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Abstract
Many popular first-order optimization methods
accelerate the convergence rate of deep learning
models. However, these algorithms require aux-
iliary variables, which cost additional memory
proportional to the number of parameters in the
model. The problem is becoming more severe as
models grow larger to learn from complex, large-
scale datasets. Our proposed solution is to main-
tain a linear sketch to compress the auxiliary vari-
ables. Our approach has the same performance as
the full-sized baseline, while using less space for
the auxiliary variables. Theoretically, we prove
that count-sketch optimization maintains the SGD
convergence rate, while gracefully reducing mem-
ory usage for large-models. We show a rigor-
ous evaluation on popular architectures such as
ResNet-18 and Transformer-XL. On the 1-Billion
Word dataset, we save 25% of the memory used
during training (7.7 GB instead of 10.8 GB) with
minimal accuracy and performance loss. For an
Amazon extreme classification task with over 49.5
million classes, we also reduce the training time
by 38%, by increasing the mini-batch size 3.5×
using our count-sketch optimizer.

1. Introduction
An emerging trend in natural language processing is to train
a language model in an unsupervised fashion on a large
text corpus, and then to fine-tune the model for a specific
task (Radford et al., 2018; Puri et al., 2018; Devlin et al.,
2018). The language model often takes the form of an
LSTM (Jozefowicz et al., 2016) or a Transformer (Vaswani
et al., 2017). These models already contain millions of
parameters and will continue to grow even larger to achieve
better performance.
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Training large-scale models efficiently is a challenging task.
There are numerous publications that describe how to lever-
age multi-GPU data parallelism and mixed precision train-
ing effectively (Hoffer et al., 2017; Ott et al., 2018; Micike-
vicius et al., 2018). A key tool for improving training time
is to increase the batch size, taking advantage of the massive
parallelism provided by GPUs. However, increasing the
batch size also requires significant amounts of memory. A
practitioner will sometimes sacrifice their batch size for a
larger, more expressive model. For example, (Puri et al.,
2018) showed that doubling the dimensionality of a mul-
tiplicative LSTM (Krause et al., 2016) from 4096 to 8192
forced them to reduce the batch size per GPU by 4×.

One culprit that aggravates the memory capacity issue is
the auxiliary parameters used by first-order optimization
algorithms. (e.g., Momentum, AdaGrad, Adam) Our pro-
posed solution is to compress the auxiliary parameters of the
optimizer using the count-sketch data structure (Charikar
et al., 2002), freeing up memory for either a more expressive
model or a larger batch size for faster training.

Why Count-Sketches? Here are the two main reasons that
make count-sketches a natural choice for this problem.
1. The update operations for auxiliary variables are linear.
2. We empirically observe that at any iteration, the distri-
bution of magnitudes for the gradients and their auxiliary
variables satisfy power law like behavior. (See Appendix A)

The count-sketch data structure is ideally suited for com-
pressing the auxiliary variables. We can easily tune the ca-
pacity of the count-sketch to maintain the optimizer’s perfor-
mance without increasing the cost of updating or querying
the structure. In Section 4, we formally prove this graceful
memory trade-off by analyzing the convergence rate of our
count-sketch optimizer. Furthermore, the computational
cost associated with the count-sketch scales with gradient
sparsity. We can insert sparse gradients directly into the
count-sketch, and then retrieve the corresponding approxi-
mation without accessing the entire auxiliary variable.

Leveraging gradient sparsity is useful for saving additional
memory during training. When the gradient tensor is ex-
tremely sparse, majority of the values are zero, which is
an unnecessary waste of memory. Moreover, several algo-
rithms impose sparsity on the Softmax layer to improve
training time significantly. For example, (Shrivastava & Li,
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2014; Vijayanarasimhan et al., 2014; Spring & Shrivastava,
2017; Yen et al., 2018a) have proposed using approximate
nearest-neighbor search to find the most relevant output
classes. Sampled Softmax (Jean et al., 2014) is used fre-
quently for language modeling tasks because the distribution
of words follows a power-law distribution.

On the 1-Billion Word (LM1B) dataset, we trained an LSTM
language model using the Adam optimizer, leveraging our
count-sketch technique. By compressing the auxiliary vari-
ables, we reduced the memory usage during training by
25% without any accuracy or performance penalty. For an
Amazon extreme classification task with over 49.5 million
classes, we reduced the training time by 38% by increasing
the mini-batch size 3.5× using our count-sketch optimizer.

2. Count-Sketch and Streaming Setting

Algorithm 1 Count-Sketch Tensor
v universal hash functions hj , random sign functions sj
Initialize count-sketch tensor S ∈ Rv,w,d = 0

UPDATE(Count-Sketch S, item i, update ∆ ∈ Rd):
for j = 1 to v do
Sj,hj(i),: ← Sj,hj(i),: + sj(i) ·∆

end for

QUERY(Count-Sketch S, item i, Function F ):
F ←MIN for non-negative values; otherwise MEDIAN
RETURN Fj∈{1,2,...,v}(sj(i) · Sj,hj(i),:)

In the traditional streaming setting, we are given a high-
dimensional vector x ∈ Rp that is too costly to store in
memory. We only see a very long sequence of updates over
time. The only information available at time t is of the
form (i,∆), which means that coordinate i is updated by
the amount ∆. We are given a limited amount of storage, so
we cannot store the entire vector. Sketching algorithms aim
to estimate the value of current item i, after any number of
updates using only O(log p) memory.

The count-sketch is a popular data structure for this stream-
ing setting. The algorithm uses a matrix S of size v × w ∼
O(log p), where v and w are chosen based on the desired
accuracy guarantees. For each row j, the algorithm uses v
random hash functions hj to map the vector’s components to
w different bins, hj : {1, 2, ..., p} → {1, 2, ..., w}. In ad-
dition, count-sketch uses v random sign functions sj to map
the components of the vectors randomly to {+1, −1}, sj :
{1, 2, ..., p} → {+1,−1}. The count-sketch supports two
operations: UPDATE(item i, update ∆) and QUERY(item
i). For any update ∆ to an item i, the UPDATE operation
adds sj(i) ·∆ to each bin Sj,hj(i),∀j ∈ {1, 2, ..., v}. The
QUERY operation returns the median of all the bins associ-
ated with item i. If the updates are strictly non-negative, we
return the minimum value.
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Figure 1. Visualization of Count Sketch Tensor. Each color rep-
resents a unique feature. For each row, each feature is mapped
randomly to a different vector. Each vector is read from and written
to memory in contiguous chunks. Preserving the last dimension of
the auxiliary variable keeps structured sparsity in the count-sketch
data structure, which is necessary for high performance.

3. Count-Sketch Optimizers
The majority of the parameters in deep neural networks are
contained in the fully-connected layers (Han et al., 2015).
Fortunately for the embedding and softmax layers, the set of
active features or classes and their corresponding gradient
updates are sparse. Our insight is to use the count-sketch
data structure to accurately represent the auxiliary variables
in a compressed manner. We will insert the gradient infor-
mation into the count-sketch and retrieve an approximate
value for the auxiliary variable whenever needed.

In the deep learning setting, the high-dimensional vector x
is analogous to the matrices used to represent the auxiliary
variables. The auxiliary variables are represented with Rn,d
matrices where n is the number of features in the embed-
ding layer, the number of classes in the softmax layer, or
the number of nodes in the hidden layers. Since the dimen-
sionality of the columns d is usually in the low thousands
(< 10K), we represent the auxiliary variables with a count-
sketch tensor Rv,w,d where v · w � n. This count-sketch
tensor preserves structured sparsity where values are read
from memory in contiguous chunks along the last dimen-
sion of the tensor. See Fig. 1 for a visualization. This tensor
structure maintains high performance with GPUs and CPU
SIMD vector instructions. On the other hand, the n rows are
compressed by randomly combining features and classes
together.

Here is a brief overview of three popular first-order optimiz-
ers whose auxiliary variables we seek to compress: Momen-
tum (Sutskever et al., 2013; Polyak, 1964; Nesterov, 1983)
remembers a history of gradient updates, which smooths out
random oscillations and accelerates convergence. Adaptive
gradient descent algorithms alter the learning rate for each
feature based on the frequency of its updates. Sparse, rare
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features are given larger updates and a higher learning rates.
These methods track a history of squared gradients for each
feature. Adagrad (Duchi et al., 2011) divides the gradient by
the square root of the cumulative squared gradient. Adam
(Kingma & Ba, 2014) combines momentum and adaptive
learning rates together, so it tracks an exponential average
of the gradients and squared gradients.

The count-sketch data structure expects to receive a stream
of updates ∆. For the Momentum and Adam optimizers,
we need to transform the update operation into a form that
is compatible with the count-sketch. For an auxiliary vari-
able X , the desired update operation is X += ∆. Given
the appropriate update operation, we replace the addition
assignment operator += for the original matrix with the
Update-Query operation for the count-sketch tensor.

For Momentum, given some gradient gt, the update rule is
mt = γ ·mt−1 + gt ←→ mt += (γ − 1) ·mt−1 + gt.

For an exponential moving average in the Adam optimizer,
given some constant c and an update ∆, the update rule is
xt = c ·xt−1 +(1−c) ·∆←→ xt += (1−c) ·(∆−xt−1).

The count-sketch is essentially a plug and play replacement
that saves memory, while retaining the speed and accuracy
of the original matrix. Normally, algorithms that compress
memory to save space are slower than their dense coun-
terparts. However, the count-sketch can leverage sparsity
by lazily performing updates with high efficiency. In addi-
tion, we can gracefully increase the size of the count-sketch
for greater accuracy with minimal additional computational
cost.

Count-Min Sketch Cleaning Heuristic: Since the Count-
Min Sketch only accepts non-negative values, it always
overestimates the desired value. The Count-Min Sketch
is used to estimate the adaptive learning rate for the Ada-
grad and Adam optimizers. Therefore, an overestimate
will prematurely slow the learning rate for certain elements.
Our solution is to clean the sketch periodically by multi-
plying the tensor by a constant α where 0 ≤ α ≤ 1 every
C iterations. This shrinking operation creates an adaptive
sketch (Shrivastava et al., 2016).

Periodic cleaning works well with the Count-Min Sketch
because it provides a better estimate for the top-k elements.
During training, the accumulation of updates allows for
the heavy hitter estimates to emerge in the sketch (Aghaz-
adeh et al., 2018). Due to stochastic gradient descent, there
is a certain amount of noise in the gradient, so cleaning
immediately after each update destroys the internal state
of the sketch. Furthermore, cleaning reduces the scale of
the sketch, reducing the overall noise level. If the signal
to noise ratio is too high, future heavy hitter are ignored
because there values are equal to the noise in the sketch.

Algorithm 2 Momentum - Count Sketch Optimizer

Initialize Count-Sketch Tensor M ∈ Rv,w,d = 0
v universal hash functions hj
v random sign functions sj
Decay Rate γ, Learning Rate η

MOMENTUM
(Item i, Parameter x ∈ Rd, Gradient gt ∈ Rd):
mt−1 ← Query(M, i, MEDIAN)
∆M ← (γ − 1) ·mt−1 + gt
Update(M, i, ∆M )
m̂t ← Query(M, i, MEDIAN)
xt = xt−1 − ηt ·mt

Algorithm 3 Adagrad - Count Sketch Optimizer

Initialize Count-Min Sketch Tensor V ∈ Rv,w,d = 0
v universal hash functions hj
Learning Rate η

ADAGRAD
(Item i, Parameter x ∈ Rd, Gradient gt ∈ Rd):
∆V ← g2t
UPDATE(V, i, ∆V )
vt ← QUERY(V, i, MIN)
xt = xt−1 − ηt · gt√

vt+ε

Algorithm 4 Adam - Count Sketch Optimizer

Initialize Count-Sketch Tensor M ∈ Rv,w,d = 0
Initialize Count-Min-Sketch Tensor V ∈ Rv,w,d = 0
v universal hash functions hj
v random sign functions sj
1st Moment Decay Rate β1, 2nd Moment Decay Rate β2
Learning Rate η

ADAM
(Item i, Parameter x ∈ Rd, Gradient gt ∈ Rd):
// Count-Sketch - 1st Moment
mt−1 ← Query(M, i, MEDIAN)
∆M ← (1− β1)(gt −mt−1)
Update(M, i, ∆M )
mt ← Query(M, i, MEDIAN)

// Count-Min Sketch - 2nd Moment
vt−1 ← Query(M, i, MIN)
∆V ← (1− β2)(g2t − vt−1)
Update(V, i, ∆V )
vt ← Query(M, i, MIN)

m̂t = mt/(1− βt1)
v̂t = vt/(1− βt2)
xt = xt−1 − ηt · m̂t√

v̂t+ε
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4. Theoretical Analysis
For stochastic non-convex optimization, we measure how
the algorithm converges to a stationary point at iteration
xt—i.e., ‖∇f(xt)‖2 ≤ c for some small constant c. The
proof of Theorem 4.1 is found in the Appendix B. In
our analysis, we focus on the Count-Min Sketch Adam
optimizer where we do not track the 1st moment—i.e.,
β1 = 0. We assume that the function f is L-smooth with
bounded gradients: Function f has bounded gradients -
[f(xt)]i ≤ Gi,∀x ∈ Rd, i ∈ [d], G =

∥∥∥~G∥∥∥
∞

. In addition,
we receive an unbiased stochastic gradient estimate gt with
fixed variance σ2. Then, the following theorem holds:
Theorem 4.1. Let the learning rate ηt = η,∀t ∈ [T ].
Assume β2, η, and ε are selected such that η ≤ ε

2L and√
1− β2 ≤ ε

4G . Given a Count-Min Sketch matrix with
width Θ( 1

ε1
) and depth Θ(log(dTδ )), we have the following

bound that holds for Count-Min Sketch Adam with probabil-

ity (1− δ) where M =
(
G
√
1−β2

ε2

∑d
i=0

∥∥∥~G∥∥∥2
2

)
:

min
t

E ‖∇f(xt)‖2 ≤ O
(f(x0)− f(x∗)

ηT
+ σ2 + ε1M

)
For comparison, we have the convergence bound for the
standard Adam optimizer where β1 = 0 proven in (Zaheer
et al., 2018):

min
t

E ‖∇f(xt)‖2 ≤ O
(f(x0)− f(x∗)

ηT
+ σ2

)
Discussion: The bounds are similar except for the addi-
tional term caused by the Count-Min Sketch approximation.
The theorem states that the Count-Min Sketch Adam con-
verges to a region around a stationary point with radius
O(σ2 + ε1M). For each dimension i ∈ [d], there is an error
ε1M that depends on the adaptivity of the optimizer β2,
the error rate ε1 of the sketch, and the gradient norm ‖G‖22.
The error rate ε1 is proportional to the width of the sketch
ε1 = 1/w and corresponds with the number of collisions
along each row in the sketch. We can improve convergence
gracefully by increasing the sketch’s width, which reduces
the error caused when multiple components collide in the
same bin. Ideally, when the sketch width w = Θ(d), the
error term becomes a small constant. In practice, if the val-
ues of the auxiliary variable have power-law characteristics,
then w = O(sparsity). In the Appendix A, we empirically
demonstrate that the model’s gradients and the optimizer’s
auxiliary variables follow a power-law distribution. The fail-
ure probability δ of exceeding the Count-Min Sketch error
bound is proportional to the depth of the sketch δ = dT/ev .
In our theoretical results, the depth of the sketch depends
logarithmically the number of parameters d and the number
of time steps T . However, in practice, our experiments show
that a modest depth size of 3-5 is sufficient.

5. Related Work
Feature Compression: A straight-forward option is to use
dimensionality reduction techniques to minimize the num-
ber of features, which in turn decreases the size of the model
and optimizer. (Tito Svenstrup et al., 2017) describes a hash
embedding scheme where the embedding for a feature is a
weighted sum between the base embedding vectors and a
weight vector. Their goal was to minimize the size of the
embedding layer while preserving its flexibility. However,
dramatically reducing the parameter space may sacrifice
model accuracy. For example, training the BERT language
model (Devlin et al., 2018) on a GPU with 12-16 GB mem-
ory requires a smaller, less effective architecture than the
full-sized model trained on the 64 GB Google TPU.

Gradient Checkpointing: (Siskind & Pearlmutter, 2018;
Chen et al., 2016) describe an orthogonal approach where
training an N -layer neural network requires

√
N memory.

Their insight was that storing the activations for the back-
propagation pass is the most memory-intensive part of train-
ing. Instead of storing all the activations, their algorithm
checkpoints certain sections of the neural network and lazily
recomputes the activations during the back-propagation
phase. In other words, their approach saves memory by
sacrificing extra computation time.

Low-Rank Approximation: A low-rank approximation
has the potential to reduce the number of parameters from
O(nd) to O(nr + rd) where r � min(n, d). However,
updating the low-rank matrices is non-trivial. (Shazeer &
Stern, 2018) demonstrated that there exists a unique, fast
update rule for a rank-1 approximation that minimizes the
I-divergence between the approximation and original matrix.
Their rank-1 approximation was limited to non-negative
matrices, so only the second moment of the Adam optimizer
was compressed in their experiments. The drawback of this
approach is that it requires materializing the entire matrix
via an outer-product, which is prohibitive for large-scale
embedding and softmax layers. Since their update rule only
applies for rank-1 vectors, their approach lacks the flexibility
to increase the model’s memory capacity gracefully.

Count-Sketch: The original objective of the count-sketch
data structure was to estimate the frequency of various
events in the streaming setting. Recently, (Aghazadeh et al.,
2018; Tai et al., 2018) demonstrated that the count-sketch
can learn a compressed model that accurately preserves the
features with the largest weights. Their objective focused
on feature extraction in ultra-high dimensional settings and
was limited to simple, linear models. In this work, we seek
to use the count-sketch to preserve the different auxiliary
variables maintained by commonly used first-order opti-
mizers. The ideal solution is for the memory cost of the
optimizer to grow sub-linearly with the model size, giving
us the flexibility to increase the model’s capacity.
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Table 1. Trade-offs between the Count-Sketch and Low-Rank Ap-
proximation. k is the number of active features or classes. r is the
rank of the two factors where r << min(n, d).

Type Count-Sketch Low-Rank
Memory O(n · log d) O(nr + rd)

Gradient Type Sparse + Dense Dense
Memory Control Flexible Fixed

Query Time O(nk) O(nrm)

6. Experiments
All of the experiments were performed with the PyTorch
framework on a single machine - 2x Intel Xeon E5-2660 v4
processors (28 cores / 56 threads) with 512 GB of memory
using a single Nvidia Tesla V100. The code1 for the Count-
Sketch Optimizer is available online.

We designed the experiments to answer these questions:
1. How accurate is our estimate of the auxiliary variables
retrieved from the count-sketch data structure?
2. What the effect of cleaning the count-min sketch on
convergence time and accuracy?
3. How well does our count-sketch optimizer compare
against the low-rank approximation given the same number
of parameters?
4. Does our count-sketch optimizer match original base-
line in terms of speed and accuracy?

Here are the six datasets used in the experiments:
Wikitext-2 (Merity et al., 2016) - This dataset was extracted
from Wikipedia and contains 2M training tokens with a vo-
cabulary size of 33,278.
Wikitext-103 (Merity et al., 2016) - A larger version of the
Wikitext-2 dataset that contains 103M training tokens and
its vocabulary size is 267,735.
1-Billion Word (LM1B) (Chelba et al., 2013) - This large-
scale corpus contains 0.8 billion training tokens and a vo-
cabulary with 793,471 words. An open-sourced PyTorch
model is available online2.
MegaFace (Nech & Kemelmacher-Shlizerman, 2017) -
A facial recognition dataset derived from MegaFace—
Challenge 2. Each person is a candidate class, but we only
select classes with at least 10 images. Thus, this sampled
dataset contains 1,943,802 examples with 80,204 classes.
10K images are randomly sampled to create the test dataset.
ImageNet (Russakovsky et al., 2015) - An image classifica-
tion dataset that contains over 1 million examples and 1000
object classes.
Amazon - This sampled recommendation dataset contains
70.3 million examples and over 49.5 million object classes.
(20.9 GB)

1https://github.com/rdspring1/Count-Sketch-Optimizers
2https://github.com/rdspring1/PyTorch GBW LM

We utilized these baselines to compare against our approach:
Non-Negative Matrix Factorization (NMF) — This de-
composition minimizes the I-divergence between the auxil-
iary variable and the approximation formed from two Rank-
1 vectors. However, it is limited to non-negative matrices,
so it cannot compress the auxiliary variables for Momentum
or the 1st Moment of Adam. (Shazeer & Stern, 2018)
`2 Rank-1 — After each update, we perform an SVD de-
composition of the auxiliary variable, and only keep the top
singular value and its corresponding vectors. During the
subsequent update, the auxiliary variable is reconstructed
via an outer product. Unlike the NMF Rank-1 Approxima-
tion, this approach is not limited to non-negative values, but
it is extremely slow and cannot be used in practice.
Count-Sketch — As described in Section 3. This approach
is also not limited to non-negative values and is capable
of compressing the auxiliary variables for all optimizers
efficiently.

Table 2. Abbreviations
Title Symbol

Count-Sketch CS
Count-Min-Sketch CMS

Low-Rank LR
Adam 1st Moment M

Adam 2nd Moment V
Non-Negative Matrix Factorization NMF

6.1. Small-Scale Experiments

Wikitext-2: The language model was a 2-layer LSTM with
672 hidden units. The dimensionality of the word embed-
dings was equal to the number of hidden units. The model
was unrolled 35 steps for the back-propagation through time
(BPTT). We trained the model for 40 epochs with a mini-
batch size of 20. For Momentum, the learning rate was
2.5, the decay rate γ was 0.9, and we clipped the gradient
norm to 0.25. For Adam, the learning rate was 0.001, the
beta values β1, β2 were 0.9 and 0.999, and gradient clipping
was 1. We reduced the learning rate by 4× whenever the
validation error plateaued. We used the full softmax layer,
so only the embedding layer was sparse for this dataset.
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Figure 2. Left - Momentum, Right - Adam-2nd Moment. `2-Norm
between the approximation and the original auxiliary variable.

https://github.com/rdspring1/Count-Sketch-Optimizers
https://github.com/rdspring1/PyTorch_GBW_LM
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`2-Norm Approximation Error: Figure 2 shows the `2-
Norm between the approximation and the original auxiliary
variable. The left figure is for the Momentum optimizer,
and the right figure is for the 2nd Moment for the Adam
optimizer. All of the methods were given roughly an equal
amount of parameters to approximate the original auxiliary
variable. For the Wikitext-2 dataset, the embedding and
softmax layers were [33,278, 256] matrices. Therefore, the
rank-1 decomposition used two vectors that use 33,278 +
256 = 33,534 parameters. The count-sketch data structure
was represented with a [3, 16, 672] tensor, containing 32,256
parameters. Our count-sketch approach mapped the 33,278
word vocabulary into 16 distinct bins, so there were about
2,080 collisions for each bucket.

The Adam optimizer’s 2nd Moment is strictly non-negative
and is suitable for the NMF Rank-1 approximation. For the
Momentum variable, we supplement the NMF decomposi-
tion with the `2 SVD decomposition. The `2 SVD decom-
position maintains a good approximation of the Momentum
variable. However, it is extremely slow during training, so
we only show the approximation error for the first epoch
of training. As expected, the NMF Rank-1 baseline poorly
approximated the momentum variable because it was not
strictly non-negative. It experienced significant variance in
its approximation quality. The count-sketch was a consistent
estimator for both variables with slightly more error for both
variables.

Test Perplexity: Tables 3,4 show the test perplexity after
training the model with the Momentum and Adam optimiz-
ers. For the Momentum optimizer, the NMF Low-Rank
approximation performed poorly, reinforcing the results
from Figure 2. When only the 2nd moment was compressed,
the NMF Low-Rank and Count-Sketch approximations have
negligible differences. When we compressed both the 1st
and 2nd moments with the count-sketch, there was some
minor accuracy loss from the original optimizer.

Table 3. Test Perplexity for Momentum Optimizer on the Wikitext-
2 dataset. The NMF low-rank approximation performs poorly
because the momentum variable is not strictly non-negative.

Momentum CS LR-NMF
94.25 95.93 176.31

Table 4. Test Perplexity for Adam Optimizer on the Wikitext-2
dataset. The modifiers indicate which auxiliary variables are com-
pressed. For strictly non-negative variables, the Count-Min Sketch
and NMF low-rank approximations perform equally well.

Adam CS-MV CS-V LR-NMF-V
105.14 109.24 106.32 106.21

MegaFace: For this experiment, we used pretrained embed-
dings from the FaceNet architecture (Schroff et al., 2015)
trained on the MS-Celeb-1M dataset3. Afterwards, we
trained a softmax classifier on the MegaFace dataset us-
ing LSH sampling (Yen et al., 2018b; Vijayanarasimhan
et al., 2014). Our LSH sampling distribution was SimHash
with K=15 bits per hash fingerprint and L=16 hash tables,
rebuilt every 250 iterations. For Adam, the learning rate
was 0.001 and the beta values β1, β2 were (0.9, 0.999). For
Adagrad, the learning rate was 0.1. All the models were
trained for 10 epochs.

Figure. 3 shows the effect of cleaning the Count-Min Sketch
Tensor on its corresponding optimizer. We measured how
the test accuracy, convergence rate, and auxiliary variable
error changed because of cleaning. For Adam, the cleaning
scheme was to multiply the count-min sketch by a constant
0.2 every 125 iterations. For Adagrad, the rate of cleaning
was the same, but the constant was changed to 0.5.

For both Adam and Adagrad, there was a noticeable drop in
`2-Norm error with the cleaning heuristic. For Adam, the
count-sketch optimizer with cleaning closely matched the
convergence rate of the baseline. The test accuracy for count-
sketch with cleaning was 69.4%, while the baseline was
69.03%. Cleaning did not improve the initial convergence
rate for Adagrad, but it allowed the final test accuracy to
match the baseline.

Given that the Adam optimizer already contains an expo-
nential decay term, it is surprising that cleaning is necessary.
However, despite requiring more hyper-parameter tuning,
the count-sketch optimizer with cleaning still achieves the
best performance. One potential explanation is that since
the gradients were sparse, only the non-zero elements were
updated. Thus, the decay was applied in an irregular fashion
for the elements in the sketch.

6.2. Image Classification

We trained a ResNet-18 architecture on the ImageNet
dataset for 90 epochs with a batch size of 256. The baseline
optimizer was RMSprop with a learning rate of 0.01. For
the Count-Sketch optimizer, we used 20% of the original
parameters for the auxiliary variables (5× fewer).

Table 5 shows that the Count-Sketch RMSprop optimizer
has a negligible effect on training time and test accuracy.
Our results are comparable with SGD, the gold standard op-
timizer for training convolutional networks. Majority of the
memory usage comes from the gradients, so gradient check-
pointing is more applicable for this architecture. However,
we saved 100 MB compared to the RMSprop optimizer,
despite the small model size (50 MB).

3https://github.com/davidsandberg/facenet

https://github.com/davidsandberg/facenet


Count-Sketch Optimizers

25

35

45

55

65

75

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Epochs

Adam - Accuracy

Adam No-Cleaning Cleaning

50

55

60

65

70

75

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy

Epochs

Adagrad - Accuracy

Adagrad No-Cleaning Cleaning

0

0.5

1

1.5

2

2.5

0 20 40 60 80

L2
-N

o
rm

Iterations

Adam - Error

No-Cleaning Cleaning

0

75

150

225

300

375

0 20 40 60 80

L2
-N

o
rm

Iterations

Adagrad - Error

No-Cleaning Cleaning

Figure 3. The effect of cleaning on the Count-Min Sketch Tensor and its corresponding optimizer for the MegaFace dataset.

To compress dense layers efficiently without gradient spar-
sity, we avoid generating the auxiliary variables explicitly in
global memory. Instead, we access them inside the shared
memory of the GPU. During training, we update the aux-
iliary variables and parameters in a single CUDA kernel.
Fusing the two separate operations together has the side
benefit of improving memory locality and reducing the per-
formance penalty from the randomized hash function.

Table 5. Running Time per Epoch, Memory, and Test Accuracy
using the RMSprop optimizer on the ImageNet dataset.

Metric SGD CMS RMSprop
Time (Hrs) 0.64 0.60 0.61
Size (MB) 9,257 9,495 9,603

Test Accuracy@1 69.76 69.12 65.27
Test Accuracy@5 89.08 88.87 86.09

6.3. Large-Scale Language Model

Since these datasets have large vocabularies, we used Sam-
pled Softmax (Jean et al., 2014) for faster training and to
induce sparsity in the Softmax layer. Each Count-Sketch
tensor was 5× smaller than the original variable.

Adagrad - Wikitext-103: Our language model was a single
layer LSTM with 1024 hidden units. The dimensionality
of the word embeddings was 256 and we used a projection
layer between the LSTM and Softmax layers. The model
was unrolled 35 steps BPTT. The model was regularized via
Dropout with p = 0.25. We trained the model for 25 epochs
with a mini-batch size of 1024. For the Adagrad optimizer,
the gradient norm was clipped to 0.1 and the learning rate
decayed linearly from 0.4 to 0 during training.

Results: By providing the count-sketch with more param-
eters, our method has better test accuracy than the NMF
low-rank approximation while using slightly more memory.
In addition, despite using more parameters than the low-rank
approximation, the count-sketch optimizer is still somewhat
faster. Finally, the low-rank approximation fails to meet the
same accuracy as the original baseline, while surprisingly
the count-sketch optimizer has the best test perplexity.

Table 6. Running Time per Epoch, Memory, and Test Perplexity
on the Wikitext-103 dataset using the Adagrad Optimizer.

Metric Adagrad CS LR-NMF
Time (Hrs) 6.4 6.6 6.7
Size (MB) 10,625 10,089 10,077

Test Perplexity 57.63 56.07 58.27

RMSprop - LM1B - Transformer: Our language model
was an 18-layer Transformer-XL model (Dai et al., 2019).
The code is available online4. Each layer had 8 attention
heads with 2048 hidden units. The dimensionality of the
word embeddings was 256. The gradient norm was clipped
to 0.25. Using the cosine annealing schedule, the learning
rate decayed from 0.00025 to 0. We trained the model for
5 epochs with a batch size of 224. Instead of Sampled
Softmax, we used Adaptive Softmax (Grave et al., 2017)
to reduce the memory cost and to improve training speed.
The overall model contained about 70 million parameters
(283 MB). Our results show that our count-sketch RMSprop
saved the most memory, while maintaining the comparable
test perplexity and running time.

Table 7. Running Time per Epoch, Memory, and Test Perplexity
on the LM1B dataset using the RMSprop Optimizer.

Metric RMSprop CMS LR-NMF
Time (Hrs) 11.75 12 13.9
Size (MB) 5,169 4,941 5,169

Test Perplexity 38.83 39.36 37.56

Adam - LM1B - LSTM: Our goal was to mimic multi-GPU
distributed training on a single GPU. The original batch size
was 128 with a learning rate of 5e-4. After increasing our
batch size from 128 to 1024, we scaled our learning rate
linearly by 8× (Goyal et al., 2017). In addition, we decayed
our learning rate linearly to zero over 5 training epochs. We
doubled the LSTM size from 1024 to 2048, but kept the
word embedding size at 256. The model was unrolled 20
steps BPTT. Dropout was kept nominally at p = 0.01 and
the gradient norm was clipped to 1. A surprising side effect
of increasing the batch size was that we reduced our training
time by roughly 2× from 12.25 hours to 6.25 hours per
epoch despite using a single GPU.

4https://github.com/kimiyoung/transformer-xl

https://github.com/kimiyoung/transformer-xl
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Results: Our primary comparison was only with the 2nd
moment because the NMF low-rank approximation is not
applicable to the 1st moment. The count-sketch was slightly
more accurate than the low-rank approximation. When both
the 1st and 2nd moments were compressed with the count-
sketch tensor, its accuracy was on-par with the low-rank
approximation that compressed only the 2nd moment. The
count-sketch tensor was 8% faster than the low-rank ap-
proach while using substantially less GPU memory. For
large matrices, there was a noticeable cost with reconstruct-
ing the entire matrix to update only a sparse subset of values.

Table 8. Running Time per Epoch (Hours) and Memory Consump-
tion (MB) on the 1-Billion Word dataset for the Adam optimizer.

Metric Adam CS-MV CS-V LR-NMF-V
Time 5.28 5.42 5.35 5.84
Size 10,813 7,693 9,269 11,645

Table 9. Convergence Rate (Test Perplexity) after 5 epochs on the
1-Billion Word dataset. The modifiers indicate which auxiliary
variables are compressed for the Adam optimizer.

Epoch CS-MV Adam CS-V LR-NMF-V
1 50.78 48.48 49.49 50.04
2 46.08 45.34 45.22 45.60
3 43.71 42.79 42.95 43.55
4 41.82 41.15 41.23 41.82
5 40.55 39.90 39.88 40.41

6.4. Extreme Classification

For the extremely large-scale classification task, we con-
ducted our experiments on an Amazon recommendation
dataset. The task was to predict an object out of over 49
million classes. The text query was parsed into trigram fea-
tures. Feature hashing was applied to convert the strings
into integers. The input feature dimension was 80K. On av-
erage, there were only 30 non-zero features per query, so the
input layer was very sparse and suitable for our count-sketch
optimizer. We trained a single hidden layer, fully-connected
neural network with an embedding dimension of 1024.

A traditional softmax classifier would require over 200 GB
of memory, which is well beyond the memory capacity of
the largest GPUs. Instead, we leveraged a novel approach
for extreme classification called Merged-Averaged Classi-
fiers via Hashing (MACH) (Huang et al., 2018). This algo-
rithm randomly merges the output classes into a manageable
number of coarse-grained, meta-classes via universal hash-
ing. Several independent, fully-connected neural networks
are trained to solve this meta-class classification task. Each
meta-classifier is associated with a unique hash function
that creates a distinct class mapping. At inference time, we
recover the scores for the original classes by aggregating
the meta-class scores assigned to the original output class.
For this experiment, we used 20K meta-classes in the output

layer of each meta-classifier. For high-accuracy models, we
used 32 meta-classifiers. Each individual meta-classifier
required 414 MB of memory for a total of 12.95 GB. There-
fore, our ensemble MACH classifier used 15× less memory
than a monolithic softmax classifier.

Since we are primarily interested in achieving faster training
times, we limited ourselves to 4 meta-classifiers in this ex-
periment. For our baseline, each meta-classifier was trained
using the Adam optimizer with a batch size of 750. Given
these settings, a single meta-classifier takes 4 GB of GPU
memory, allowing us to train 4 models in parallel on a sin-
gle GPU. For maximum memory savings, we eliminated
the 1st moment and used a count-min sketch tensor for the
2nd moment (1% of original size). By using the Adam
Count-Sketch optimizer, we reduced the memory cost for
each model from 4 GB to 2.6 GB (45% smaller). We took
advantage of this extra memory by increasing the batch size
from 750 to 2600 (3.5× larger). As a result, the running
time per epoch decreased from 5.32 hours to 3.3 hours (38%
faster).

We measured the accuracy of the MACH model using the
Recall@100 metric on a test dataset containing 20K queries.
First, we evaluated the meta-classifiers and then aggregated
their scores. Then, we checked how often the target class
appears within the top 100 scores generated by the classifier.
A major bottleneck during evaluation was sorting the 49.5
million classes to find the top 100 scores. Since we were
only comparing the model’s relative performance, we down-
sampled the scores from 49.5 million to 1 million. The class
subset contained the target classes for all 20K test queries
and a random sample of the remaining classes. Given 16
meta-classifiers, the Adam baseline had a 0.6881 recall,
while the count-sketch optimizer achieved a 0.6889 recall.

Table 10. Extreme Classification — A MACH ensemble with 4
meta-classifiers trained on a single GPU using Adam.

Type Batch Size Time (Hrs) Recall@100
Adam 750 5.32 0.4704
CS-V 2600 3.3 0.4789

7. Conclusion and Future Work
In this paper, we presented the concept of a count-sketch
tensor to compress the auxiliary variables associated with
popular first-order optimizers. The count-sketch tensor has
constant-time update and query operations, while maintain-
ing the tensor structure for high-speed vectorized operations.
The count-sketch tensor can reduce the memory usage of
large-scale models with minimal cost and take advantage
of the model’s sparsity. Going forward, we are interested
in leveraging recent ideas of adding sparsity to the hidden
layers in order to increase the size of the model further with-
out increasing its computational cost (Spring & Shrivastava,
2017; Shazeer et al., 2017).
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Grave, E., Joulin, A., Cissé, M., Jégou, H., et al. Effi-
cient softmax approximation for gpus. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 1302–1310. JMLR. org, 2017.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Hoffer, E., Hubara, I., and Soudry, D. Train longer, general-
ize better: closing the generalization gap in large batch
training of neural networks. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30, pp. 1731–1741. Curran Asso-
ciates, Inc., 2017.

Huang, Q., Wang, Y., Medini, T., and Shrivastava, A.
Extreme classification in log memory. arXiv preprint
arXiv:1810.04254, 2018.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. On using
very large target vocabulary for neural machine transla-
tion. arXiv preprint arXiv:1412.2007, 2014.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and
Wu, Y. Exploring the limits of language modeling, 2016.
URL https://arxiv.org/pdf/1602.02410.pdf.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krause, B., Lu, L., Murray, I., and Renals, S. Multi-
plicative lstm for sequence modelling. arXiv preprint
arXiv:1609.07959, 2016.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=r1gs9JgRZ.

Nech, A. and Kemelmacher-Shlizerman, I. Level playing
field for million scale face recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

Nesterov, Y. E. A method for solving the convex program-
ming problem with convergence rate o (1/kˆ 2). In Dokl.
akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Ott, M., Edunov, S., Grangier, D., and Auli, M. Scaling neu-
ral machine translation. arXiv preprint arXiv:1806.00187,
2018.

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964.

http://proceedings.mlr.press/v80/aghazadeh18a.html
http://proceedings.mlr.press/v80/aghazadeh18a.html
https://arxiv.org/pdf/1602.02410.pdf
https://openreview.net/forum?id=r1gs9JgRZ


Count-Sketch Optimizers

Puri, R., Kirby, R., Yakovenko, N., and Catanzaro, B. Large
scale language modeling: Converging on 40gb of text in
four hours. arXiv preprint arXiv:1808.01371, 2018.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by gener-
ative pre-training. Online, 2018. URL https://
s3-us-west-2.amazonaws.com/openai-assets/research-covers/
languageunsupervised/languageunderstandingpaper.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 815–823, 2015.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In Dy, J. and Krause,
A. (eds.), Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 4596–4604, Stock-
holmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.
URL http://proceedings.mlr.press/v80/shazeer18a.html.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Shrivastava, A. and Li, P. Asymmetric lsh (alsh) for sub-
linear time maximum inner product search (mips). In
Advances in Neural Information Processing Systems, pp.
2321–2329, 2014.

Shrivastava, A., Konig, A. C., and Bilenko, M. Time adap-
tive sketches (ada-sketches) for summarizing data streams.
In Proceedings of the 2016 International Conference on
Management of Data, pp. 1417–1432. ACM, 2016.

Siskind, J. M. and Pearlmutter, B. A. Divide-and-conquer
checkpointing for arbitrary programs with no user an-
notation. Optimization Methods and Software, 33(4-6):
1288–1330, 2018.

Spring, R. and Shrivastava, A. Scalable and sustainable
deep learning via randomized hashing. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 445–454.
ACM, 2017.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pp.
1139–1147, 2013.

Tai, K. S., Sharan, V., Bailis, P., and Valiant, G. Sketching
linear classifiers over data streams. In Proceedings of the
2018 International Conference on Management of Data,
SIGMOD ’18, pp. 757–772, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-4703-7. doi: 10.1145/3183713.
3196930. URL http://doi.acm.org/10.1145/3183713.3196930.

Tito Svenstrup, D., Hansen, J., and Winther, O. Hash em-
beddings for efficient word representations. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 30, pp. 4928–4936. Cur-
ran Associates, Inc., 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. At-
tention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems 30, pp. 5998–6008. Curran
Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

Vijayanarasimhan, S., Shlens, J., Monga, R., and Yagnik, J.
Deep networks with large output spaces. arXiv preprint
arXiv:1412.7479, 2014.

Yen, I. E.-H., Kale, S., Yu, F., Holtmann-Rice, D., Kumar,
S., and Ravikumar, P. Loss decomposition for fast learn-
ing in large output spaces. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 5640–5649, Stockholmsmssan,
Stockholm Sweden, 10–15 Jul 2018a. PMLR. URL
http://proceedings.mlr.press/v80/yen18a.html.

Yen, I. E.-H., Kale, S., Yu, F., Holtmann-Rice, D., Kumar,
S., and Ravikumar, P. Loss decomposition for fast learn-
ing in large output spaces. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 5640–5649, Stockholmsmssan,
Stockholm Sweden, 10–15 Jul 2018b. PMLR.

Zaheer, M., Reddi, S., Sachan, D., Kale, S., and Kumar, S.
Adaptive methods for nonconvex optimization. In Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 31, pp. 9815–9825. Cur-
ran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
8186-adaptive-methods-for-nonconvex-optimization.pdf.

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/languageunsupervised/language understanding paper
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/languageunsupervised/language understanding paper
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/languageunsupervised/language understanding paper
http://proceedings.mlr.press/v80/shazeer18a.html
http://doi.acm.org/10.1145/3183713.3196930
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://proceedings.mlr.press/v80/yen18a.html
http://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization.pdf
http://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization.pdf

