE effectively prevents the risk of

noise accumulation from the false correction and

fully exploits the training data. To validate the

superiority of SELFIE, we conducted extensive

experimentation using four real-world or synthetic

data sets. The result showed that SELFIE remark-

ably improved absolute test error compared with

two state-of-the-art methods.

1. Introduction
As the size of available data sets increases rapidly, deep

neural networks have achieved remarkable performance in

numerous machine learning tasks, such as image classifica-

tion (Krizhevsky et al., 2012) and object detection (Redmon

et al., 2016). However, owing to the high capacity to fit any

noisy labels, it is known that a small portion of mislabeled

samples in training data can severely hurt the model perfor-

mance. In particular, Zhang et al. (2017) have shown that

a standard convolutional neural network can fit the entire

training data with any ratio of noisy labels and eventually

leads to poor generalization on the test data. Thus, the key

issue is how to train the deep neural network robustly even

when mislabeled samples exist within the training data.

A typical method is using “loss correction” that corrects

the loss of training samples based on the estimated noise
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transition matrix (Zhang et al., 2017; Goldberger & Ben-

Reuven, 2017; Patrini et al., 2017; Chang et al., 2017). As

shown in Figure 1(a), the forward or backward losses of all
samples in each mini-batch are corrected and subsequently

back-propagated to update the network. However, owing to

the difficulty in estimating the noise transition matrix, it is

inevitable that the network accumulates the error incurred by

the false correction, especially when the number of classes

or the number of mislabeled samples is large (Jiang et al.,

2018; Han et al., 2018).

To be free of the false correction, many recent studies have

adopted “sample selection” that filters out true-labeled sam-

ples from the training data (Kumar et al., 2010; Jiang et al.,

2018; Han et al., 2018). They identified the clean samples

out of the mini-batch based on their forward losses, and

used them to update the network, as shown in Figure 1(b).

In practice, Han et al. (2018) have shown that training on the

clean samples yields a much better performance than cor-

recting the entire sample on extremely noisy data. However,

focusing on selected clean samples favors easy samples and

thus ignores numerous useful hard samples, which make

the network more accurate and robust (Shrivastava et al.,

2016; Chang et al., 2017; Lin et al., 2018). Therefore, for a

more robust training on noisy labels, we propose to refur-
bish unclean samples rather than just trash them in order to

enable a full exploration of the training data.

In this paper, we propose a hybrid approach, called SELFIE
(SELectively reFurbIsh unclEan samples), that achieves the

advantages of both “loss correction” and “sample selection”.

As stated above, loss correction allows for a full exploration

of the training data by re-weighting all the losses; however,

it suffers from the correction error. Conversely, sample

selection effectively eliminates the noise accumulation by

discarding all unclean samples but uses only the partial ex-

ploration of the training data. Thus, as illustrated in Figure

1(c), our key idea is to use refurbishable samples that can be

corrected with a high precision, together with clean samples.

Specifically, we selectively correct the losses of the train-

ing samples classified as refurbishable and combine them

with the losses of clean samples to propagate backward. Be-

cause the precision of the correction highly depends on the

network performance, the proportion of refurbishable sam-

ples increases gradually as the training step progresses, and

eventually covers all samples in the training data. Overall,
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(a) Loss Correction. (b) Sample Selection. (c) SELFIE.

Figure 1. Comparison of different robust training procedures: (a) shows the training procedures of loss correction, (b) shows the training

procedures of sample selection, and (c) shows the training procedures of SELFIE.

Table 1. Comparison of state-of-the-art training methods with SELFIE: each method is grouped into three categories. In the first column,

“Flexibility”: need not be tied with a specific architecture; “No Pre-train”: can be trained from scratch; “Heavy Noise”: can combat the

heavy noise; “Full Exploration”: can use all samples in training data. (This table except the last “Hybrid” column is adapted from Han

et al. (2018)’s work.)

Category Loss Correction Sample Selection Hybrid
Method Bootstrap’15 F-correction’17 ActiveBias’17 Decouple’17 MentorNet’18 Coteaching’18 SELFIE
Flexibility � © © © � © ©
No Pre-train © � © © � © ©
Heavy Noise � � � � © © ©
Full Exploration © © © � � � ©

SELFIE reduces the possibility of the false correction while

exploiting the full training data.

We conducted extensive experiments to validate the superior-

ity of SELFIE. DenseNet (Huang et al., 2017) and VGG-19

(Simonyan & Zisserman, 2014), which are two popular con-

volutional neural networks, were trained on not only simu-

lated noisy CIFAR-10, CIFAR-100, and Tiny-ImageNet data

sets, but also a real-world ANIMAL-10N data set. Com-

pared with two state-of-the-art methods, SELFIE signifi-

cantly (by up to 10.5pp1) improves the robustness to the

noisy data sets under any ratio of noisy labels.

2. Related Work
Recently, numerous studies have been performed to address

the problem of learning from noisy labels. We categorize

them into three groups along with SELFIE: loss correction,

sample selection, and their hybrid. Table 1 systematically

compares state-of-the-art methods for robust training.

Loss Correction: Bootstrap (Reed et al., 2015) trained the

network using their own reconstruction-based objective to

correct the usual prediction with the notion of perceptual

consistency. F-correction (Patrini et al., 2017) pre-trained a

normal network to estimate the probability of each class be-

ing corrupted into another, in order to re-weight the forward

or backward losses resulting from noisy labels. ActiveBias
(Chang et al., 2017) emphasized uncertain samples with

high prediction variances; thus, the heuristically computed

1A pp is the abbreviation of a percentage point.

prediction variance was used to re-weight the backward

losses of samples in the mini-batch. Ren et al. (2018) in-

cluded small true-labeled validation data into the training

data and re-weighted the backward losses of the mini-batch

samples such that the updated gradient minimized the losses

of those validation data. This family of methods operated

well on moderately noisy data, but they failed to handle

heavily noisy data owing to the inferiority of the accumu-

lated error (Natarajan et al., 2013; Han et al., 2018).

Sample Selection: Hard example mining (Shrivastava et al.,

2016) improved training convergence by removing easy

samples, which tended to take a big portion of training data,

to concentrate on learning hard samples. Decouple (Malach

& Shalev-Shwartz, 2017) performs the decoupling of when

to update from how to update. It maintained two networks

and updated the networks using the samples with different

label predictions. MentorNet (Jiang et al., 2018) pre-trained

an additional teacher network to supervise the training of

a student network. During training, the teacher network

provides the student network with clean samples of which

their labels are probably correct. Coteaching (Han et al.,

2018) also uses two networks, but each network selects its

small-loss samples as clean samples. Subsequently, each

network feeds such clean samples to its peer network for fur-

ther training. This family of methods achieved a much better

performance on heavily noisy data by ignoring all unclean

samples containing many mislabeled instances. However, at

the same time, it is known that they also eliminate numerous

useful samples for robust training (Shrivastava et al., 2016;

Chang et al., 2017; Lin et al., 2018).
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To the best of our knowledge, SELFIE is the first method

to satisfy the two conflicting factors: heavy noise and full
exploration, by taking advantage of both categories. The

concept of the refurbishable sample enables the noise accu-

mulation to be minimized from mislabeled samples, as well

as to exploit full exploration of training data. In Section

4.1, we have empirically verified that SELFIE outperforms

ActiveBias and Coteaching, which are regarded as the state-

of-the-arts of each category.

3. Robust Training via SELFIE

3.1. Overview

Let (xi, y
∗
i ) be the pair of the sample xi and its true label

y∗i , and D = {(xi, y
∗
i )|1 ≤ i ≤ N} be the training data set.

However, sample labels are corrupted in many real-world

classification tasks. We therefore assume that the mini-

batch M = {(xi, ỹi)|1 ≤ i ≤ b} consists of the sample

xi with the label ỹi that may not be true, where b � N .

Subsequently, in standard training, the parameter θ of the

neural network is updated according to the descent direction

of the expected loss on the mini-batch as in Eq. (1), where

α and L are the given learning rate and loss function.

θt+1 = θt − α∇( 1

|M|
∑
x∈M

L(x, ỹ; θt)
)

(1)

In this study, we modify the update equation to render the

network more robust on noisy labels. Let C ⊆ M be the

clean samples and R ⊆ M be the refurbishable samples.

We correct the backward loss of the refurbishable sample

x ∈ R by replacing its corrupted label ỹ with the refur-
bished label yrefurb. Subsequently, as in Eq. (2), we back-

propagate the losses for the refurbishable and clean samples

to update the network. Here, it is not necessarily true that

R ∩ C = ∅. If a sample x ∈ R ∩ C, being refurbishable

precedes being clean because mislabeled instances could

be included even in C;2 that is, the sample x needs to be

refurbished.

θt+1 = θt − α∇
( 1

|R ∪ C|
( ∑
x∈R

L(x, yrefurb; θt)

+
∑

x∈C∩R−1

L(x, ỹ; θt)
)) (2)

To update the network by Eq. (2), the key challenge is how

to construct R as well as correct the loss of x ∈ R, which

will be discussed in the next section. On the contrary, there

have been extensive studies on how to construct C. Thus, for

C, we simply adopt the widely used loss-based separation

method (Jiang et al., 2018; Han et al., 2018) that selects

(1 − τ) × 100% of low-loss instances as clean samples,

2The evidence that C, in fact, has quite many mislabeled sam-
ples is presented in Section 4.1.4.

where τ is the noise rate. If τ is unknown, τ can be inferred

using cross-validation (Liu & Tao, 2016; Li et al., 2017).

3.2. Main Concept: Selective Loss Correction

3.2.1. CRITERION OF REFURBISHABLE

Interestingly, before the network fully fits the noisy labels,

the label prediction of mislabeled samples either (i) changes

inconsistently or (ii) corresponds to their true labels with

high probability owing to the learner’s perceptual consis-

tency (Reed et al., 2015).

Hence, we aim to distinguish between the two cases to iden-

tify the samples that can be refurbished with high precision.

Intuitively, the samples with consistent label predictions are

regarded as refurbishable. The notion of being refurbish-
able is formalized as Definition 3.1 in which the predictive

uncertainty uses the entropy to measure the consistency of

label prediction.

Definition 3.1. A sample x is refurbishable if the predictive

uncertainty in Eq. (3) F (x; q) ≤ ε (0 ≤ ε ≤ 1).

F (x; q) = (1/δ) entropy
(
P (y|x; q)) (3)

The definition of F (x; q) is as follows. Let ŷt = Φ(x, θt)
be the predicted label of the sample x at time t and Hx(q) =
{ŷt1 , ŷt2 , . . . , ŷtq} be the label history of the sample x that

stores the predicted labels of the previous q times, where Φ
is a neural network. Next, P (y|x; q) is formulated such that

it provides the probability of the label y ∈ {1, 2, . . . , k}
estimated as the label of the sample x based on Hx(q) as in

Eq. (4), where [·] is the Iverson bracket3.

P (y|x; q) =
∑

ŷ∈Hx(q)
[ŷ = y]

|Hx(q)| (4)

Then, to quantify uncertainty, we adopt the information en-

tropy (Chandler, 1987) in Eq. (5). The predictive uncertainty

F (x; q) in Eq. (3) is now completed by Eq. (5).

entropy(P (y|x; q)) = −
k∑

j=1

P (j|x; q) logP (j|x; q) (5)

Because the uncertainty function F (x; q) is bounded, we

add the standardization term δ to re-scale the value to

[0, 1]. For k classes, the minimum uncertainty is 0 when

P (m|x; q) = 1 ∧ ∀l �=mP (l|x; q) = 0, and the maximum

uncertainty is − log (1/k) when ∀jP (j|x; q) = 1/k. Then,

δ is defined as in Eq. (6).

δ = −
k∑

i=1

(1/k) log (1/k) = − log (1/k) (6)

3The Iverson bracket [P ] returns 1 if P is true; 0 otherwise.
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Figure 2. Analysis on entire and selective loss correction methods

using DenseNet (L=25, k=12) on CIFAR-10 with symmetry noise

40%. The ratio of samples used for training (hatched bar) is plotted

with the correction error (line).

3.2.2. LOSS CORRECTION

The loss of the refurbishable sample is corrected by replac-

ing the corrupted label ỹ with the refurbished label yrefurb

in Definition 3.2. Subsequently, it is combined with those

of (1− τ)× 100% low-loss instances within the mini-batch,

and back-propagated to update the network, as in Eq. (2).

The leftover instances that might accumulate label noises

are excluded from the update to pursue the robust learning.

Definition 3.2. A refurbished label yrefurb of the refur-

bishable sample x is the most frequently predicted label for

previous q times, as in Eq. (7), where the sample x satisfies

the condition F (x; q) ≤ ε.

yrefurb = argmax1≤j≤kP (j|x; q) (7)

3.2.3. QUICK ANALYSIS

We peep at the experiment result to demonstrate the advan-

tage of selectively correcting losses over entirely correcting

losses. We trained DenseNet (L=25, k=12) using SELFIE
on a noisy CIFAR-10 data set. For the entire correction

method, we set ε to be 1 such that all samples were con-

sidered to be refurbishable regardless of their predictive

uncertainty. For the selective correction method, we set ε as

0.05 such that only samples with low predictive uncertainty

were considered to be refurbishable. As shown in Figure

2(a), the entire correction method uses all training samples

during training, but it suffers from the high correction error

on training samples of over 20%. That is, the network con-

sistently accumulates the noise from mislabeled samples,

thus causing poor generalization on test data. Conversely,

as shown in Figure 2(b), the selective correction method

reduces the noise by taking a part of training samples in

the early stage of training (e.g., at the 25-th epoch), thereby

achieving a significantly low correction error under 2%.

Most importantly, even if only 60% of training samples are

used for training initially, more training samples are added

incrementally as the training epoch increases, while the low

correction error is maintained at under 5%. Therefore, it is

Algorithm 1 SELFIE Algorithm

INPUT: D: data, epochs, γ: warm-up, τ : noise rate, ε: uncer-

tainty threshold, q: history length, restart: # restarts

OUTPUT: θt: model parameter, R: refurbished samples

1: R ← ∅; /* R is entire refurbished samples in D */

2: for r = 0 to restart do
3: t ← 1;
4: θt ← Initialize the model parameter;
5: for i = 1 to epochs do
6: for j = 1 to |D|/|M| do
7: Draw a mini-batch M from D;

8: if i ≤ γ then /* Warm-up periods */

9: /* Update by Eq. (1) */

10: θt+1 = θt − α∇(
1

|M|
∑

x∈M L(x, ỹ; θt)
)
;

11: else
12: /* Clean sample selection */

13: C ← (1− τ)× 100% of low-loss samples in M;

14: /* Selective loss correction in Sec. 3.2 */

15: R ← ∅; /* R is refurbished samples in M */;

16: for each x ∈ M do
17: if F (x, q) ≤ ε or x ∈ R do /* By Eq. (3) */

18: R ← R∪ (x, yrefurb); /* Refurbish */

19: R ← R ∪R; /* Aggregation */

20: /* Update by Eq. (2) */

21: θt+1=θt−α∇
(

1
|R∪C|

(∑
x∈R L(x, yrefurb; θt)

+
∑

x∈C∩R−1 L(x, ỹ; θt)
))

;

22: t ← t+ 1;
23: return θt,R;

evident that the selective method guides the network to be

trained more robustly on noisy data.

3.3. Algorithm Description

3.3.1. MAIN ALGORITHM: SELFIE

Algorithm 1 describes the overall procedure of SELFIE.

First, during warm-up, by following the convention of the

robust training, the network is trained on all training sam-

ples in the default manner, as shown in Eq. (1) (Lines 7–10).

Even with the existence of noisy labels, deep networks learn

clean and easy instances in the warm-up period without

noise accumulation, which is known as memorization effect

(Arpit et al., 2017; Jiang et al., 2018). Subsequently, after

the warm-up period, (1− τ)× 100% of the low-loss sam-

ples are selected as clean samples C from the mini-batch M
(Lines 11–13), and refurbishable samples R are identified

and corrected by checking the condition for predictive un-

certainty (Lines 14–18). Here, the refurbished samples R
are aggregated for reuse (Line 19). After that, the network

is updated based on the clean samples C along with the

refurbished samples R, as shown in Eq. (2) (Lines 20–21).

For more robust training, Algorithm 1 can be restarted multi-

ple times with reusing the output R of the previous run (Line
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1) as well as initializing the model parameter (Lines 2–4).

This restart technique enables the network to be re-trained

on less-noisy training data refurbished in the previous runs.

In other words, a bunch of already refurbished samples are

readily available from the very beginning of the current run.

We demonstrate the effect of using the restart technique in

Section 4.3.

3.3.2. COLLABORATION WITH Coteaching: CoSELFIE

An advantage of SELFIE is its flexibility with regard to

collaboration with other orthogonal studies because it only

needs a simple modification in the gradient descent step.

Herein, for further improvement, we introduce CoSELFIE
combined with Coteaching (Han et al., 2018), which is a

state-of-the-art robust training algorithm. CoSELFIE main-

tains two networks simultaneously. In each mini-batch, each

network identifies its own clean and refurbishable samples

and feeds such samples to its peer network for further train-

ing, as demonstrated in Figure 3. A mini-batch t is provided

to the network A and the network B; R1 and C1 are obtained

from the network A, and R2 and C2 are obtained from the

network B; for backpropagation, R1 and C1 are fed to the

network B, and R2 and C2 are fed to the network A. It

is known that Coteaching effectively removes the error in-

curred by the biased selection of training samples (Han et al.,

2018). The advantage of SELFIE is boosted by Coteaching.

We also demonstrate the improvement of CoSELFIE over

SELFIE in Section 4.4.

4. Evaluation
Data Sets: To validate the superiority of SELFIE, we per-

formed an image classification task on four benchmark

data sets: CIFAR-10 (10 classes)4 and CIFAR-100 (100
classes)4, classification of a subset of 80 million categorical

images, with 50, 000 training and 10, 000 testing images;

Tiny-ImageNet (200 classes)5, classification of a subset of

ImageNet (Krizhevsky et al., 2012), with 100, 000 training

and 10, 000 testing images; ANIMAL-10N (10 classes)6,

4https://www.cs.toronto.edu/∼kriz/cifar.html
5https://www.kaggle.com/c/tiny-imagenet
6https://dm.kaist.ac.kr/datasets/animal-10n

our proprietary real-world noisy data set of human-labeled

online images for 10 confusing animals, with 50, 000 train-

ing and 5, 000 testing images. Please note that, in ANIMAL-

10N, noisy labels were injected naturally by human mis-

takes, where its noise rate was estimated at 8%. It has been

released on our site6, and its details can be found in Ap-

pendix B (supplementary material). We did not apply any

data augmentation or pre-processing procedures.

Noise Injection: Except ANIMAL-10N, since all data sets

are clean, we artificially corrupted these data sets using

a typical method for the evaluation of noisy labels (Reed

et al., 2015; Patrini et al., 2017; Han et al., 2018). As shown

in Figure 7, for k classes, we applied the noise transition
matrix T: (i) pair noise: ∃j �=iTij = τ ∧ ∀k �=i,k �=jTik = 0,

and (ii) symmetry noise: ∀j �=iTij =
τ

k−1 , where Tij is the

probability of the true label i being flipped to the corrupted

label j and τ is the noise rate. It is known that pair noise

is more realistic than symmetry noise because labelers may

induce mistakes only within few classes (Han et al., 2018;

Ren et al., 2018). To evaluate the robustness on varying

noise rates from light noise to heavy noise, we tested five

noise rates τ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}.

Network and Hyperparameters: For the classification

task, we trained DenseNet (L=25, k=12) and VGG-19 with

a momentum optimizer. Specifically, we used a momentum

of 0.9, a batch size of 128, a dropout of 0.2 (Srivastava

et al., 2014), and batch normalization (Ioffe & Szegedy,

2015). For the training schedule, following the experimen-

tal setup of Huang et al. (2017), we trained the network

for 100 epochs and used an initial learning rate of 0.1,

which was divided by 5 at 50% and 75% of the total num-

ber of epochs. Regarding the hyperparameters, we fixed

restart to 2 (i.e., restarted Algorithm 1 twice after the first

run) and used the best uncertainty threshold ε = 0.05 and

history length q = 15, which were obtained from a grid

ε = {0.05, 0.10, 0.15, 0.20} and q = {10, 15, 20}. (See

Section 4.5 for details.) The warm-up threshold γ was set

to 25 for the initial learning.

Algorithms: We compared SELFIE with a baseline algo-

rithm (denoted by Default) and two state-of-the-art robust

training algorithms. Default trains the network without any

processing for the noisy labels. The others are the repre-

sentatives of loss correction and sample selection strategies,

respectively. ActiveBias (Chang et al., 2017) corrects the

backward loss of training samples by prediction variance.

Coteaching (Han et al., 2018) selects the clean samples by

the loss-based separation and adopts the cotraining (Blum &

Mitchell, 1998) mechanism. All the algorithms were imple-

mented using TensorFlow 1.8.07 and executed using a single

NVIDIA Tesla V100 GPU. For reproducibility, we provide

the source code at https://github.com/kaist-dmlab/SELFIE.

7https://www.tensorflow.org/versions/r1.8
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Figure 4. The best test error of the four training methods using DenseNet on three data sets with varying pair noise rates.
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Figure 5. The best test error of the four training methods using DenseNet on three data sets with varying symmetry noise rates.

Table 2. The best test error (%) on pair noise 40% in Figure 4.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Default 18.4±0.35 53.2±0.46 69.9±0.28
ActiveBias 17.6±0.33 50.8±0.08 68.2±0.06
Coteaching 15.3±0.30 51.8±0.75 71.5±0.19
SELFIE 13.2±0.06 41.3±0.15 64.7±0.08

Table 3. The best test error (%) on symmetry noise 40% in Figure 5.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Default 17.4±0.25 43.6±0.21 64.7±0.21
ActiveBias 15.7±0.39 42.2±0.29 64.1±0.35
Coteaching 14.1±0.18 37.5±0.01 60.9±0.13
SELFIE 13.5±0.04 37.1±0.02 60.3±0.08

In support of reliable evaluation, we repeated every test

thrice and reported the average and standard error of the

best test errors. The test error at the end of the training is a

common measure of robustness to noisy labels (Malach &

Shalev-Shwartz, 2017; Jiang et al., 2018).

4.1. Performance Comparison

4.1.1. RESULT WITH PAIR NOISE

Figure 4 shows the test error of the four training methods

using DenseNet (L=25, k=12) with varying pair noise rates.

We present the results for VGG-19 in Appendix A (sup-

plementary material) because of the lack of space, and the

performance trends in the two architectures are similar with

each other. Generally, at any noise rate, SELFIE achieved

the lowest test error on all data sets. The difference in the

test errors between SELFIE and other methods increased as

the noise rate increased. In particular, at the heavy noise rate

of 40%, SELFIE significantly reduced the absolute test error

by 5.2pp–11.9pp compared with Default, 3.5pp–9.5pp com-

pared with ActiveBias, and 2.1pp–10.5pp compared with

Coteaching. The test errors of all methods at the pair noise

rate of 40% are summarized in Table 2. Although the test

errors of ActiveBias and Coteaching were lower than that of

Default, they were not comparable to that of SELFIE except

the light noise rates of 0%–20%. For a more robust training,

this significant improvement in SELFIE proves that it is

essential to (i) selectively correct the unclean samples and

(ii) exploit the full exploration of the training data.

4.1.2. RESULT WITH SYMMETRY NOISE

Figure 5 shows the test error of the four training methods

using DenseNet (L=25, k=12) with varying symmetry noise

rates. Similar to the pair noise, SELFIE generally outper-

formed other methods at any noise rate on all data sets.

Quantitatively, at the heavy noise rate of 40%, SELFIE sig-

nificantly reduced the absolute test error by 3.9pp–6.5pp
compared with Default, 2.2pp–5.1pp compared with Active-
Bias, and 0.4pp–0.6pp compared with Coteaching. The test

errors of all methods at the symmetry noise rate of 40%
are summarized in Table 3. Unlike the pair noise, Coteach-
ing achieved a low test error comparable to SELFIE. In

contrast, ActiveBias showed a slightly better performance

than Default, but was significantly worse than SELFIE and

Coteaching. Additionally, Default tended to show vulnera-

bility even with the light noise rate of 10%.
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Table 4. The best test errors (%) on ANIMAL-10N (8% noise).

Method DenseNet (L=25, k=12) VGG-19

Default 17.9±0.02 20.6±0.14
ActiveBias 17.6±0.17 19.5±0.26
Coteaching(τ=0.08) 17.5±0.17 19.8±0.13
SELFIE (τ=0.08) 17.0±0.10 18.2±0.09

0 1 2 3-1-2-3 0 1 2 3-1-2-3
0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
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- -

True
Noisy

True
Noisy

(a) Pair Noise 40%. (b) Symmetry Noise 40%.

Figure 6. Histogram of the distributions of losses at the training

accuracy of 50% on a noisy CIFAR-100 data set, where “True”

and “Noisy” denote true-labeled samples and mislabeled samples.

4.1.3. RESULT WITH REALISTIC NOISE

Table 4 summarizes the best test errors of the four training

methods using the two architectures on ANIMAL-10N. In

both architectures, SELFIE achieved the lowest test error.

Specifically, SELFIE improved the absolute test error by

up to 0.9pp using DenseNet (L=25, k=12) and 2.4pp using

VGG-19. SELFIE maintained its dominance over other

methods on realistic noise, though the performance gain

was not that huge because of a light noise rate (i.e., 8%).

4.1.4. ANATOMY OF LOSS-BASED SEPARATION

An interesting observation is the considerable performance

difference in Coteaching for pair and symmetry noises. The

difference was found to be due to the loss-based separation

proposed by Coteaching. As demonstrated in Figure 6(a),

for the pair noise, the distribution of mislabeled samples was

overlapped closely with that of true-labeled samples. That

is, clean (i.e., (1− τ)× 100% low-loss) samples contained

a significant number of mislabeled samples, thereby causing

the network to accumulate the label noise. In contrast, for

the symmetry noise in Figure 6(b), the two distributions

were clearly separated. Most mislabeled samples exhibited

a much higher loss than true-labeled samples.

SELFIE also adopts the loss-based separation to select clean

samples, but achieved a remarkable performance for the pair

noise, as shown in Figure 4, because even clean samples

are regarded as refurbishable if their label does not conform

to the most frequently predicted label as in Eq. (2). Con-

sequently, the labels of mislabeled samples are refurbished

with high precision, even when they are classified as clean.

4.2. Accuracy of Loss (Label) Correction

To verify the accuracy of the loss (label) correction, we show

the confusion matrices before and after the correction in Fig-
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Figure 7. Confusion matrices on CIFAR-10 with (a) pair noise
40% and (b) symmetry noise 40%.

ure 7. In the left column, the confusion matrices before

correction correspond to the noise transition matrices. Many

entries other than the diagonal entries have non-negligible

probability because of pair or symmetry noises. In the right

column, the confusion matrices after correction contain the

refurbished labels determined by Definition 3.2. As op-

posed to the noise transition matrices, only few entries other

than the diagonal entries have non-negligible probability.

Although the noise rate was very high (40%), most of the

diagonal entries had probability over 0.95, thus proving

very high correction accuracy. Therefore, a large portion of

noises was successfully cleared by SELFIE.

4.3. Performance Improvement by Restarts

Figure 8 shows the effect of the restart technique on CIFAR-

100 with a pair noise of 40%. As shown in Figure 8(a), the

number of samples available for training increased from

59.2% to 90.2% of the total training samples, as the number

of runs increased. This effect encourages the network to be

re-trained on a greater amount of training samples, which

were refurbished in the previous runs. Therefore, the train-

ing and test errors were improved significantly in the next

run, as shown in Figures 8(b) and 8(c). In detail, the training

and test errors were 34.1% and 46.7% at the end of the first

run, but were improved continuously through restart. They

reached 26.8% and 43.4% at the end of the second run (i.e.,

first restart) and then 19.8% and 41.3% at the end of the

third run (i.e., second restart). It is noteworthy that SELFIE
achieved a significant reduction in absolute test error of

5.4pp using the restart technique. We expect that a larger

number of restarts will further improve the performance of

SELFIE at the expense of the training time.
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Figure 8. Effect of restart on CIFAR-100 with pair noise 40%: (a) shows the ratio of samples used for training, (b) shows the reduction in

training error, and (c) shows the reduction in test error.
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Figure 9. Performance improvement of CoSELFIE on CIFAR-100

with varying noise rates.

4.4. Performance Improvement by Coteaching

Please recall that CoSELFIE (Section 3.3.2) is an exten-

sion of SELFIE based on Coteaching (Han et al., 2018).

Figure 9 shows the test errors of SELFIE and CoSELFIE
on CIFAR-100 with varying noise rates. Interestingly, by

collaborating with Coteaching, the test error of SELFIE
was further improved in both noise types. In particular,

in the pair noise, the difference in the test errors between

SELFIE and CoSELFIE tended to be larger as the noise

rate increased. Quantitatively, compared with SELFIE, Co-
SELFIE reduced the absolute test error by 0.20pp–1.82pp
in the pair noise and 0.24pp–0.41pp in the symmetry noise.

4.5. Hyperparameter Selection

SELFIE receives the two hyperparameters: the uncertainty

threshold ε and the history length q. To decide the best hyper-

parameters, we trained DenseNet (L=25, k=12) on CIFAR-

10 and CIFAR-100, each of which was corrupted by pair

noise and symmetry noise at a rate of 40%. For the hyper-

parameter selection, the two hyperparameters were chosen

in a grid ε ∈ {0.05, 0.10, 0.15, 0.20} and q ∈ {10, 15, 20}.

Figure 10 shows the test error of SELFIE obtained by the

grid search on the two noisy data sets. Regarding the uncer-

tainty threshold ε, lower test error was generally achieved

with a smaller ε, because it induces that the more consistent

samples from label predictions become the refurbishable
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Figure 10. Grid search on CIFAR-10 and CIFAR-100 with a noise

rate of 40%.

samples. As for the history length q, the smallest q tended

to yield the worst performance in the two data sets, regard-

less of the noise type. Although there is no clear winner

between q = 15 and q = 20, the q value of 15 achieved

the smallest test error when the ε value was the smallest at

0.05. Therefore, in all experiments, we set the uncertainty

threshold ε to 0.05 and the history length q to 15.

5. Conclusion
In this paper, we proposed a novel method for robust train-

ing on noisy data, which we call SELFIE, that trains the

network on precisely calibrated samples together with clean

samples. Toward this goal, we introduced the concept of se-
lective loss correction that identifies refurbishable samples

and corrects their label with high precision. We conducted

extensive experiments using two popular convolutional neu-

ral networks on four data sets with varying noise rates. Our

experiment results showed that the robustness of a deep

neural network on noisy data can be significantly improved

by the selective loss correction on refurbishable samples.

SELFIE guided the network to avoid noise accumulation

from the false correction and allowed it to take advantage

of the full exploration of training data. In addition, the

results showed that the performance of SELFIE can be fur-

ther improved by restarts and collaboration with other work.

Overall, we believe that our work has greatly enhanced the

robustness of deep learning on noisy data.
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