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1. Proof for Performance Bound

We first show that for all Q-functions that occur during
Q-iteration with Tsoft, their corresponding Q-values are
bounded.

Lemma A1. Assuming 8(s, a), the initial Q-values

Q0(s, a) 2 [Rmin, Rmax], the Q-values during Q-iteration

with Tsoft are within [Qmin, Qmax], with Qmin = Rmin

1�� and

Qmax =
Rmax

1�� .

Proof. The upper bound can be obtained by showing
8(s, a), the Q-values at the ith iteration are bounded as

Qi(s, a) 
iX

j=0

�jRmax. (A1)

We then prove Eq. (A1) by induction as follows. The lower
bound can be proven similarly.

(i) When i = 1, we start from the definition of Tsoft in Eq. (3)
and the assumption of Q0 to have

Q1(s, a) = Tsoft Q0(s, a)

 Rmax + �
X

s0

P (s0|s, a) max
a0

Q0(s
0, a0)

 Rmax + �
X

s0

P (s0|s, a)Rmax

= (1 + �)Rmax.

(ii) Assuming Eq. (A1) holds when i = k, i.e., Qk(s, a) 
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Pk
j=0 �

jRmax. Then,

Qk+1(s, a) = TsoftQk(s, a)

 Rmax + �
X

s0

P (s0|s, a) max
a0

Qk(s
0, a0)

 Rmax + �
X

s0

P (s0|s, a)
kX

j=0

�jRmax

=
k+1X

j=0

�jRmax.

Corollary A2. Assuming Rmax � �Rmin � 0 WLOG, we

have |Q(s, ai)�Q(s, aj)|  2Rmax

1�� , 8Q and 8s.

Proof. This follows by using the assumption and the results
in Lemma A1.

Proof of Lemma 2. We first sort the sequence {Q(s, ai)}
such that Q(s, a[1]) � . . . � Q(s, a[m]). Then, 8Q and 8s,
we have

max
a

Q(s, a)� fT
⌧

�
Q(s, )

�
Q(s, )

= Q(s, a[1])�
Pm

i=1 exp
⇥
⌧Q(s, a[i])

⇤
Q(s, a[i])Pm

i=1 exp
⇥
⌧Q(s, a[i])

⇤

=

Pm
i=1 exp

⇥
⌧Q(s, a[i])

⇤ ⇥
Q(s, a[1])�Q(s, a[i])

⇤
Pm

i=1 exp
⇥
⌧Q(s, a[i])

⇤ .

(A2)

By introducing �i(s) = Q(s, a[1])�Q(s, a[i]), and noting
�i(s) � 0 and �1(s) = 0, we can proceed from Eq. (A2) as

Pm
i=1 exp

⇥
⌧Q(s, a[i])

⇤ ⇥
Q(s, a[1])�Q(s, a[i])

⇤
Pm

i=1 exp
⇥
⌧Q(s, a[i])

⇤

=

Pm
i=1 exp[�⌧�i(s)] �i(s)Pm

i=1 exp[�⌧�i(s)]

=

Pm
i=2 exp[�⌧�i(s)] �i(s)

1 +
Pm

i=2 exp[�⌧�i(s)]
. (A3)
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Now, we can proceed from Eq. (A3) to prove each direction
separately as follows.

(i) Upper bound: First note that for any two non-negative
sequences {xi} and {yi},

P
i xi

1 +
P

i yi


X

i

xi

1 + yi
. (A4)

We then apply Eq. (A4) to Eq. (A3) as
Pm

i=2 exp[�⌧�i(s)] �i(s)

1 +
Pm

i=2 exp[�⌧�i(s)]


mX

i=2

exp[�⌧�i(s)] �i(s)

1 + exp[�⌧�i(s)]

=
mX

i=2

�i(s)

1 + exp[⌧�i(s)]
.

(A5)

Next, we bound each term in Eq. (A5), by considering
the following two cases:

1) �i(s) > 1: �i(s)
1+exp[⌧�i(s)]

 �i(s)
1+exp(⌧)  2Qmax

1+exp(⌧) ,
where we apply Corollary A2 to bound �i(s).

2) 0  �i(s)  1: �i(s)
1+exp[⌧�i(s)]

=
1

2
�i(s)

+⌧+0.5⌧2�i(s)+···  1
⌧+2 , where we first ex-

pand the denominator using Taylor series for the
exponential function.
By combining these two cases with Eq. (A5), we
achieve the upper bound.

(ii) Lower bound:
Pm

i=2 exp[�⌧�i(s)] �i(s)

1 +
Pm

i=2 exp[�⌧�i(s)]

�
Pm

i=2 exp[�⌧�i(s)] �i(s)

m

�
Pm

i=2 �i(s)

m exp[⌧ b�(s)]

�
b�(s)

m exp[⌧ b�(s)]
. (A6)

Proof of Theorem 3. We first prove the upper bound by in-
duction as follows.

(i) When i = 1, we start from the definitions for T and Tsoft
in Eq. (2) and Eq. (3), and proceed as

T Q0(s, a)� Tsoft Q0(s, a)

=�
X

s0

P (s0|s, a)
⇥
max
a0

Q0(s
0, a0)� fT

⌧

�
Q0(s

0, )
�
Q0(s

0, )
⇤

�0.

(ii) Suppose this claim holds when i = l, i.e., T lQ0(s, a) �
T l

soft Q0(s, a). When i = l + 1, we have

T l+1Q0(s, a)� T l+1
soft Q0(s, a)

=T T lQ0(s, a)� TsoftT l
soft Q0(s, a)

�T T l
soft Q0(s, a)� TsoftT l

soft Q0(s, a)

�0.

Since Q⇤ is the fixed point for T , we know
limk!1 T k Q0(s, a) = Q⇤(s, a). Therefore,
lim sup
k!1

T k
soft Q0(s, a)  Q⇤(s, a).

To prove the lower bound, we first conjecture that

T k Q0(s, a)� T k
soft Q0(s, a) 

kX

j=1

�j ⇣, (A7)

where ⇣ = supQ maxs[maxa Q(s, a)�fT
⌧

�
Q(s, )

�
Q(s, )]

denotes the supremum of the difference between the max
and softmax operators, over all Q-functions that occur dur-
ing Q-iteration, and state s. Eq. (A7) is proven using induc-
tion as follows.

(i) When i = 1, we start from the definitions for T and Tsoft
in Eq. (2) and Eq. (3), and proceed as

T Q0(s, a)� Tsoft Q0(s, a)

=�
X

s0

P (s0|s, a)
⇥
max
a0

Q0(s
0, a0)� fT

⌧

�
Q0(s

0, )
�
Q0(s

0, )
⇤

�
X

s0

P (s0|s, a) ⇣ = �⇣.

(ii) Suppose the conjecture holds when i = l, i.e.,
T lQ0(s, a)� T l

soft Q0(s, a) 
Pl

j=1 �
j⇣, then

T l+1Q0(s, a)� T l+1
soft Q0(s, a)

=T T lQ0(s, a)� T l+1
soft Q0(s, a)

T
⇥
T l

soft Q0(s, a) +
lX

j=1

�j⇣
⇤
� T l+1

soft Q0(s, a)

=
lX

j=1

�j+1⇣ + (T � Tsoft) T l
soft Q0(s, a)


lX

j=1

�j+1⇣ + �⇣ =
l+1X

j=1

�j⇣,

where the last inequality follows from the definition of ⇣ . By
using the fact that limk!1 T k Q0(s, a) = Q⇤(s, a) again
and applying Lemma 2 to bound ⇣, we finish the proof for
Part (I).
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To prove part (II), note that as a byproduct of Eq. (A5) in
the proof of Lemma 2, Eq. (A7) can be bounded as

T k Q0(s, a)�T k
soft Q0(s, a) 

�(1� �k)

1� �

mX

i=2

�i(s)

1 + exp[⌧�i(s)]
. (A8)

From the definition of �i(s), we know �m(s) � �m�1(s) �
. . . � �2(s) � 0. Furthermore, there must exist an index
i⇤  m such that �i > 0, 8i⇤  i  m (otherwise the upper
bound becomes zero). Subsequently, we can proceed from
Eq. (A8) as

�(1� �k)

1� �

mX

i=2

�i(s)

1 + exp[⌧�i(s)]

=
�(1� �k)

1� �

mX

i=i⇤

�i(s)

1 + exp[⌧�i(s)]

 �(1� �k)

1� �

mX

i=i⇤

�i(s)

exp[⌧�i(s)]

 �(1� �k)

1� �

mX

i=i⇤

�i
exp[⌧�i⇤(s)]

=
�(1� �k)

1� �
exp[�⌧�i⇤(s)]

mX

i=i⇤

�i(s),

which implies an exponential convergence rate in terms of
⌧ and hence proves part (II).

2. Proofs for Overestimation Reduction

Lemma A3. gx(⌧) =
Pm

i=1[exp(⌧xi)xi]Pm
i=1 exp(⌧xi)

is a monotonically

increasing function for ⌧ 2 [0,1).

Proof. The gradient of gx(⌧) can be computed as

@gx(⌧)

@⌧
=

n⇥ mX

i=1

exp(⌧xi)x
2
i

⇤⇥ mX

i=1

exp(⌧xi)
⇤
�

⇥ mX

i=1

exp(⌧xi)xi

⇤2o.⇥ mX

j=1

exp(⌧xj)
⇤2 � 0,

where the last step holds because of the Cauchy-Schwarz
inequality.

The overestimation bias due to the max operator can be
observed by plugging assumption (A2) in Theorem 4
into Eq. (2) as

E
⇥
max

a

�
Qt(s, a)

�
�max

a

�
Q⇤(s, a)

�⇤

=E
⇥
max

a

�
Qt(s, a)� V⇤(s)

�⇤

=E
⇥
max

a
(✏a)

⇤
,

and maxa(✏a) is typically positive for a large action set
and the noise satisfying a normal distribution, or a uniform
distribution with the symmetric support.

Proof of Theorem 4 . First, the overestimation error from
Tsoft can be represented as

E
⇢X

a

exp[⌧Qt(s, a)]P
ā exp[⌧Qt(s, ā)]

Qt(s, a)� V ⇤(s)

�

= E
⇢X

a

exp[⌧V ⇤(s) + ⌧✏a]P
ā exp[⌧V

⇤(s) + ⌧✏ā)]
[V ⇤(s) + ✏a]� V ⇤(s)

�

= E
⇢X

a

exp[⌧✏a]P
ā exp[⌧✏ā]

✏a

�
(A9)

 E
⇥
max

a
(✏a)

⇤
.

To prove Part (II), note that the overestimation reduction
of Tsoft from T can then be represented as

E
⇥
max

a
(✏a)�

X

a

exp[⌧✏a]P
ā exp[⌧✏ā]

✏a
⇤

=E
⇢
max

a

⇥
✏a + V ⇤(s)

⇤
�

X

a

exp[⌧✏a]P
ā exp[⌧✏ā]

⇥
✏a + V ⇤(s)

⇤�

=E
⇢
max

a

⇥
Qt(s, a)

⇤
�
X

a

exp[⌧✏a]P
ā exp[⌧✏ā]

⇥
Qt(s, a)

⇤�

=E
⇢
max

a

⇥
Qt(s, a)

⇤
�
X

a

exp[⌧✏a + ⌧V ⇤(s)]P
ā exp[⌧✏ā + ⌧V ⇤(s)]

⇥
⇥
Qt(s, a)

⇤�

=E
⇢
max

a

⇥
Qt(s, a)

⇤
�
X

a

exp[⌧Qt(s, a)]P
ā exp[⌧Qt(s, ā)]

⇥
Qt(s, a)

⇤�
.

Subsequently, we can employ Lemma 2 to obtain the range.

Finally, the monotonicity for the overestimation error in
terms of ⌧ follows, by noting the term inside the expecta-
tion of Eq. (A9) can be represented as g✏(⌧), which is a
monotonic function of ⌧ , according to Lemma A3.

3. Additional Plots and Setups

Figures A1 and A2 are the full version of the corresponding
figures in the main text, by plotting all six games. The
corresponding values for ⌧ in S-DQN and S-DDQN are
provided in Table A1.

Figures A3, A4, and A5 show the scores, Q-values, and
gradient norm, for different values of ⌧ , for S-DDQN.
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Table A1. Values of ⌧ used for S-DQN and S-DDQN in Figures A1
and A2.

Q M B C A S

S-DQN 1 1 5 1 5 5
S-DDQN 1 5 5 5 5 10

Figure A1. Mean and one standard deviation of the estimated Q-
values on the Atari games, for different methods.

Figure A2. Mean and one standard deviation of the gradient norm
on the Atari games, for different methods.
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Figure A3. Mean and one standard deviation of test scores on the
Atari games, for different values of ⌧ in S-DDQN.

Figure A4. Mean and one standard deviation of the estimated Q-
values on the Atari games, for different values of ⌧ in S-DDQN.
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Figure A5. Mean and one standard deviation of the gradient norm
on the Atari games, for different values of ⌧ in S-DDQN.


