
A. Intuition - Power-Law Distribution
Our goal is to compress the auxiliary variables without incurring significant accuracy loss. Unfortunately, selecting the
appropriate compression scheme is not clear without any additional information on the parameter distribution. The challenge
is that the parameter distribution can change over time, so any static assumption on the approximation is likely to hurt
accuracy. Fortunately, in this section we show that there is a potential solution.

In Figure 1, we plot the auxiliary variables sorted according to their normalized absolute values at training epochs 5, 20 and
40. The plots clearly indicate a power-law behavior where only a few parameters have large magnitudes. In Figure 2, we
confirm this behavior for every iteration by plotting the midpoint dividing the head and tail. The auxiliary variables have
long tails throughout the training process. To the best of our knowledge, this is the first work that empirically shows the
existence of a power-law distribution behavior in the gradients and auxiliary variables while training. To dig deeper, we also
show the identities of top-100 parameters (the head of power law distribution). The top-k identities change over time, so it is
difficult to cluster parameters into predefined, static clusters.

In summary, we need to compress a power law distribution where the top-k identities are constantly changing. Fortunately,
the auxiliary variables are updated in a linear fashion. The linear sequence of updates allows us to guarantee that the count-
sketch provides an accurate estimate with high probability for each iteration during training. The power law distribution and
linear updates make the count-sketch an ideal data structure for this problem.
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Figure 1. The optimizer’s auxiliary variables follow a power-law distribution, but the features associated with top-k values change during
training. The X-Axis is the feature ID, while the Y-Axis is the normalized absolute magnitude. The first two charts show the sorted
absolute values for the auxiliary variables at different training epochs. The last two charts plot the top 100 features and their magnitudes.
We plot the 1st and 2nd moments of the Adam Optimizer for an LSTM weight matrix trained on the Wikitext-2 dataset.
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Figure 2. An experiment showing that the model’s gradients and the optimizer’s auxiliary variables follow a power-law distribution. The
X-axis is the number of iterations during training time. The Y-axis is the 50% threshold that marks the midpoint dividing the head and the
tail of the distribution. For a uniform distribution, the midpoint is at 0.5. However, the 50% threshold for the gradients and auxiliary
variables is less than 0.2 on average, indicating that they follow a power law distribution. The red line marks the maximum threshold for
all layers, while the black line represents the average threshold.



B. Proof - Convergence
Count-Sketch Error Bound: (Charikar et al., 2002) Let x̂i be the Count-Sketch estimate of component i from vector x.
For any component xi, with probability 1− δ, a Count-Min Sketch matrix with width Θ( 1

ε21
) and depth Θ(log(dδ )) satisfies

xi − ε1 ‖x‖2 ≤ x̂i ≤ xi + ε1 ‖x‖2 (1)

Count-Min Sketch Error Bound: (Cormode & Muthukrishnan, 2005) Let x̂i be the Count-Min Sketch estimate of
component i from vector x. For any component xi, with probability 1− δ, a Count-Min Sketch matrix with width Θ( 1

ε1
)

and depth Θ(log(dδ )) satisfies

xi ≤ x̂i ≤ xi + ε1 ‖x‖1 (2)

For stochastic non-convex optimization, we measure how the algorithm converges to a stationary point - ‖∇f(xt)‖2 ≤ c
for some constant c. Notation: batch size b, learning rate ηt, 2nd moment decay rate β2, count-min sketch error rate ε1,
count-min sketch failure probability δ.

Assumptions: Here are the assumptions used in our analysis:

1. Function f is L-Smooth - There exists a constant L such that ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rd

2. Function f has bounded gradients - [f(xt)]i ≤ Gi, ∀x ∈ Rd, i ∈ [d], G = ‖G‖∞

3. The stochastic gradient oracle provides us with an unbiased estimate with fixed variance. Let ξt represents the
randomness (due to mini-batch sampling) at iteration t.

gt,i = [∇f(xt, ξt)]i, E[gt,i] = [∇f(xt)]i, E[(gt,i − [∇f(xt)]i)
2] ≤ σi

For simplicity and to save additional memory by not tracking the 1st moment, let β1 = 0. In this form, the optimizer is
commonly called RMSPROP. Therefore, the update rule for all i ∈ [d] is

xt+1,i = xt,i − ηt
gt,i√
v̂t,i + ε

, (3)

where v̂t,i represents the Count-Min Sketch estimate of component i from vector vt = vt−1 + (1− β2)(vt−1 − g2t ).

Theorem B.1. Let learning rate ηt = η,∀t ∈ [T ] and batch size b = 1. Assume β2, η, and ε are selected such that η ≤ ε
2L

and
√

1− β2 ≤ ε
4G . Given a Count-Min Sketch matrix width Θ( 1

ε1
) and depth Θ(log(dTδ )), we have the following bound

that holds for Count-Min Sketch Adam with probability (1− δ)

min
t

E

[
‖∇f(xt)‖2

]
≤ O

(
f(x0)− f(x∗)

ηT
+ σ2 + ε1d ‖G‖22

)

Proof. Given that the function is L-smooth and by the optimizer update rule, we derive the following:

f(xt+1) = f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= f(xt)− ηt
d∑
i=0

(
[∇f(xt)]i ·

gt,i√
v̂t,i + ε

)
+
Lη2t

2

d∑
i=0

g2t,i

(
√
v̂t,i + ε)2

(4)



Next, we take the expectation of f(xt+1), given we that know xt (assumed fixed):

Et [f(xt+1) | xt] ≤ f(xt)− ηt
d∑
i=0

(
[∇f(xt)]i · Et

[
gt,i√
v̂t,i + ε

∣∣∣ xt])+
Lη2t

2

d∑
i=0

Et

[
g2t,i

(
√
v̂t,i + ε)2

∣∣∣ xt]

= f(xt)− ηt
d∑
i=0

(
[∇f(xt)]i · Et

[
gt,i√
v̂t,i + ε

− gt,i√
β2v̂t−1,i + ε

+
gt,i√

β2v̂t−1,i + ε

∣∣∣ xt])

+
Lη2t

2

d∑
i=0

Et

[
g2t,i

(
√
v̂t,i + ε)2

∣∣∣ xt]

= f(xt)− ηt
d∑
i=0

(
[∇f(xt)]i ·

[
[∇f(xt)]i√
β2v̂t−1,i + ε

+ Et

[
gt,i√

β2v̂t,i + ε
− gt,i√

β2v̂t−1,i + ε

∣∣∣ xt]])

+
Lη2t

2

d∑
i=0

Et

[
g2t,i

(
√
v̂t,i + ε)2

∣∣∣ xt]

≤ f(xt)− ηt
d∑
i=0

[∇f(xt)]
2
i√

β2v̂t−1,i + ε
+ ηt

d∑
i=0

∣∣∣[∇f(xt)]i

∣∣∣ · ∣∣∣∣∣Et
[

gt,i√
β2v̂t,i + ε

− gt,i√
β2v̂t−1,i + ε︸ ︷︷ ︸

T1

∣∣∣ xt]
∣∣∣∣∣

+
Lη2t

2

d∑
i=0

Et

[
g2t,i

(
√
v̂t,i + ε)2

∣∣∣ xt]

The second equality occurs because gt,i is an unbiased estimate of [∇f(xt)]i.

Now, we upper-bound the term T1:

T1 =
gt,i√
v̂t,i + ε

− gt,i√
β2v̂t−1,i + ε

≤ |gt,i| ·

∣∣∣∣∣ 1√
v̂t,i + ε

− 1√
β2v̂t−1,i + ε

∣∣∣∣∣
=

|gt,i|
(
√
v̂t,i + ε)(

√
β2v̂t−1,i + ε)

·

∣∣∣∣∣ v̂t,i − β2v̂t−1,i√
v̂t,i +

√
β2v̂t−1,i

∣∣∣∣∣
=

|gt,i|
(
√
v̂t,i + ε)(

√
β2v̂t−1,i + ε)

·

∣∣∣∣∣ (1− β2)ĝ2t,i√
v̂t,i +

√
β2v̂t−1,i

∣∣∣∣∣
≤ |gt,i|

(
√
v̂t,i + ε)(

√
β2v̂t−1,i + ε)

·

∣∣∣∣∣ (1− β2)(g2t,i + ε1
∥∥g2t ∥∥1)√

v̂t,i +
√
v̂t−1,i

∣∣∣∣∣
≤
√

1− β2(g2t,i + ε1
∥∥g2t ∥∥1)

(
√
β2v̂t−1,i + ε)ε

From Lemma B.3, we have the second equality. The second inequality occurs because of Lemma B.2, which is derived
using the Count-Min Sketch error bound. The third inequality occurs because |gt,i|√

v̂t,i+
√
v̂t−1,i

≤ 1√
1−β2

and when we drop√
v̂t,i from (

√
v̂t,i + ε).



By substituting the upper-bound for T1, we arrive at the following:

Et [f(xt+1) | xt] ≤ f(xt)− ηt
d∑
i=0

[∇f(xt)]
2
i√

β2v̂t−1,i + ε
+
ηtG
√

1− β2
ε

d∑
i=0

(
Et

[
g2t,i + ε1

∥∥g2t ∥∥1√
β2v̂t−1,i + ε)

∣∣∣ xt])

+
Lη2t
2ε

d∑
i=0

Et

[
g2t,i√
v̂t,i + ε

∣∣∣ xt]

≤ f(xt)− ηt
d∑
i=0

[∇f(xt)]
2
i√

β2v̂t−1,i + ε

+
ηtG
√

1− β2
ε

d∑
i=0

(
Et

[
g2t,i√

β2v̂t−1,i + ε)

∣∣∣ xt]+ Et

[
ε1
∥∥g2t ∥∥1√

β2v̂t−1,i + ε)

∣∣∣ xt])

+
Lη2t
2ε

d∑
i=0

Et

[
g2t,i√

β2v̂t−1,i + ε

∣∣∣ xt]

≤ f(xt)−

(
ηt −

ηtG
√

1− β2
ε

− Lη2t
2ε

)
d∑
i=0

[∇f(xt)]
2
i√

β2v̂t−1,i + ε

+

(
ηtG
√

1− β2
ε

+
Lη2t
2ε

)
d∑
i=0

σ2
i

b(
√
β2v̂t−1,i + ε)

+
ηtG
√

1− β2
ε

d∑
i=0

ε1

(∑d
j=0

σ2
j

b + [∇f(xt)]
2
j

)
√
β2v̂t−1,i + ε

≤ f(xt)−

(
ηt −

ηtG
√

1− β2
ε

− Lη2t
2ε

)
d∑
i=0

[∇f(xt)]
2
i√

β2v̂t−1,i + ε

+

(
ηtG
√

1− β2
ε

+
Lη2t
2ε

)
d∑
i=0

σ2
i

b(
√
β2v̂t−1,i + ε)

+
ηtG
√

1− β2
ε

d∑
i=0

ε1(σ
2

b + ‖G‖22)√
β2v̂t−1,i + ε

The first inequality follows because the function has bounded gradients - [∇f(xt)]i ≤ G. Now, the second inequality holds
because v̂t,i ≥ β2v̂t−1,i. In addition, we split the g2t,i and ε1

∥∥g2t ∥∥1 terms using the linearity of expectation. For the third
inequality, we use the result and definitions in Lemma B.1. From the specified parameters for ηt, β2, and ε, we assume the
following conditions hold: G

√
1−β2

ε ≤ 1
4 and Lηt

2ε ≤
1
4 .

Et [f(xt+1) | xt] ≤ f(xt)−
ηt
2

d∑
i=0

[∇f(xt)]
2
i√

β2v̂t−1,i + ε
+

(
ηtG
√

1− β2
ε

+
Lη2t
2ε

)
d∑
i=0

σ2
i

b(
√
β2v̂t−1,i + ε)

+
ηtG
√

1− β2
ε

d∑
i=0

ε1(σ
2

b + ‖G‖22)√
β2v̂t−1,i + ε

≤ f(xt)−
ηt

2(
√
β2ε1dG+ ε)

‖∇f(xt)‖2 +

(
ηtG
√

1− β2
ε2

+
Lη2t
2ε2

)
σ2

b

+
ηtG
√

1− β2
ε2

(
ε1dσ

2

b
+ ε1d ‖G‖22

)
= f(xt)−

ηt

2(
√
β2ε1dG+ ε)

‖∇f(xt)‖2 +

(
ηtG
√

1− β2
ε2

(1 + ε1d) +
Lη2t
2ε2

)
σ2

b

+
ηtG
√

1− β2
ε2

(ε1d ‖G‖22)



For the standard optimizer, 0 ≤ vt−1,i ≤ G2. For the Count-Min Sketch approximation, ‖vt−1‖1 =
∑d
i=0 |vt−1,i| ≤∑d

i=0G
2 = dG2. Therefore, this inequality holds 0 ≤ vt−1,i ≤ v̂t−1,i ≤ vt−1,i + ε1 ‖vt−1‖1 ≤ ε1dG

2. In addition, this
corollary follows 1

β2

√
ε1dG+ε

≤ 1
ε . The second inequality follows given the two inequalities for the Count-Min Sketch

approximation.

Now, we take a telescoping sum over all the iterations, and taking the full expectation:

η

2
(√
β2ε1dG+ ε

) T∑
t=0

E

[
‖∇f(xt)‖2

]

≤ f(x0)− E[f(xT+1)] +

(
ηG
√

1− β2
ε2

(1 + ε1d) +
Lη2

2ε2

)
Tσ2

b
+
TηG

√
1− β2
ε2

(ε1d ‖G‖22)

Finally, given that f(x∗) ≤ f(xT+1) and by multiplying the equation with 2(
√
β2ε1dG+ε)
ηT , we arrive at our final result.

1

T

T∑
t=0

E

[
‖∇f(xt)‖2

]

≤ 2
(√

β2ε1dG+ ε
)
·

[
f(x0)− f(x∗)

ηT
+

(
G
√

1− β2
ε2

(1 + ε1d) +
Lη

2ε2

)
σ2

b
+
G
√

1− β2
ε2

(ε1d ‖G‖22)

]

Lemma B.1. (Zaheer et al., 2018) For all i ∈ [d] and for the iterates xt where t ∈ [T ] for Count-Min Sketch Adam, the
following inequality holds:

E[g2t,i] ≤
σ2
i

b
+ [∇f(xt)]i

Lemma B.2. For all i ∈ [d] and for the iterates xt where t ∈ [T ] for Count-Min Sketch Adam, the following inequality
holds:

v̂t,i − β2v̂t,i ≤ (1− β2)(g2t,i + ‖gt‖1)

Proof. Given the error bound for the count-min sketch and the Adam update rule, we have the following:

v̂t,i ≤ vt,i + ε1 ‖vt‖1

= vt,i + ε1

d∑
i=0

|vt, i|

= β2vt,i + (1− β2)g2t,i + ε1

d∑
i=0

∣∣β2vt,i + (1− β2)g2t,i
∣∣

= β2vt,i + (1− β2)g2t,i + ε1(

d∑
i=0

|β2vt,i|+
d∑
i=0

∣∣(1− β2)g2t,i
∣∣)

= β2vt,i + (1− β2)g2t,i + ε1β2 ‖vt−1‖1 + ε1(1− β2) ‖gt‖1

By subtracting v̂t,i − β2v̂t,i and simplifying, we derive the desired inequality.

v̂t,i − β2v̂t,i ≤ β2vt,i + (1− β2)g2t,i + ε1β2 ‖vt−1‖1 + ε1(1− β2) ‖gt‖1 − β2vt,i − β2ε1 ‖vt−1‖1
= (1− β2)g2t,i + ε1(1− β2) ‖gt‖1
= (1− β2)(g2t,i + ‖gt‖1)



Lemma B.3. For all i ∈ [d] and for the iterates xt where t ∈ [T ] for Count-Min Sketch Adam, the following equality holds:

|gt,i| ·

∣∣∣∣∣ 1√
v̂t,i + ε

− 1√
β2v̂t−1,i + ε

∣∣∣∣∣ =
|gt,i|

(
√
v̂t,i + ε)(

√
β2v̂t−1,i + ε)

·

∣∣∣∣∣ v̂t,i − β2v̂t−1,i√
v̂t,i +

√
β2v̂t−1,i

∣∣∣∣∣
Proof. Let x = gt,i, A =

√
v̂t,i, and B =

√
β2v̂t−1,i

|x| ·

∣∣∣∣∣ 1

A+ ε
− 1

B + ε

∣∣∣∣∣ = |x| ·

∣∣∣∣∣ B −A
(A+ ε)(B + ε)

∣∣∣∣∣
= |x| ·

∣∣∣∣∣ A−B
(A+ ε)(B + ε)

∣∣∣∣∣
=
|x| (A+B)

(A+B)
·

∣∣∣∣∣ A−B
(A+ ε)(B + ε)

∣∣∣∣∣
=
|x| (A+B)(A−B)

(A+B)(A+ ε)(B + ε)

=
|x| (A2 −B2)

(A+B)(A+ ε)(B + ε)

=
|x|

(A+ ε)(B + ε)
·

∣∣∣∣∣A2 −B2

A+B

∣∣∣∣∣
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