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Abstract
The impact of softmax on the value function itself
in reinforcement learning (RL) is often viewed as
problematic because it leads to sub-optimal value
(or Q) functions and interferes with the contrac-
tion properties of the Bellman operator. Surpris-
ingly, despite these concerns, and independent
of its effect on exploration, the softmax Bellman
operator when combined with Deep Q-learning,
leads to Q-functions with superior policies in prac-
tice, even outperforming its double Q-learning
counterpart. To better understand how and why
this occurs, we revisit theoretical properties of the
softmax Bellman operator, and prove that (i ) it
converges to the standard Bellman operator expo-
nentially fast in the inverse temperature parameter,
and (ii ) the distance of its Q function from the
optimal one can be bounded. These alone do not
explain its superior performance, so we also show
that the softmax operator can reduce the over-
estimation error, which may give some insight
into why a sub-optimal operator leads to better
performance in the presence of value function
approximation. A comparison among different
Bellman operators is then presented, showing the
trade-offs when selecting them.

1. Introduction
The Bellman equation (Bellman, 1957) has been a funda-
mental tool in reinforcement learning (RL), as it provides a
sufficient condition for the optimal policy in dynamic pro-
gramming. The use of the max function in the Bellman
equation further suggests that the optimal policy should be
greedy w.r.t. the Q-values. On the other hand, the trade-off
between exploration and exploitation (Thrun, 1992) mo-
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tivates the use of exploratory and potentially sub-optimal
actions during learning, and one commonly-used strategy
is to add randomness by replacing the max function with
the softmax function, as in Boltzmann exploration (Sutton
& Barto, 1998). Furthermore, the softmax function is a
differentiable approximation to the max function, and hence
can facilitate analysis (Reverdy & Leonard, 2016).

The beneficial properties of the softmax Bellman opera-
tor are in contrast to its potentially negative effect on the
accuracy of the resulting value or Q-functions. For exam-
ple, it has been demonstrated that the softmax Bellman
operator is not a contraction, for certain temperature pa-
rameters (Littman, 1996, Page 205). Given this, one might
expect that the convenient properties of the softmax Bell-
man operator would come at the expense of the accuracy
of the resulting value or Q-functions, or the quality of the
resulting policies. In this paper, we demonstrate that, in
the case of deep Q-learning, this expectation is surprisingly
incorrect. We combine the softmax Bellman operator with
the deep Q-network (DQN) (Mnih et al., 2015) and double
DQN (DDQN) (van Hasselt et al., 2016a) algorithms, by re-
placing the max function therein with the softmax function,
in the target network. We then test the variants on several
games in the Arcade Learning Environment (ALE) (Belle-
mare et al., 2013), a standard large-scale deep RL testbed.
The results show that the variants using the softmax Bell-
man operator can achieve higher test scores, and reduce the
Q-value overestimation as well as the gradient noise on most
of them. This effect is independent of exploration and is
entirely attributable to the change in the Bellman operator.

This surprising result suggests that a deeper understanding
of the softmax Bellman operator is warranted. To this end,
we prove that starting from the same initial Q-values, we can
upper and lower bound how far the Q-functions computed
with the softmax operator can deviate from those computed
with the regular Bellman operator. We further show that the
softmax Bellman operator converges to the optimal Bellman
operator in an exponential rate w.r.t. the inverse temperature
parameter. This gives insight into why the negative conver-
gence results may not be as discouraging as they initially
seem, but it does not explain the superior performance ob-
served in practice. Motivated by recent work (van Hasselt
et al., 2016a; Anschel et al., 2017) targeting bias and insta-
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bility of the original DQN (Mnih et al., 2015), we further
investigate whether the softmax Bellman operator can alle-
viate these issues. As discussed in van Hasselt et al. (2016a),
one possible explanation for the poor performance of the
vanilla DQN on some Atari games was the overestimation
bias when computing the target network, due to the max
operator therein. We prove that given the same assumptions
as van Hasselt et al. (2016a), the softmax Bellman operator
can reduce the overestimation bias, for any inverse tem-
perature parameters. We also quantify the overestimation
reduction by providing its lower and upper bounds.

Our results are complementary to and add new motivations
for existing work that explores various ways of softening
the Bellman operator. For example, entropy regularizers
have been used to smooth policies. The motivations for
such approaches include computational convenience, ex-
ploration, or robustness (Fox et al., 2016; Haarnoja et al.,
2017; Schulman et al., 2017; Neu et al., 2017). With respect
to value functions, Asadi & Littman (2017) proposed an
alternative mellowmax operator and proved that it is a con-
traction. Their experimental results suggested that it can
improve exploration, but the possibility that the sub-optimal
Bellman operator could, independent of exploration, lead to
superior policies was not considered. Our results, therefore,
provide additional motivation for further study of operators
such as mellowmax. Although very similar to softmax, the
mellowmax operator needs some extra computation to rep-
resent a policy, as noted in Asadi & Littman (2017). Our
paper discusses this and other trade-offs among different
Bellman operators.

The rest of this paper is organized as follows: We pro-
vide the necessary background and notation in Section 2.
The softmax Bellman operator is introduced in Section 3,
where its convergence properties and performance bound
are provided. Despite being sub-optimal on Q-functions, the
softmax operator is shown in Section 4 to consistently out-
perform its max counterpart on several Atari games. Such
surprising result further motivates us to investigate why this
happens in Section 5. A thorough comparison among differ-
ent Bellman operators is presented in Section 6. Section 7
discusses the related work and Section 8 concludes this
paper.

2. Background and Notation
A Markov decision process (MDP) can be represented as
a 5-tuple !S , A , P, R, ! ", where S is the state space, A is
the action space, P is the transition kernel whose element
P(s!|s, a) denotes the transition probability from state s
to state s! under action a, R is a reward function whose
element R(s, a) denotes the expected reward for executing
action a in state s, and ! # (0, 1) is the discount factor.
The policy " in an MDP can be represented in terms of

a probability mass function (PMF), where " (s, a) # [0, 1]
denotes the probability of selecting action a in state s, and!

a"A " (s, a) = 1.

For a given policy " , its state-action value func-
tion Q! (s, a) is defined as the accumulated, expected,
discount reward, when taking action a in state s,
and following policy " afterwards, i.e., Q! (s, a) =
Eat # ! [

! $
t =0 ! t r t |s0 = s, a0 = a] . For the optimal policy

" %, its corresponding Q-function satisfies the following Bell-
man equation:

Q%(s, a) = R(s, a) + !
"

s!

P(s!|s, a) max
a!

Q%(s!, a!).

In DQN (Mnih et al., 2015), the Q-function is parameterized
with a neural network as Q! (s, a), which takes the state s
as input and outputs the corresponding Q-value in the final
fully-connected linear layer, for every action a. The training
objective for the DQN can be represented as

min
!

1

2

#
#
#Q! (s, a) $ [R(s, a) + ! max

a!
Q! " (s!, a!)]

#
#
#

2
,

(1)
where ! & corresponds to the frozen weights in the target
network, and is updated at fixed intervals. The optimization
of Eq. (1) is performed via RMSProp (Tieleman & Hinton,
2012), with mini-batches sampled from a replay buffer.

To reduce the overestimation bias, the double DQN
(DDQN) algorithm modified the target that Q! (s, a) aims
to fit in Eq. (1) as

R(s, a) + ! Q ! "

$
s!, arg max

a
Q! t (s

!, a)
%
.

Note that a separate network based on the latest estimate ! t

is employed for action selection, and the evaluation of this
policy is due to the frozen network.

Notation The softmax function is defined as

f " (x) =
[exp(#x1), exp(#x2), . . . , exp(#xm )]T

! m
i =1 exp(#xi )

,

where the superscript T denotes the vector transpose. Sub-
sequently, the softmax-weighted function is represented as
gx (#) = f T

" (x) x , as a function of #. Also, we define the
vector Q(s, ) = [Q(s, a1), Q(s, a2), . . . , Q(s, am )]T . We
further set m to be the size of the action set A in the MDP.
Finally, Rmin and Rmax denote the minimum and the maxi-
mum immediate rewards, respectively.

3. The Softmax Bellman Operator
We start by providing the following standard Bellman oper-
ator:

T Q(s, a) = R(s, a) + !
"

s!

P(s!|s, a) max
a!

Q(s!, a!).

(2)
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We propose to use the softmax Bellman operator, defined as

Tsoft Q(s, a) =R(s, a) + !
"

s!

P(s!|s, a)

%
"

a!

exp[# Q(s!, a!)]
!

øa exp[# Q(s!, ā)]
Q(s!, a!)

& '( )
sm ! (Q(s! ,))

, (3)

where # & 0 denotes the inverse temperature parameter.
Note that Tsoft will reduce to T when # ' ( .

The mellowmax operator was introduced in Asadi &
Littman (2017) as an alternative to the softmax operator
in Eq. (3), defined as

mm#
$
Q(s, )

%
=

log
$

1
m

!
a! exp[$ Q(s, a!)]

%

$
, (4)

where $ > 0 is a tuning parameter. Similar to the softmax
operator sm"

$
Q(s!, )

%
in Eq. (3), mm# converges to the

mean and max operators, when $ approaches 0 and ( ,
respectively. Unlike the softmax operator, however, the
mellowmax operator in Eq. (4) does not directly provide
a probability distribution over actions, and thus additional
steps are needed to obtain a corresponding policy (Asadi &
Littman, 2017).

In contrast to its typical use to improve exploration (also a
purpose for the mellowmax operator in Asadi & Littman
(2017)), the softmax Bellman operator in Eq. (3) is com-
bined in this paper with the DQN and DDQN algorithms in
an off-policy fashion, where the action is selected according
to the same %-greedy policy as in Mnih et al. (2015).

Even though the softmax Bellman operator was shown
in Littman (1996) not to be a contraction, with a counterex-
ample, we are not aware of any published work showing
the performance bound by using the softmax Bellman oper-
ator in Q-iteration. Furthermore, our surprisingresults in
Section 4 show that test scores in DQNs and DDQNs can
be improved, by solely replacing the max operator in their
target networks with the softmax operator. Such improve-
ments are independent of the exploration strategy and hence
motivate an investigation of the theoretical properties of the
softmax Bellman operator.

Before presenting our main theoretical results, we first show
how to bound the distance between the softmax-weighted
and max operators, which is subsequently used in the proof
for the performance bound and overestimation reduction.
Definition 1. *&(s) ! supQ maxi,j |Q(s, ai )$ Q(s, aj )| de-
notes the largest distance between Q-functions w.r.t. actions
for states, by taking the supremum of Q-functions and the
maximum of all action pairs.
Lemma 2. By assuming*&(s) > 01, we have) Q,

1Note that if !�(s) = 0 , then all actions are equivalent in state
s, and softmax = max.

!$(s)
m exp[ " !$(s)]

* maxa Q(s, a) $ f T
"

$
Q(s, )

%
Q(s, ) * (m $

1) max
+

1
" +2 , 2Q max

1+exp( " )

,
2, whereQmax = R max

1& % represents

the maximumQ-value in Q-iteration withTsoft.3

Note that another upper bound for this gap was provided
in O’Donoghue et al. (2017). Our proof here uses a different
strategy, by considering possible values for the difference
between Q-values with different actions. We further derive
a lower bound for this gap.

3.1. Performance Bound for Tsoft

The optimal state-action value function Q% is known to be a
fixed point for the standard Bellman operator T (Williams &
Baird III, 1993), i.e., T Q%= Q%. Since T is a contraction
with rate ! , we also know that limk '$ T k Q0 = Q%, for
arbitrary Q0. Given these facts, one may wonder in the limit,
how far iteratively applying Tsoft, in lieu of T , over Q0 will
be away from Q%, as a function of #.
Theorem 3. Let T k Q0 andT k

softQ0 denote that the opera-
tors T andTsoft are iteratively applied over an initial state-
action value functionQ0 for k times. Then,

(I ) ) (s, a), lim sup
k '$

T k
softQ0(s, a) * Q%(s, a) and

lim inf
k '$

T k
softQ0(s, a) &

Q%(s, a) $
! (m $ 1)

(1 $ ! )
max

+ 1

# + 2
,

2Qmax

1 + exp(#)

,
.

(II ) Tsoft converges toT with an exponential rate, in terms
of #, i.e., the upper bound ofT k Q0 $ T k

softQ0 decays expo-
nentially fast, as a function of#, the proof of which does not
depend on the bound in part(I ).
A noteworthy point about part (I ) of Theorem 3 is it does
not contradict the negative convergence results for Tsoft since
its proof and result do not need to assume the convergence of
Tsoft. Furthermore, this bound implies that non-convergence
for Tsoft is different from divergence or oscillation with
an arbitrary range: Even though Tsoft may not converge
in certain scenarios, the Q-values could still be within a
reasonable range 4. Tsoft also has other benefits over T , as
shown in Section 5.

Note that although the bound for mellowmax under the
entropy-regularized MDP framework was shown in Lee
et al. (2018) to have a better scalar term log(m) instead of
(m $ 1), its convergence rate is linear w.r.t. #. In contrast,
our softmax Bellman operator result has an exponential rate,
as shown in Part (II ), which potentially gives insight into
why very large values of # are not required experimentally

2The supQ is over all Q-functions that occur during Q-
iteration, starting from Q0 until the iteration terminates.

3The Supplemental Material formally bounds Qmax.
4 The lower bound can become loose when ⌧ is extremely

small, but this degenerate case has never been used in experiments.
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Figure 1.Performance of (top row) S-DQN vs. DQN, (middle row) S-DDQN vs. DDQN, and (bottom row) S-DQN vs. DDQN on the
Atari games. X-axis and Y-axis correspond to the training epoch and test score, respectively. All curves are averaged over five independent
random seeds.

in Section 4. The error bound in the sparse Bellman oper-
ator (Lee et al., 2018) improves upon log(m), but is still
linear w.r.t. #. We further empirically illustrate the faster
convergence for the softmax Bellman operator in Figure 7
of Section 6.

4. Main Experiments
Our theoretical results apply to the case of a tabular value
function representation and known next-state distributions,
and they bound suboptimality rather than suggesting supe-
riority of softmax. The goal of our main experiments is to
show that despite being sub-optimal w.r.t. the Q-values, the
softmax Bellman operator is still useful in practice by im-
proving the DQN and DDQN algorithms. Such an improve-
ment is entirely attributable to changing the max operator to
the softmax operator in the target network.

We combine the softmax operator with DQN and DDQN,
by replacing the max function therein with the softmax func-
tion, with all other steps being the same. The corresponding
new algorithms are termed as S-DQN and S-DDQN, respec-
tively. Their exploration strategies are set to be %-greedy, the
same as DQN and DDQN. Our code is provided at https:
//github.com/zhao-song/Softmax-DQN .

We tested on six Atari games: Q*Bert, Ms. Pacman, Crazy
Climber, Breakout, Asterix, and Seaquest. Our code is built
on the Theano+Lasagne implementation from https:
//github.com/spragunr/deep_q_rl/ . The train-

Table 1.Mean of test scores for different values of ⌧ in S-DDQN
(standard deviation in parenthesis). Each game is denoted with its
initial. Note that S-DDQN reduces to DDQN when ⌧ = ! .

# 1 5 10 (

Q 12068.66 11049.28 11191.31 10577.76
(1085.65) (1565.57) (1336.35) (1508.27)

M 2492.40 2566.44 2546.18 2293.73
(183.71) (227.24) (259.82) (160.50)

B 313.08 350.88 303.71 284.64
(20.13) (35.58) (65.59) (60.83)

C 107405.11 111111.07 104049.46 96373.08
(4617.90) (5047.19) (6686.84) (9244.27)

A 3476.91 10266.12 6588.13 5523.80
(460.27) (2682.00) (1183.10) (694.72)

S 272.20 2701.05 6254.01 5695.35
(49.75) (10.06) (697.12) (1862.59)

ing contains 200 epochs in total. The test procedures and
all the hyperparameters are set the same as DQN, with
details described in Mnih et al. (2015). The inverse tem-
perature parameter # was selected based on a grid search
over { 1, 5, 10} . We also implemented the logarithmic cool-
ing scheme (Mitra et al., 1986) in simulated annealing to
gradually increase #, but did not observe a better policy,
compared with the constant temperature. The results statis-
tics are obtained by running with five independent random
seeds.

Figure 1 shows the mean and one standard deviation for
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the average test score on the Atari games, as a function
of the training epoch: In the top two rows, S-DQN and S-
DDQN generally achieve higher maximum scores and faster
learning than their max counterparts, illustrating the promise
of replacing max with softmax. For the game Asterix, often
used as an example of the overestimation issue in DQN (van
Hasselt et al., 2016a; Anschel et al., 2017), both S-DQN
and S-DDQN have much higher test scores than their max
counterparts, which suggests that the softmax operator can
mitigate the overestimation bias. Although not as dramatic
as for Asterix, the bottom row of Figure 1 shows that S-
DQN generally outperforms DDQN with higher test scores
for the entire test suite, which suggests the possibility of
using softmax operator over double Q-learning (van Hasselt,
2010) to reduce the overestimation bias, in the presence of
function approximation.

Table 1 shows the test scores of S-DDQN with different
values of #, obtained by averaging the scores from the last
10 epochs. Note that S-DDQN achieves higher test scores
than its max counterpart, for most of the values of #. Table 1
further suggests a trade-off when selecting the values for #:
Setting # too small will move Tsoft further away from the
Bellman optimality, since the max operator (corresponding
to # = ( ) is employed in the standard Bellman equation.
On the other hand, using a larger # will lead to the issues of
overestimation and high gradient noise, as to be discussed
in Section 5.

Table 2.Mean of test scores for different Bellman operators (stan-
dard deviation in parenthesis). The statistics are averaged over five
independent random seeds.

Max Softmax Mellowmax

Q*Bert 8331.72 11307.10 11775.93
(1597.67) (1332.80) (1173.51)

Ms. Pacman 2368.79 2856.82 2458.76
(219.17) (369.75) (130.34)

C. Climber 90923.40 106422.27 99601.47
(11059.39) (4821.40) (19271.53)

Breakout 255.32 345.56 355.94
(64.69) (34.19) (25.85)

Asterix 196.91 8868.00 11203.75
(135.16) (2167.35) (3818.40)

Seaquest 4090.36 8066.78 6476.20
(1455.73) (1646.51) (1952.12)

To compare against the mellowmax operator, we combine it
with DQN in the same off-policy fashion as the softmax op-
erator 5. Note that the root-finding approach for mellowmax
in Asadi & Littman (2017) needs to compute the optimal
inverse temperature parameter for every state, and thus is
too computationally expensive to be applied here. Conse-

5We tried the mellowmax operator for exploration as in Asadi
& Littman (2017), but observed much worse performance.

quently, we tune the inverse temperature parameter for both
softmax and mellowmax operators from { 1, 5, 10} , and
report the best scores. Table 2 shows that both softmax and
mellowmax operators can achieve higher test scores than
the max operator. Furthermore, the scores from softmax
are higher or similar to those of mellowmax on all games
except Asterix. The competitive performance of the softmax
operator here suggests that it is still preferable in certain
domains, despite its non-contraction property.

5. Why Softmax Helps?
One may wonder why the softmax Bellman operator can
achieve the surprising performance in Section 4, as the
greedy policy from the Bellman equation suggests that the
max operator should be optimal. The softmax operator is not
used for exploration in this paper, nor is it motivated by regu-
larizing the policy, as in the entropy regularized MDPs (Fox
et al., 2016; Schulman et al., 2017; Neu et al., 2017; Nachum
et al., 2017; Asadi & Littman, 2017; Lee et al., 2018).

As discussed in earlier work (van Hasselt et al., 2016a; An-
schel et al., 2017), the max operator leads to the significant
issue of overestimation for the Q-function in DQNs, which
further causes excessive gradient noise to destabilizes the
optimization of neural networks. Here we aim to provide
analysis of how the softmax Bellman operator can overcome
these issues, and also the corresponding evidence for overes-
timation and gradient noise reduction in DQNs. Although
our analysis is focused on the softmax Bellman operator,
this work could potentially give further insight into practical
benefits of entropy regularization as well.

5.1. Overestimation Bias Reduction

Q-learning’s overestimation bias, due to the max operator,
was first discussed in Thrun & Schwartz (1994). It was
later shown in van Hasselt et al. (2016a) and Anschel et al.
(2017) that overestimation leads to the poor performance
of DQNs in some Atari games. Following the same as-
sumptions as van Hasselt et al. (2016a), we can show the
softmax operator reduces the overestimation bias. Further-
more, we quantify the range of the overestimation reduction,
by providing both lower and upper bounds.

Theorem 4. Given the same assumptions asvan Hasselt
et al. (2016a), where(A1) there exists someV %(s) such
that the true state-action value function satisÞesQ%(s, a) =
V %(s), for different actions.(A2) the estimation error is
modeled asQt (s, a) = V %(s) + %a, then

(I ) the overestimation errors fromTsoft are smaller or equal
to those ofT using the max operator, for any# & 0;

(II ) the overestimation reduction by usingTsoft in lieu of T

is within
- !$(s)

m exp[ " !$(s)]
, (m $ 1) max{ 1

" +2 , 2Q max
1+exp( " ) }

.
;
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Figure 2.The mean and one standard deviation for the overestimation error for different values of ⌧ .

(III ) the overestimation error forTsoft monotonically in-
creases w.r.t.# # [0, ( ).

An observation about Theorem 4 is that for any positive
value of #, there will still be some potential for overesti-
mation bias because noise can also influence the softmax
operator. Depending upon the amount of noise, it is possible
that, unlike double DQN, the reduction caused by softmax
could exceed the bias introduced by max. This can be seen
in our experimental results below, which show that it is
possible to have negative error (overcompensation) from
the use of softmax. However, when combined with double
Q-learning, this effect becomes very small and decreases
with the number of actions.

To elucidate Theorem 4, we simulate standard normal vari-
ables %a with 100 independent trials for each action a, using
the same setup as van Hasselt et al. (2016a). Figure 2 shows
the mean and one standard deviation of the overestimation
bias, for different values of # in the softmax operator. For
both single and double implementations of the softmax op-
erator, they achieve smaller overestimation errors than their
max counterparts, thus validating our theoretical results.
Note that the gap becomes smaller when # increases, which
is intuitive as Tsoft ' T when # ' ( , and also consistent
with the monotonicity result in Theorem 4.

Figure 3.Mean and one standard deviation of the estimated Q-
values on the Atari games, for different methods.

We further check the estimated Q-values on Atari games 6,
6Due to the space limit, we plot fewer games from here, and

provide the full plots in Supplemental Material.

Figure 4.Mean and one standard deviation of the estimated Q-
values on the Atari games, for different values of ⌧ in S-DDQN.

by plotting the corresponding mean and one standard de-
viation in Figure 3. Both S-DQN and S-DDQN achieve
smaller values than DQN, which verifies that the softmax
operator can reduce the overestimation bias. This reduc-
tion can partly explain the higher test scores for S-DQN
and S-DDQN in Figure 1. Moreover, we plot the estimated
Q-values of S-DDQN for different values of # in Figure 4,
and the result is consistent with Theorem 4 that increasing
# leads to larger estimated Q-values and, thus, more risk of
overestimation. It also shows that picking a value of # that
is very small may introduce a risk of underestimation that
can hurt performance, as shown for Asterix, with # = 1.
(See also Table 1.)

5.2. Gradient Noise Reduction

Mnih et al. (2015) observed that large gradients can be detri-
mental to the optimization of DQNs. This was noted in the
context of large reward values, but it is possible that overes-
timation bias can also introduce variance in the gradient and
have a detrimental effect. To see this, we first notice that the
gradient in the DQN can be represented as

+ ! L = Es,a,r,s !

+-
Q! (s, a)$T Q! " (s, a)

.
+ ! Q! (s, a)

,
.

(5)
When the Q-value is overestimated, the magnitude for
+ ! Q! (s, a) in Eq. (5) could become excessively large and
so does the gradient, which may further lead to the insta-
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bility during optimization. This is supported by Figure 3,
which shows higher variance in Q-values for DQN vs. oth-
ers. Since we show in Section 5.1 that using softmax in lieu
of max in the Bellman operator can reduce the overestima-
tion bias, the gradient estimate in Eq. (5) can be more stable
with softmax. Note that stabilizing the gradient during DQN
training was also shown in van Hasselt et al. (2016b), but in
the context of adaptive target normalization.

To evaluate the gradient noise on Atari games, we report the
' 2 norm of the gradient in the final fully-connected linear
layer, by averaging over 50 independent inputs. As shown
in Figure 5, S-DQN and S-DDQN achieve smaller gradient
norm and variance than their counterparts, which implies
that the softmax operator can facilitate variance reduction
in the optimization for the neural networks. For the game
Asterix, we also observe that the overestimation of Q-value
in DQN eventually causes the gradient to explode, while
its competitors avoid this issue by achieving reasonable
Q-value estimation. Finally, Figure 6 shows that increas-
ing # generally leads to higher gradient variance, which
is also consistent with our analysis in Theorem 4 that the
overestimation monotonically increases w.r.t. #.

Figure 5.Mean and one standard deviation of the gradient norm
on the Atari games, for different methods.

Figure 6.Mean and one standard deviation of the gradient norm
on the Atari games, for different values of ⌧ in S-DDQN.

6. A Comparison for Bellman Operators
So far we have covered three different types of Bellman op-
erators, where the softmax and mellowmax variants employ
the softmax and the log-sum-exp functions in lieu of the
max function in the standard Bellman operator, respectively.
A thorough comparison among these Bellman operators will
not only exhibit their differences and connections, but also
reveal the trade-offs when selecting them.

Table 3.A comparison of different Bellman operators (B.O. Bell-
man optimality; O.R. overestimation reduction; P.R. policy repre-
sentation; D.Q. double Q-learning).

B.O. Tuning O.R. P.R. D.Q.

Max Yes No - Yes Yes
Mellowmax No Yes Yes No No
Softmax No Yes Yes Yes Yes

Table 3 shows the comparison from different criteria: Bell-
man equation implies that the optimal greedy policy cor-
responds to the max operator only. In contrast to the mel-
lowmax and the softmax operators, max also does not need
to tune the inverse temperature parameter. On the other
hand, the overestimation bias rooted in the max operator
can be alleviated by either of the softmax and mellowmax
operators. Furthermore, as noted in Asadi & Littman (2017),
the mellowmax operator itself cannot directly represent a
policy, and needs to be transformed into a softmax policy,
where numerical methods are necessary to determine the
corresponding state-dependent temperature parameters. The
lack of an explicit policy representation also prevents the
mellowmax operator from being directly applied in double
Q-learning.

For mellowmax and softmax, it is interesting to further
investigate their relationship, especially given their compa-
rable performance in the presence of function approxima-
tion, as shown in Table 2. First, we notice the following
equivalence between these two operators, in terms of the
Bellman updates: For the softmax-weighted Q-function, i.e.,
gQ ( s ! , ) (#) =

!
a!

exp[ " Q (s! ,a ! )]"
øa exp[ " Q (s! ,øa)] Q(s!, a!), there exists an

$ such that the mellowmax-weighted Q-function achieves
the same value. This can be verified by the facts that both
softmax and mellowmax operators (i ) converge to the mean
and max operators when the inverse temperature parameter
approaches 0 and ( , respectively; (ii ) are continuous on #
and $ , with [0, ( ) as the support.7

Furthermore, we compare via simulation the approximation
error to the max function and the overestimation error, for

7The operators remain fundamentally different since this equiv-
alence would hold only for a particular set of Q-values. The conver-
sion between softmax and mellomax parameters would need to be
done on a state-by-state basis, and would change as the Q-values
are updated.
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Figure 7.(Left) Approximation error to the max function; (Right)
Overestimation error, as a function of ⌧ (softmax) or ! (mellow-
max).

mellowmax and softmax. The setup is as follows: The in-
verse temperature parameter # is chosen from a linear grid
from 0.01 to 100. We generate standard normal random
variables, and compute the weighted Q-functions for the
cases with different number of actions. The approximation
error is then measured in terms of the difference between
the max function and the corresponding softmax and mel-
lowmax functions. The overestimation error is measured
the same as in Figure 2. The result statistics are reported by
averaging over 100 independent trials. Figure 7 shows the
trade-off between converging to the Bellman optimality and
overestimation reduction in terms of the inverse temperature
parameter, where the softmax operator approaches the max
operator in a faster speed while the mellowmax operator can
further reduce the overestimation error.

7. Related Work
Applying the softmax function in Bellman updates has long
been viewed as problematic, as Littman (1996) showed that
the corresponding Boltzmann operator could be expansive
in a specific MDP, via a counterexample. The primary
use of the softmax function in RL has been focused on
improving the exploration performance (Sutton & Barto,
1998). Our work here instead aims to bring evidence and
new perspective that the softmax Bellman operator can still
be beneficial beyond exploration.

The mellowmax operator (Asadi & Littman, 2017) was pro-
posed based on the log-sum-exp function, which can be
proven as a contraction and has received recent attention
due to its convenient mathematical properties. The use of
the log-sum-exp function in the backup operator dates back
to Todorov (2007), where the control cost was regularized by
a Kullback-Leibler (KL) divergence on the transition prob-
abilities. Fox et al. (2016) proposed a G-learning scheme
with soft updates to reduce the bias for the Q-value esti-
mation, by regularizing the cost with the KL divergence

on policies. Asadi & Littman (2017) further applied the
log-sum-exp function to the on-policy updates, and showed
that the state-dependent inverse temperature parameter can
be numerically computed. More recently, the log-sum-exp
function has also been used in the Boltzmann backup op-
erator for entropy-regularized RL (Schulman et al., 2017;
Haarnoja et al., 2017; Neu et al., 2017; Nachum et al., 2017).
One interesting observation is that the optimal policies in
these work admit a form of softmax, and thus can be ben-
eficial for exploration. In Lee et al. (2018), a sparsemax
operator based on Tsallis entropy was proposed to improve
the error bound for mellowmax. Note that these operators
were not shown to explicitly address the instability issues
in the DQN, and their corresponding policies were used
to improve the exploration performance, which is different
from our focus here.

Among variants of the DQN in Mnih et al. (2015),
DDQN (van Hasselt et al., 2016a) first identified the over-
estimation bias issue caused by the max operator, and miti-
gated it via the double Q-learning algorithm (van Hasselt,
2010). Anschel et al. (2017) later demonstrated that averag-
ing over the previous Q-value estimates in the learning target
can also reduce the bias, while the analysis for the bias re-
duction is restricted to a small MDP with a special structure.
Furthermore, an adaptive normalization scheme was devel-
oped in van Hasselt et al. (2016b) and was demonstrated to
reduce the gradient norm. The softmax function was also
employed in the categorical DQN (Bellemare et al., 2017),
but with a different purpose of generating distributions in its
distributional Bellman operator. Finally, we notice that other
variants (Wang et al., 2016; Mnih et al., 2016; Schaul et al.,
2016; He et al., 2017; Hessel et al., 2018; Dabney et al.,
2018) have also been proposed to improve the vanilla DQN,
though they were not explicitly designed to tackle the issues
of overestimation error and gradient noise.

8. Conclusion and Future Work
We demonstrate surprising benefits of the softmax Bellman
operator when combined with DQNs, which further sug-
gests that the softmax operator can be used as an alternative
for the double Q-learning to reduce the overestimation bias.
Our theoretical results provide new insight into the con-
vergence properties of the softmax Bellman operator, and
quantify how it reduces the overestimation bias. To gain a
deep understanding about the relationship among different
Bellman operators, we further compare them from different
criteria, and show the trade-offs when choosing them in
practice.

An interesting direction for future work is to provide more
theoretical analysis for the performance trade-off when se-
lecting the inverse temperature parameter in Tsoft, and sub-
sequently design an efficient cooling scheme.
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entropy-regularized Markov decision processes. arXiv
preprint arXiv:1705.07798, 2017.

O’Donoghue, B., Munos, R., Kavukcuoglu, K., and Mnih,
V. Combining policy gradient and Q-learning. In Inter-
national Conference on Learning Representations, 2017.

Reverdy, P. and Leonard, N. E. Parameter estimation in
softmax decision-making models with linear objective
functions. IEEE Transactions on Automation Science and
Engineering, 13(1):54–67, 2016.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. In International Conference on
Learning Representations, 2016.

Schulman, J., Chen, X., and Abbeel, P. Equivalence be-
tween policy gradients and soft Q-learning. arXiv preprint
arXiv:1704.06440, 2017.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

Thrun, S. and Schwartz, A. Issues in using function
approximation for reinforcement learning. In Mozer,



Revisiting the Softmax Bellman Operator: New Benefits and New Perspective

M. C., Smolensky, P., Touretzky, D. S., Elman, J. L.,
and Weigend, A. S. (eds.), Proceedings of the 1993 Con-
nectionist Models Summer School, Hillsdale, NJ, 1994.
Lawrence Erlbaum.

Thrun, S. B. The role of exploration in learning control. In
White, D. A. and Sofge, D. A. (eds.), Handbook of Intel-
ligent Control: Neural, Fuzzy, and Adaptive Approaches,
pp. 527–559. Van Nostrand Reinhold, New York, NY,
1992.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4
(2):26–31, 2012.

Todorov, E. Linearly-solvable Markov decision problems.
In Advances in neural information processing systems,
pp. 1369–1376, 2007.

van Hasselt, H. Double Q-learning. In Advances in Neural
Information Processing Systems, pp. 2613–2621, 2010.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double Q-learning. In Proceedings of
the Thirtieth AAAI Conference on ArtiÞcial Intelligence,
pp. 2094–2100. AAAI Press, 2016a.

van Hasselt, H. P., Guez, A., Hessel, M., Mnih, V., and Sil-
ver, D. Learning values across many orders of magnitude.
In Advances in Neural Information Processing Systems,
pp. 4287–4295, 2016b.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot,
M., and De Freitas, N. Dueling network architectures
for deep reinforcement learning. In Proceedings of the
33rd International Conference on Machine Learning, pp.
1995–2003. JMLR. org, 2016.

Williams, R. J. and Baird III, L. C. Tight performance
bounds on greedy policies based on imperfect value func-
tions. Technical report, Northeastern University, 1993.


